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Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important swine disease
that affects many swine industries worldwide. The disease can cause reproductive
failure and respiratory problems in a swine population. As vaccination is an important
tool to control the spread of PRRS virus (PRRSV), we employ a mathematical model to
investigate the transmission dynamics of PRRSV and the effects of immunity
information, as well as vaccination control strategies. We also explore optimal
vaccination coverage and vaccination rate to minimize the number of infected swines
and vaccination efforts. Our results suggest that: (i) higher vaccination coverage and
vaccination rate together with prior knowledge about immunity may help reduce the
prevalence of PRRSV, and (ii) longer maximum vaccination efforts are required when
swines stay longer in a population and it takes them longer time to recover from PRRS
infections.
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1 Introduction
Porcine reproductive and respiratory syndrome (PRRS) is an important disease responsi-
ble for reproductive and respiratory disorders in a swine population. The disease is caused
by porcine reproductive and respiratory syndrome virus (PRRSV) which belongs to the
Arterivirus genus [1]. The virus was first recognized in the USA in 1987, but PRRSV cur-
rently becomes endemic in the global swine industry [2]. Clinical symptoms include severe
reproductive failure, pneumonia, decreased performance such as growth rate and num-
bers of progeny, and increased mortality [3]. Infections may last for several days due to
the properties of PRRSV that induces prolonged viremia. Transmission primarily occurs
via close contact between swines but airborne transmission and transmission through se-
men are possible [4]. Typically, PRRSV may cause epidemic outbreaks in virus-free areas
or outbreaks after the introduction of a new strain in endemic regions.

Vaccination is an important method used for controlling the spread of PRRSV. There
are at least two types of PRRSV vaccine commercially available: modified-live virus vac-
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cine (MLV) and killed virus vaccine [5, 6]. MLV vaccines generally provide full protection
against PRRSV strains that are homologous to the vaccine virus but may only provide par-
tial cross-protection against heterologous strains [5]. The vaccines have been shown to
effectively reduce disease occurrence, severity, mortality and poor growth in swines [7, 8].
They are usually available in endemic regions while killed vaccines that are less efficacious
are generally used in non-endemic areas. Improving immune response to PRRSV vaccines
is currently an important challenge.

Mathematical modeling has been used as an important tool to help understand the dy-
namics of infectious diseases among farm animals. However, mathematical models for
describing the spread of PRRSV are not numerous [9–13]. Evans et al. [9] developed a
stochastic model of a farrow-finish heard and found that the persistence of PRRSV in-
creases according to increased herd size, increased contact between different age groups,
and increased reintroduction of infectious swines. Jeong et al. [10] formulated a stochastic
model to investigate control strategies. Their results suggest repeated mass immunization
with herd closure or gilt acclimatization over single mass immunization for disease control
within a farm. Arruda et al. [12] constructed a discrete event agent-based stochastic model
to study the occurrence of PRRS outbreaks in swine herds when vaccines are implemented.
Their results highlighted the importance of maintaining internal biosecurity practices as
control strategies may not prevent the infection from spreading among the swine popula-
tion. Suksamran et al. [13] used a two-step parameter-driven Bayesian approach to model
the spatio-temporal dynamics of PRRS and demonstrated the importance of pig trade in
PRRS transmission in the US. To the best of our knowledge, none of preceding studies have
addressed the effects of optimal vaccination strategies and immunity information. In this
study, we first investigate the transmission dynamics of PRRSV among a swine population
by using a mathematical model, and explore the effects of vaccination strategies when two
types of vaccination are taken into account, vaccination at births and vaccination from a
susceptible pool. Then, we additionally introduce discrete-time vaccination and immu-
nity information to study how immunity information influences the presence of infected
swines. Moreover, when vaccination is continuously time-dependent, we explore optimal
vaccination strategies and the effects of lifespan and recovery time.

2 Model formulation
To study the transmission dynamics of PRRSV and effects of certain parameters on the
prevalence, we introduce a mathematical model by dividing a swine population into three
categories: susceptible (S), infectious (I), and recovered (R). A flow diagram of the model
is illustrated in Fig. 1.

In the model, the growth rate is assumed to be logistic with a carrying capacity K ow-
ing to limitation of resources and man power [14–16]. For simplicity of the model and
swines as prolific breeders, animal replacement is not included here. In the growth term,
b represents a natural birth rate of swines. Due to the possibility of reproductive failures
from PRRSV infection in infected swines, we assume that normal births occur in suscep-
tible and recovered swines while in the infected swines, only the proportion r of them can
successfully give births. If r = 0, it means that reproductive failure completely occurs in
infected swines. At the other extreme, if r = 1, it means that PRRSV infection does not
affect the swine reproduction. In the model, the swine population dies at a rate μ.
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Figure 1 A flow diagram for describing the transmission dynamics of PRRSV among the swine population. In
the diagram, S, I, and R represent susceptible, infected, and recovered swines. PRRSV is transmitted at rate β ;
swines are recovered at rate γ . PRRSV may cause a reproductive failure so that only the proportion r of swines
successfully reproduces. Generally, births occur at rate b and swines die at rate μ. Swines are vaccinated at
births with the vaccination coverage q and vaccinated at rate u from a susceptible pool

Here, we assume that transmission of PRRSV mainly occurs via close contacts while air-
borne and other transmission modes are negligible. It is assumed that virus transmission
occurs at a rate β and swines recover from an infection with PRRSV at a rate γ . Note
that since only homologous strains are considered in this work and swines are short-lived,
swines are assumed to acquire life-long immunity.

In this proposed study, swines are vaccinated by MLV vaccines. There are two types
of vaccination: vaccination at births and vaccination from a susceptible pool. We assume
that a fraction q of the swine population is vaccinated at births while susceptible swines are
successfully vaccinated at a rate u where 1/u is the average time that susceptible swines
remain susceptible before vaccination. For simplicity, vaccines are assumed to be 100%
efficacious in the model.

From the aforementioned assumptions, transmission dynamics of PRRSV is described
by the following model:

dS
dt

= (1 – q)b
(

1 –
S + I + R

K

)
(S + rI + R) – βSI – (μ + u)S,

dI
dt

= βSI – (μ + γ )I,

dR
dt

= qb
(

1 –
S + I + R

K

)
(S + rI + R) + γ I + uS – μR.

(1)

3 Analytic results
From model (1), the following inequality is obtained:

dS
dt

≥ –
(
βI + (μ + u)

)
S,

so that we have

S(t) ≥ S0 exp
(
–(βI + μ + u)t

) ≥ 0.

Similarly, it can be shown that I ≥ 0, and R ≥ 0. Accordingly, solutions of system (1) with
positive initial conditions remain non-negative for all time t ≥ 0. Let N(t) = S(t) + I(t) +
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R(t). Then

dN
dt

= b
(

1 –
N
K

)
(S + rI + R) – μN ≤ b

(
1 –

N
K

)
N – μN .

Hence,

N ≤ (b – μ)
b

K .

Consequently, the feasible region is given by

Ω =
{

(S, I, R) ∈ R3
+ : 0 ≤ S, I, R, N ≤ (b – μ)

b
K

}
.

3.1 Steady states
By setting the right-hand sides of (1) equal to zero, two steady states of the system are
found: disease free and disease-present steady states.

1 The disease-free steady state is given by E0 = (S0, I0, R0) with

S0 =
(

1 –
μ

b

)
K – R0,

I0 = 0,

R0 =
(qμ + u)(1 – μ

b )K
μ + u

.

2 The disease-present steady state is given by E∗ = (S∗, I∗, R∗) where we have

S∗ =
μ + γ

β
,

R∗ =
((μ + u) – (1 – q)μ)(μ + γ )

(1 – q)μβ
+

((μ + u) – (1 – q)μ)I∗

(1 – q)μβ
,

and I∗ satisfying

a0
(
I∗)2 + a1I∗ + a2 = 0

with

a0 =
–b(μ + γ )

Kμ

(
r – 1 +

μ + γ

(1 – q)μ

)
,

a1 =
(

(1 – q)b –
b(μ + u)(μ + γ )

Kμβ

)(
r – 1 +

μ + γ

(1 – q)μ

)
–

b(μ + u)(μ + γ )2

Kβμ2(1 – q)

– (μ + γ ),

a2 =
(

b
μ

– 1
)(

(μ + u)(μ + γ )
β

)
–

b(μ + u)2(μ + γ )2

Kμ2β2(1 – q)
.

After some time, a system solution either approaches or moves away from a steady state. If
it approaches the steady state, dynamical behaviors of the system will not change and re-
main at the steady state. Whether the system solution approaches the disease-free steady
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state or the disease-present steady state depends on stability conditions which can be de-
termined via the basic reproduction number of system (1).

3.2 The basic reproduction number (R0)
The basic reproduction number (R0) is a quantity that represents the number of infected
swines after introducing an infected swine into a susceptible population. Consequently,
PRRSV dies out from a swine population if R0 < 1 and persists if R0 > 1. Note that R0 can
also be used to reflect the severity of an outbreak and the prevalence level. If R0 is large, it
is more likely that an outbreak is severe and the disease prevalence is high [15]. The basic
reproduction number can be calculated by the next-generation matrix method [17]. Let
us rewrite system (1) in the following form:

dX
dt

= F – V

where

X =

⎡
⎢⎣

I
R
S

⎤
⎥⎦ , F =

⎡
⎢⎣

βSI
0
0

⎤
⎥⎦ ,

and

V =

⎡
⎢⎣

(μ + γ )I
–qb((1 – S+I+R

K )(S + rI + R) – γ I – uS + μR
–(1 – q)b(1 – S+I+R

K )(S + rI + R) + βSI + (μ + u)S

⎤
⎥⎦ .

Note that X is sorted so that the disease compartments come first in order, F is a column
matrix of the rate of appearance of new infections in each compartment, and V is a column
matrix of the transfer rate of individuals out of each compartment. Finding the Jacobian
matrices of F and V at the disease-free steady state E0 gives

J
(
F

(
E0)) =

⎡
⎢⎣

βS0 0 0
0 0 0
0 0 0

⎤
⎥⎦ .

The Jacobian of V at the disease-free steady state is given by

J
(
V

(
E0))

=

⎡
⎣ μ + γ 0 0

–qb((1 – m)r – m) – γ –qb(1 – 2m) + μ –qb(1 – 2m) – μ

–(1 – q)b((1 – m)r – m) + βS0 –(1 – q)b(1 – 2m) –(1 – q)b(1 – 2m) + μ + u

⎤
⎦,

where m = (S0 + R0)/K . Consequently, by partitioning the above Jacobian matrices in such
a way that F and V are a non-negative matrices and a non-singular M matrix, we get

F =
[
βS0], V = [μ + γ ].
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Therefore, R0 can be calculated as the spectral radius of FV –1 and it is given by

R0 = ρ
(
FV –1) =

βS0

μ + γ
= (1 – q)

β(1 – μ/b)μK
(μ + u)(μ + γ )

.

Based on the formula, R0 can be reduced by increasing vaccination coverage and vaccina-
tion rate.

3.3 Stability analysis
Theorem The disease-free steady state is locally asymptotically stable if R0 < 1.

Proof To prove this theorem, we use the Routh–Hurwitz criterion. First, we calculate the
Jacobian matrix at the disease-free steady state

J
(
E0) =

⎡
⎣(1 – q)b(1 – 2m) – (μ + u) (1 – q)b((1 – m)r – m) – βS0 (1 – q)b(1 – 2m)

0 βS0 – (μ + γ ) 0
qb(1 – 2m) + u qb((1 – m)r – m) – γ qb(1 – 2m) – μ

⎤
⎦ .

To find the eigenvalues of J(E0), set det(J(E0) –λI) = 0 to obtain the characteristic equation
of the following form:

λ3 + m1λ
2 + m2λ + m3 = 0

with

m1 = b + u + (μ + γ )(1 – R0),

m2 = (b + u)(1 – R0) + (b – μ)(μ + u),

m3 = (b – μ)(μ + u)
[
(μ + γ )(1 – R0)

]
,

under the assumption that b > μ, or equivalently, that the birth rate exceeds the death
rate. According to the Routh–Hurwitz criterion [18], the following three conditions must
be satisfied:

1 m1 > 0,
2 m3 > 0,
3 m1m2 > m3.

It is obvious that m1 > 0 if R0 < 1. This is also true for the second condition that m3 > 0.
Let us now consider the last condition as follows:

m1m2 = (b + u)2(1 – R0) + (b + u)(b – μ)(μ + u) + (b + u)(μ + γ )(1 – R0)2

+ (b – μ)(μ + u)
[
(μ + γ )(1 – R0)

]
= (b + u)2(1 – R0) + (b + u)(b – μ)(μ + u) + (b + u)(μ + γ )(1 – R0)2 + m3.

It can be clearly seen that m1m2 > m3 for R0 < 1. Consequently, based on the Routh–
Hurwitz criterion, the disease-free steady state is locally asymptotically stable if and only
if R0 < 1. Equivalently, PRRSV dies out if R0 < 1 and persists otherwise. �
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Figure 2 (a) Numbers of susceptible, infectious, and recovered swines according to time when R0 = 3;
(b) A comparison of numbers of swines infected with PRRSV when R0 > 1 and R0 < 1

Table 1 Lists of parameters for PRRSV transmission in the model

Description Symbol Value(s) References

Vaccination coverage (year–1) q 0.5 estimated
Natural birth rate of a swine population b 34.45 estimated
Swine carrying capacity K 300 –
Natural mortality rate of a swine population (year–1) μ 2 [19]
Recovery rate (year–1) γ 6.5 [20]
The basic reproduction number for calculating R0 3 [21]
a transmission coefficient
Transmission coefficient (β = R0

(μ+γ )
S0

) β 0.087
Vaccination rate for susceptible swines (year–1) u 2 estimated
Abortion proportion r 0.2 estimated

4 Numerical results
In this section, numerical approaches are implemented to investigate the transmission
dynamics of PRRSV among the swine population and the effects of a vaccination program
on the prevalence of PRRSV. Figure 2(a) shows the presence of susceptible, infectious, and
recovered swines according to time when parameters are set as values shown in Table 1.
In Fig. 2(b), we demonstrate that PRRSV persists when R0 > 1 and dies out when R0 < 1.

To explore the effects of vaccination on the epidemic size and the endemic number, u
and q are varied (0 ≤ q ≤ 1, 0 ≤ u ≤ 2) as shown in Fig. 3. It is obvious that increasing
the vaccination coverage and the vaccination rate can help reduce the severity of an out-
break (see Fig. 3(a)–(b)) and the prevalence of PRRSV among the swine population (see
Fig. 3(c)–(d)). Furthermore, by adjusting our numerical simulation, we are able to inves-
tigate discrete-time vaccination strategies which may be more realistic in the real world.
We assume that swines are vaccinated at births at certain time points (semiannually, annu-
ally, and biennially) and then keep the model being time-continuous and vaccination-free
during each time interval. Two scenarios of vaccination strategies are studied here: (A)
when only susceptible swines are vaccinated and (B) when both susceptible and recov-
ered swines are vaccinated. For the investigation of discrete-time vaccination, vaccination
at births is only taken into account while vaccination from the susceptible pool is not con-
sidered. Hence, we assume that at the beginning of each time interval T , a proportion q of
swines is vaccinated at births so that the initial conditions are reset at every time interval
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Figure 3 The epidemic size and the endemic number: (a) the epidemic size when q varies and
u = 0, 0.5, 1, 1.5, 2; (b) the epidemic size when u varies and q = 0, 0.3, 0.5, 0.8, 1; (c) the endemic number when
when q varies and u = 0, 0.5, 1, 1.5, 2; and (d) the endemic number when u varies and q = 0, 0.3, 0.5, 0.8, 1

as follows:

S(Tn) = (1 – q)S(Tn, Tn–1),

I(Tn) = I(Tn, Tn–1)),

R(Tn) = R(Tn, Tn–1) + qS(Tn, Tn–1),

where Tn is the nth time interval with Tn = nT for n = 0, 1, 2, . . . and x(Tn, Tn–1) with
x = S, I, R represents a solution of x of (1) at the time Tn solved with the initial value at
the time Tn–1 as x(Tn–1) and q = 0 for Tn–1 < t < Tn. It can be seen in Fig. 4(a)–(c) that
the frequency of vaccination and the information about immunity affects the prevalence
of PRRSV and the severity of subsequent outbreaks. The prevalence and the severity of
subsequent outbreaks increase when swines are vaccinated less frequently and when vac-
cination is without information about immunity. In Fig. 4(d)–(e), the vaccination interval
is set to be annual to investigate the effects of vaccination coverage and immunity in-
formation. The vaccination coverage is chosen to be q = 0.7 in Fig. 4(d) and q = 0.3 in
Fig. 4(e). Our results in Fig. 4(a), (b), and (e) suggest that the prevalence of infected swines
increases when the vaccine coverage is reduced and the number of infected swines dra-
matically increases, especially when the information about immunity is not known (see
Fig. 4(e)).

5 Optimal control results
To find optimal vaccination strategies to control the spread of PRRSV, both vaccination
coverage and vaccination rate are now assumed to depend on time. The objective is to
minimize the number of infected swines and control efforts. Hence, the objective func-
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Figure 4 (a)–(c) The number of infectious swines according to time when vaccination occurs at the
beginning of each time interval semiannually, annually, and biennially for q = 0.5, u = 0 for two vaccination
scenarios, (A) and (B). In (d) and (e), vaccination occurs annually but the vaccination coverage is set to be 0.7
and 0.3, respectively

tional is described by

min
u,q

∫ T

0

[
AI(t) + Bu(t)2 + Cq(t)2]dt.

The time domain is chosen to be 2 years in this study, t ∈ [0, T] = [0, 2]. The vaccination
coverage ranges between 0 and 1 while the vaccination rate ranges from 0 to 2. Note that
the optimal solution remains the same shape even though T changes. To obtain an adjoint
problem for an optimal solution, we follow the same steps as appeared in [22] by creating
the Hamiltonian as follows:

H = AI(t) + Bu(t)2 + Cq(t)2 + λ1(1 – q)b
(

1 –
S + I + R

K

)
(S + rI + R)

– λ1βSI – λ1(μ + u)S + λ2βSI – λ2(μ + γ )I

+ λ3qb
(

1 –
S + I + R

K

)
(S + rI + R) + λ3γ I + λ3uS – λ3μR.

The optimality conditions are defined by:

∂H
∂u

= 2Bu(t) – λ1S + λ3S = 0,

∂H
∂q

= –λ1b
(

1 –
S + I + R

K

)
(S + rI + R) + λ3b

(
1 –

S + I + R
K

)
(S + rI + R) + 2Cq(t) = 0.

Consequently, we obtain

u(t) =
1

2B
(λ1 – λ3)S,

q(t) =
1

2C
(λ1 – λ3)b

(
1 –

S + I + R
K

)
(S + rI + R).
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The adjoint equations and transversality conditions for this optimal problem are:

λ′
1(t) =

∂H
∂S

= –
[
λ1(1 – q)b

((
1 –

S + I + R
K

)
–

S + rI + R
K

)
– λ1βI – λ1(μ + u)

+ λ2βI + λ3qb
((

1 –
S + I + R

K

)
–

S + rI + R
K

)
+ λ3u

]
,

λ′
2(t) =

∂H
∂I

= –
[

A + λ1(1 – q)b
((

1 –
S + I + R

K

)
(r) –

S + rI + R
K

)
– λ1βS + λ2βS

– λ2(μ + γ ) + λ3qb
((

1 –
S + I + R

K

)
(r) –

S + rI + R
K

)
+ λ3γ

]
,

(2)

λ′
3(t) =

∂H
∂R

= –
[
λ1(1 – q)b

((
1 –

S + I + R
K

)
–

S + rI + R
K

)

+ λ3qb
((

1 –
S + I + R

K

)
–

S + rI + R
K

)
– λ3μ

]
,

where λ1(2) = λ2(2) = λ3(2) = 0. Finally, we solve system (1) along with (2) to obtain the
optimal results by the forward–backward sweep method with the time step of 0.002.

Our results in Fig. 5(a) suggest that vaccination at births and vaccination from the sus-
ceptible population should be at the maximum rates before reducing them at the end of
the control interval. By estimating constant vaccination coverage and vaccination rate that
have the same area under curves (AUCs) with optimal q and u, approximately 1.5 and 1.3,
we obtain u ≈ 0.663 and q = 0.762 which gives R0 ≈ 3 with the rest of model parameters
in Table 1. Consequently, we can compare our optimal results with the constant case by
using the area under the curve I(t). For the optimal case, AUC is 10 while it is 14 for the

Figure 5 (a) & (d) Optimal vaccination coverage and vaccination rate and their optimal results;
(b) & (e) Optimal vaccination coverage and vaccination rate and their optimal results when the death rate is
varied μ = 1, 2, 3; (c) & (f) Optimal vaccination and vaccination rate and their optimal results when the
recovery rate is varied γ = 365/28, 365/56, 365/84
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constant one. Hence, our results suggest optimality of the solution or the smaller num-
ber of infected swines after applying the optimal vaccination strategy. Figure 5(b) and 5(e)
demonstrate optimal vaccination controls when the death rate is varied and their corre-
sponding optimal results. When the death rate is low, the average time that swines stay in
a farm becomes longer and R0 becomes bigger for the constant case. The optimal controls
suggest the longer effort to vaccinate swines at the maximum vaccination coverage and the
maximum vaccination rate if swines spend time in a farm longer. When the recovery rate
is varied, the lower rate suggests the longer time of being infectious and the higher R0 for
the constant case. In Figs. 5(c) and 5(f ), our optimal control results suggest a longer effort
to vaccinate swines at the maximum vaccination coverage and the maximum vaccination
rate if the recovery rate is low.

6 Conclusion and discussion
In this study, a mathematical model is employed to help investigate the transmission dy-
namics of PRRSV among a swine population, factors that may affect the prevalence of
PRRSV and the severity of outbreaks, and optimal vaccination strategies to minimize the
number of infectious swines. Two vaccination scenarios are considered: vaccination at
births and vaccination from a susceptible pool.

Based on the next-generation matrix method, the basic reproduction number (R0) is
calculated. If R0 < 1, the disease-free steady state is stable so that PRRSV dies out from the
swine population. Local stability of the disease-free steady state is also demonstrated in
the study. If R0 > 1, PRRSV persists in the swine population. The formula of R0 suggests
that several factors may involve in determining the presence of PRRSV. For example, the
higher transmission rate may result in a higher tendency of PRRSV to be prevalent in the
swine population. It also suggests that PRRSV can be controlled by increasing vaccination
coverage and vaccination rate.

To identify factors that affect the prevalence of PRRSV and the severity of outbreaks, we
implement numerical techniques. Our findings suggest that increasing the vaccination
coverage and the vaccination rate helps reduce the prevalence of PRRSV and severity of
outbreaks. Our results also suggest that the prevalence and the severity of subsequent out-
breaks increase if swines are vaccinated less frequently or information about immunity is
absent. The worst vaccination scenario happens when vaccination resources and informa-
tion are limited or equivalently both events occur. Moreover, our optimal results suggest
that the effort of vaccinating swines should be maximized as long as possible when swines
stay longer in the farm or it takes longer for them to recover from PRRS infections. These
results also link to our calculated R0; if R0 is large, vaccination effort should be prolonged
as much as possible.

Finally, we believe that this study may help gain a better understanding of transmission
dynamics of PRRSV and suggest possible control strategies to help reduce infection cases.
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