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Abstract
In this research work, a mathematical model related to HIV-I cure infection therapy
consisting of three populations is investigated from the fractional calculus viewpoint.
Fractional version of the model under consideration has been proposed. The
proposed model is examined by using the Atangana–Baleanu fractional operator in
the Caputo sense (ABC). The theory of Picard–Lindelöf has been employed to prove
existence and uniqueness of the special solutions of the proposed fractional-order
model. Further, it is also shown that the non-negative hyper-planeR3

+ is a positively
invariant region for the underlying model. Finally, to analyze the results, some
numerical simulations are carried out via a numerical technique recently devised for
finding approximate solutions of fractional-order dynamical systems. Upon
comparison of the numerical simulations, it has been demonstrated that the
proposed fractional-order model is more accurate than its classical version. All the
necessary computations have been performed using MATLAB R2018a with double
precision arithmetic.
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1 Introduction
Human immunodeficiency virus (HIV) is the virus that is responsible for acquired immun-
odeficiency syndrome (AIDS). It relies upon the transcription and translation machinery
of its host cell. The virus infects a specific type of cell in the human immune system known
as CD4 helper lymphocyte cells (CD4+ T). These cells are destroyed by HIV thereby mak-
ing it harder for the body to fight other infections. When the level of the CD4+ T cells
declines beneath a critical level, cell-mediated immunity is lost and the body becomes
progressively susceptible to infections, resulting in the development of AIDS as explained
in various studies [1–5]. Finding a cure for AIDS still happens to be one of the great-
est challenges for scientists globally. In order to understand the dynamics of this deadly
infection, various mathematical models have been suggested and modified. These mod-
els have provided vital information about the information of the interactions of distinct
constituents, including infected cells and immune system, and have thus improved the
progress in understanding the HIV-1 infection [6]. This may bestow towards proper en-
hancement of new drugs and for designing optimal combination of existing cures. In this
regard, a classical mathematical model, that is, a model based upon first-order ordinary

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2336-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2336-5&domain=pdf
http://orcid.org/0000-0002-0286-7244
mailto:dumitru@cankaya.edu.tr


Aliyu et al. Advances in Difference Equations        (2019) 2019:408 Page 2 of 17

Table 1 Values of the working parameters

Parameter λ σ β a k p
Values 2 0.01 0.004 0.5 50 3

differential equations, has recently been discussed in [7, 8]. This classical model is non-
linear and autonomous in nature, presented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dX(t)
dt = λ – σX(t) – βX(t)V (t),

dY (t)
dt = βX(t)V (t) – aY (t),

dV (t)
dt = kY (t) – pV (t),

(1)

with the initial conditions X(0) = X0 ≥ 0, Y (t) = Y0(t) ≥ 0, V (0) = V0(t) ≥ 0, where X(t) de-
notes the density of the uninfected cells, Y (t) represents the density of infected cells, and
V (t) is density of the virus (HIV-I). Apart from these three populations, there are six work-
ing parameters in the model which play important role in understanding the dynamics of
the model. The parameter λ represents the rate at which new susceptible cell is produced,
σ is the natural death rate of uninfected cells, β is the rate of infection, a is the death rate
of infected cells which produce new virus particles, k is the rate at which new viruses are
produced, and p is the clearance rate of the virus. Table 1 shows their estimated values.

Fractional-order operators have successfully been applied to model a number of mathe-
matical problems arising from the fields like physics, chemistry, biology, ecology, finance,
and engineering. Many such mathematical models have been proposed and analyzed by
using different fractional-order operators as can be found in the recent studies [9–26]. It
is well known that Riemann–Liouville and Caputo-type fractional operators have singu-
lar type of kernels in the integrands of their definitions. Therefore, in order to tackle the
physical problems with singularity, Atangana and Baleanu proposed a new operator based
upon the Mittag-Leffler type kernel [27]. The proposed operators have all the features of
the operator known as the Caputo and Fabrizio (CF) operator as introduced in [28], and
the kernel introduced is non-local and non-singular. Recent studies in numerical and an-
alytical techniques of non-local kernel are getting much attention of researchers around
the globe exploring this field. One of the main advantages of this operator is its useful
application in the modeling of biological dynamical systems. Various biological systems
have been proposed and analyzed by using the operator devised by Atangana–Baleanu in
the Caputo sense (ABC).

Although, some other fractional models of HIV do exist, the main purpose of this re-
search study is to expand the study of the model under consideration (1) by replacing its
classical derivative with the ABC operator [27]. In this way, a new mathematical model
related to the HIV-I infection is proposed in the present research study. Later, with the
help of Picard–Lindelöf theory, we prove the existence and uniqueness of some special
solutions of the proposed fractional-order model under the ABC operator. Finally, numer-
ical simulations are carried out to illustrate the behavior of the solutions of the proposed
model using a newly devised numerical scheme in [29]. It may also be noted at this stage
that the stability analysis along with computation of the reproductive number R regard-
ing the integer-order model (1) has been discussed in [8], and for the sake of brevity such
analysis is not repeated in the present research study.
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The structure of the present paper is as follows. Some basic definitions and theorems
necessary to comprehend the rest of the analysis are presented in Sect. 2 followed by Sect. 3
which consists of the proposed fractional-order model with its brief discussion. Section 4
provides, while using the Picard–Lindelöf theory, the discussion to understand the exis-
tence of the solutions for the proposed fractional-order model, whereas the uniqueness
and the positivity of its solutions is also proved in the same section. This is followed by
Sect. 5 which presents a newly devised numerical technique to approximate the fractional-
order dynamical systems under the ABC operator. Numerical simulations are provided in
Sect. 6 with graphical illustrations to help us understand the dynamics of the model. Fi-
nally, the paper ends with Sect. 7 by discussing major contributions made in the present
research work.

2 Preliminaries
In this piece of the section, we present some definitions and properties of the ABC oper-
ator [27].

Definition 1 ([27]) Let f ∈ K ′(b, d), d > c, Ω ∈ [0, 1], the Atangana–Baleanu operator in
the Caputo sense (ABC) can be defined as follows:

ABCDΩ
0,t f (t) =

F(Ω)
1 – Ω

∫ t

0
f ′(μ)EΩ

[

–Ω
(t – μ)Ω

1 – Ω

]

dμ, (2)

where F(Ω) is a normalized function satisfying F(0) = F(1) = 1.

Definition 2 ([27]) Consider f ∈ K ′(b, d), d > b, Ω ∈ [0, 1], which may not be differen-
tiable, the AB fractional operator in the Riemann–Liouville (ABR) sense can be repre-
sented by

ABRDΩ
0,tf (t) =

F(Ω)
1 – Ω

d
dt

∫ t

0
f (μ)EΩ

[

–Ω
(t – μ)Ω

1 – Ω

]

dμ. (3)

Definition 3 ([27]) Atangana–Baleanu integral of the function f (t) having order Ω > 0 is
defined by the following equation:

ABJΩ
0,t f (t) =

1 – Ω

F(Ω)
f (t) +

Ω

F(Ω)Γ (Ω)

∫ t

0
f (μ)(t – μ)Ω–1 dμ. (4)

It may be noted if Ω → 1 then the classical integral is retrieved.

2.1 Important properties
The above presented definitions have been utilized to model numerous applications in
biological fields. In order to understand and use these practical definitions, it is important
to revisit their fundamental properties [27]:

L
{ABRDΩ

0,t f (t)
}

(s) =
F(Ω)
1 – Ω

sΩL{f (t)}(s)
sΩ + Ω

1–Ω

, s ∈C, (5)

and

L
{ABCDΩ

0,t f (t)
}

(s) =
F(Ω)
1 – Ω

sΩL{f (t)}(s) – sΩ–1f (0)
sΩ + Ω

1–Ω

, s ∈C. (6)
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Theorem 1 Let f be continuous on the closed interval [b, d] with b, dR. The following
identity exists on [b, d]:

∥
∥ABRDΩ

0,tf (t)
∥
∥ <

F(Ω)
1 – Ω

∥
∥f (x)

∥
∥, (7)

where ‖f (x)‖ = supb≤x≤d |f (x)|.

Theorem 2 Let f (t) and g(t) be two continuous functions. The following Lipschitz condition
is satisfied:

∥
∥ABRDΩ

0,tf (t) – ABRDΩ
0,tg(t)

∥
∥ ≤ H

∥
∥f (t) – g(t)

∥
∥ (8)

and

∥
∥ABCDΩ

0,tf (t) – ABCDΩ
0,tg(t)

∥
∥ ≤ H

∥
∥f (t) – g(t)

∥
∥. (9)

Theorem 3 ([27]) The following fractional-order ordinary differential equation

ABCDΩ
0,t f (t) = v(t) (10)

has the unique solution given as follows:

f (t) =
1 – Ω

F(Ω)
v(t) +

Ω

F(Ω)Γ (Ω)

∫ t

b
v(μ)(t – μ)Ω–1 dμ. (11)

Theorem 4 Let h(z) ∈ C[0, T] for sufficiently large T and ABCDΩ
0,th(t) ∈ (0, T], then

h(t) = h(0) +
1

Γ (Ω)
[ABCDΩ

0,th
]
(s)tΩ , (12)

with 0 ≤ s ≤ t, ∀t ∈ (0, T].

Corollary 1 Consider that h(z) ∈ C[0, T] and ABCDΩ
0,th(t) ∈ (0, T], where Ω ∈ (0, 1]. Then,

if
i. ABCDΩ

0,th(z) ≥ 0, ∀z ∈ (0, T), then h(z) is non-decreasing.
ii. ABCDΩ

0,th(z) ≤ 0, ∀z ∈ (0, T), then h(z) is non-increasing.

3 Fractional-order HIV-I model
The classical model (1) does not take into account the effects of memory (history) to ana-
lyze the spread of the HIV virus in much detail. To analyze the model under such effects,
the model has been modified, and a new model having fractional-order derivatives with
the ABC operator has been proposed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ABCDΩ
0,tX(t) = λ – σX(t) – βX(t)V (t),

ABCDΩ
0,tY (t) = βX(t)V (t) – aY (t),

ABCDΩ
0,tV (t) = kY (t) – pV (t),

(13)

with the initial conditions X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, V (0) = V0 ≥ 0, where all the work-
ing parameters are defined as in the classical model (1) presented above.
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4 Mathematical analysis for the solutions
4.1 Existence of the solutions
In this piece of the section, the existence of the special solutions of the proposed fractional-
order model (13) is proved with the help of the Picard–Lindelöf theorem [30].

Let P = K(q) × (q) and K(q) be a Banach space of a real-valued continuous function
R → R on q with the norm ‖X, Y , V‖ = ‖X‖ + ‖Y‖ + ‖V‖, where ‖X‖ = sup{|X(t)| : t ∈ q},
‖Y‖ = sup{|Y (t)| : t ∈ q}, and ‖V‖ = sup{|V (t)| : t ∈ q}.

The ordinary differential equation (10) with a prescribed initial condition can be con-
verted to write in terms of the Volterra integral equation of the second type as follows:

X(t) – X(0) =
1 – Ω

F(Ω)
{
λ – σX(t) – βX(t)V (t)

}
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1{λ – σX(t) – βX(t)V (t)

}
dμ, (14)

Y (t) – Y (0) =
1 – Ω

F(Ω)
{
βX(t)V (t) – aV (t)

}
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1{λ – σX(t) – βX(t)V (t)

}
dμ, (15)

V (t) – V (0) =
1 – Ω

F(Ω)
{

kY (t) – pV (t)
}

+
Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1{kY (t) – pV (t)

}
dμ. (16)

For the sake of brevity, we introduce some new notations as follows:

K1(t, X) = λ – σS(t) – βX(t)V (t),

K2(t, Y ) = βX(t)V (t) – aY (t),

K3(t, V ) = kY (t) – pV (t).

(17)

Theorem 5 These kernels K1, K2, and K3 satisfy the Lipschitz condition if the following
inequalities are valid on them:

0 ≤ σ1 < 1,

0 ≤ σ2 < 1,

0 ≤ σ3 < 1.

(18)

Proof We begin the analysis with the kernel K1(t, X). Let X and X1 be two functions such
that

∥
∥K1(t, X) – K1(t, X1)

∥
∥ =

∥
∥–

(
σ + βV (t)

)(
X(t) – X1(t)

)∥
∥,

≤ ∥
∥–

(
σ + βV (t)

)∥
∥
∥
∥
(
X(t) – X1(t)

)∥
∥,

≤ σ1
∥
∥X(t) – X1(t)

∥
∥, (19)

where σ1 = σ + βs and s = supt∈V (t)‖V (t)‖. Then K1 satisfies the Lipschitz condition, and
when 0 ≤ σ1 < 1, one may observe that it is also a contraction for K1.



Aliyu et al. Advances in Difference Equations        (2019) 2019:408 Page 6 of 17

In the same way, we consider the kernel K2(t, Y ). Let Y and Y1 be two functions such
that

∥
∥K2(t, Y ) – K2(t, Y1)

∥
∥ =

∥
∥a

(
Y (t) – Y1(t)

)∥
∥

≤ σ2
∥
∥Y (t) – Y1(t)

∥
∥, (20)

where σ2 = a. Then the kernel K2 also satisfies the Lipschitz condition, and when 0 ≤ σ2 <
1, one can see that it is also a contraction for K2.

Finally, we consider the kernel K3(t, V ). Let V and V1 be two functions such that

∥
∥K3(t, V ) – K2(t, V1)

∥
∥ =

∥
∥p

(
V (t) – V1(t)

)∥
∥

≤ σ3
∥
∥V (t) – V1(t)

∥
∥, (21)

where σ3 = p. Then the Lipschitz condition is satisfied for the kernel K3. For 0 ≤ σ3 < 1,
one can see that it is also a contraction for K3.

Thus, using the kernels, one obtains

X(t) = X(0) +
1 – Ω

F(Ω)
K1(t, X) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K1(μ, X) dμ, (22)

Y (t) = Y (0) +
1 – Ω

F(Ω)
K2(t, Y ) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K2(μ, Y ) dμ, (23)

V (t) = V (0) +
1 – Ω

F(Ω)
K3(t, V ) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K3(μ, V ) dμ. (24)

Considering the following recursive formula, one obtains

Xn(t) = X(0) +
1 – Ω

F(Ω)
K1(t, Xn–1) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K1(μ, Xn–1) dμ, (25)

Y (t) = Y (0) +
1 – Ω

F(Ω)
K2(t, Yn–1) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)μ–1K2(μ, Yn–1) dμ, (26)

V (t) = V (0) +
1 – Ω

F(Ω)
K3(t, Vn–1) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K3(μ, Vn–1) dμ, (27)

with the initial conditions

X0(t) = X(0) ≥ 0,

Y0(t) = Y (0) ≥ 0,

V0(t) = V (0) ≥ 0.

(28)

The difference between the successive components is given by

γn(t) = Xn(t) – Xn–1(t)

=
1 – Ω

F(Ω)
(
K1(t, Xn–1) – K1(t, Xn–2)

)
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1(K1(μ, Xn–1) – K1(μ, Xn–2)

)
dμ, (29)
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ψn(t) = Yn(t) – Yn–1(t)

=
1 – Ω

F(Ω)
(
K2(t, Yn–1) – K2(t, Yn–2)

)
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1(K2(μ, Yn–1) – K2(μ, Yn–2)

)
dμ, (30)

φn(t) = Vn(t) – Vn–1(t)

=
1 – Ω

F(Ω)
(
K3(t, Vn–1) – K3(t, Vn–2)

)
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1(K3(μ, Vn–1) – K3(μ, Vn–2)

)
dμ. (31)

These simplifications yield the following structure:

Xn(t) =
n∑

n=1

γi(t),

Yn(t) =
n∑

n=1

ψi(t),

Vn(t) =
n∑

n=1

φi(t).

(32)

Applying the norm condition for (28), one obtains
∥
∥γn(t)

∥
∥ =

∥
∥Xn–1(t) – Xn–2(t)

∥
∥

≤ 1 – Ω

F(Ω)
∥
∥K1(t, Xn–1) – K1(t, Xn–2)

∥
∥ +

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1∥∥K1(μ, Xn–1) – K1(μ, Xn–2)

∥
∥dμ. (33)

Since the Lipschitz condition is satisfied by the kernels, one obtains the following:

∥
∥Xn–1(t) – Xn–2(t)

∥
∥ ≤ 1 – Ω

F(Ω)
σ1

∥
∥Xn–1(t) – Xn–2(t)

∥
∥ +

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)μ–1∥∥Xn–1(μ) – Xn–2(μ)

∥
∥dμ. (34)

Thus,

∥
∥γn(t)

∥
∥ =

1 – Ω

F(Ω)
σ1

∥
∥Xn–1(t) – Xn–2(t)

∥
∥

+
Ω

F(Ω)Γ (Ω)
σ1 ×

∫ t

0
(t – μ)Ω–1∥∥Xn–1(μ) – Xn–2(μ)

∥
∥dμ. (35)

Similarly, one can obtain the following:

∥
∥ψn(t)

∥
∥ =

1 – Ω

F(Ω)
σ2

∥
∥Yn–1(t) – Yn–2(t)

∥
∥

+
Ω

F(Ω)Γ (Ω)
σ2 ×

∫ t

0
(t – μ)Ω–1∥∥Yn–1(μ) – Yn–2(μ)

∥
∥dμ, (36)
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∥
∥φn(t)

∥
∥ =

1 – Ω

F(Ω)
σ3

∥
∥Vn–1(t) – Vn–2(t)

∥
∥

+
Ω

F(Ω)Γ (Ω)
σ3 ×

∫ t

0
(t – μ)Ω–1∥∥Vn–1(μ) – Vn–2(μ)

∥
∥dμ. (37)

�

Theorem 6 The HIV-I model has a unique solution on the condition that the term tmax

satisfies the following inequality:

1 – Ω

F(Ω)
σj +

tΩ
max

F(Ω)Γ (Ω)
σj < 1, j = 1, 2, 3. (38)

Proof It has been demonstrated above that the functions X(t), Y (t), and V (t) are bounded
and the Lipschitz condition is also satisfied by each of their kernels. Therefore, using the
recursive method and equations (35)–(37), one obtains the following:

∥
∥γn(t)

∥
∥ ≤ ∥

∥Xn(0)
∥
∥

[
1 – Ω

F(Ω)
σ1 +

tΩ
max

F(Ω)Γ (Ω)
σ1

]n

, (39)

∥
∥ψn(t)

∥
∥ ≤ ∥

∥Yn(0)
∥
∥

[
1 – Ω

F(Ω)
σ2 +

tΩ
max

F(Ω)Γ (Ω)
σ2

]n

, (40)

∥
∥φn(t)

∥
∥ ≤ ∥

∥Vn(0)
∥
∥

[
1 – Ω

F(Ω)
σ3 +

tΩ
max

F(Ω)Γ (Ω)
σ3

]n

. (41)

Hence, the obtained solutions exist and are smooth. Next, it is shown that these solutions
are in fact special solutions of the proposed fractional-order model (13). Consider that

X(t) – X(0) = Xn(t) – Bn(t),

Y (t) – Y (0) = Yn(t) – Cn(t),

V (t) – V (0) = Vn(t) – Dn(t).

(42)

The basic aim is to demonstrate that at infinity ‖B∞‖ → 0, ‖C∞‖ → 0, and ‖D∞‖ → 0.
Therefore, starting from the first case, we get the following:

∥
∥Bn(t)

∥
∥ ≤

∥
∥
∥
∥

1 – Ω

F(Ω)
(
K1(t, X) – K1(t, Xn–1)

)

+
Ω

F(Ω)Γ (Ω)

∫ t

0
(t – μ)Ω–1(K1(μ, X) – K1(μ, Xn–1)

)
dμ

∥
∥
∥
∥, (43)

∥
∥Bn(t)

∥
∥ ≤ 1 – Ω

F(Ω)
∥
∥
(
K1(t, X) – K1(t, Xn–1)

)∥
∥

+
Ω

F(Ω)Γ (Ω)

∫ t

0
(t – μ)Ω–1∥∥

(
K1(μ, X) – K1(μ, Xn–1)

)∥
∥dμ,

1 – Ω

B(Ω)
σ1‖X – Xn–1‖ +

tΩ
max

B(Ω)Γ (Ω)
σ1‖X – Xn–1‖.

(44)

Applying the process recursively, one obtains the following:

∥
∥Bn(t)

∥
∥ ≤

[
1 – Ω

F(Ω)
+

tΩ

F(Ω)Γ (Ω)

]n+1

σ n+1
1 N . (45)
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Then at tmax, one obtains the following:

∥
∥Bn(t)

∥
∥ ≤

[
1 – Ω

F(Ω)
+

tΩ
max

F(Ω)Γ (Ω)

]n+1

σ n+1
1 N . (46)

Taking the limit n → ∞, we get ‖B∞‖ → 0. Continuing in the same way, one can show
that ‖C∞‖ → 0 and ‖D∞‖ → 0. �

4.2 Uniqueness of the special solutions
The uniqueness for the solutions of the proposed fractional-order model (13) is estab-
lished in this part of the section. To start with, suppose that there exist other solutions
for each equation of the proposed fractional-order model (13), say X1(t), Y1(t), and V1(t),
respectively. Considering the first equation, one obtains

X(t) – X1(t) =
1 – Ω

F(Ω)
(
K1(t, X) – K1

(
t, X1(t)

))
+

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1(K1(μ, X) – K1

(
μ, X1(t)

)
dμ. (47)

Applying the norm condition on (32), one obtains

∥
∥X(t) – X1(t)

∥
∥ ≤ 1 – Ω

F(Ω)
∥
∥
(
K1(t, X) – K1(t, X1)

)∥
∥ +

Ω

F(Ω)Γ (Ω)

×
∫ t

0
(t – μ)Ω–1∥∥

(
K1(μ, X) – K1(μ, X1)

)∥
∥dμ. (48)

This yields the following:

∥
∥X(t) – X1(t)

∥
∥ ≤ 1 – Ω

F(Ω)
σ1

∥
∥
(
X(t) – X1(t)

)∥
∥ +

σ1tΩ

F(Ω)Γ (Ω)
. (49)

This yields

∥
∥X(t) – X1(t)

∥
∥

(

1 –
1 – Ω

F(Ω)
σ1 +

σ1tΩ

F(Ω)Γ (Ω)

)

≤ 0,

∥
∥X(t) – X1(t)

∥
∥ = 0 → X(t) = X1(t).

(50)

Thus, it has been proved that the special solutions of the proposed fractional-order model
(13) are unique. Following the same steps, it is easy to show the uniqueness of the remain-
ing two functions, that is, Y (t) and V (t).

4.3 Positivity of the solutions
To show the positivity of the solutions of the model, that is, the non-negative hyper-plane
R

3
+ is a positively invariant region for model (13), consider the following:

R
3
+ =

{
z ∈R

3|z ≥ 0
}

. (51)

Furthermore,

z =
(
X(t), Y (t), V (t)

)T . (52)
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It is demonstrated that on each hyper-plane bounding the non-negative hyper-plane, the
vector field points into R

3
+. Using the proposed fractional-order model (13), one obtains

the following:

ABCDΩ
0,tX(t)|X=0 = λ ≥ 0,

ABCDΩ
0,tY (t)|Y =0 = βX(t)V (t) ≥ 0,

ABCDΩ
0,tV (t)|V =0 = kV (t) ≥ 0.

(53)

Hence, from Corollary 1, it is observed that the solutions of the proposed fractional-order
model (13) will be inR

3
+. With this, we complete the proof for the positivity of the solutions

of the underlying model.

5 Numerical technique
The proposed fractional-order model (13) is non-linear in nature leading to possibility
of having no closed form solution. It is, therefore, necessary to deal with it numerically.
Recently, a numerical technique based upon the ABC operator has been devised to solve
such dynamical systems in [29]. Given below is the structure of the technique to be used
to serve the purpose in the present research work. Consider the following initial value
problem in fractional-order settings under the ABC operator:

⎧
⎨

⎩

ABCDΩ
0,ty(t) = f (t, y(t)),

y(0) = y0.
(54)

Problem (54) can also written as

y(t) – y(0) =
1 – Ω

F(Ω)
f
(
t, y(t)

)
+

Ω

F(Ω)Γ (Ω)

∫ t

0
f
(
μ, y(μ)

)
(t – μ)Ω–1 dμ. (55)

At the point t = tn+1, n = 0, 1, 2, . . . . The above equation can be written as

y(tn+1) – y(0) =
1 – Ω

F(Ω)
f
(
tn, y(tn)

)
+

Ω

F(Ω)Γ (Ω)

∫ tn+1

0
f
(
μ, y(μ)

)
(tn+1 – μ)Ω–1 dμ. (56)

Consider f (μ, y(μ)) using a two-step Lagrange polynomial, one obtains the following re-
lation on [tk , tk+1]:

pk(μ) = f
(
μ, y(μ)

)

=
μ – tk–1

tk – tk–1
f
(
tk , y(tk)

)
–

μ – tk

tk – tk–1
f
(
tk–1, y(tk–1)

)
,

f (tk , y(tk))
h

(μ – tk–1) –
f (tk–1, y(tk–1))

h
(μ – tk)


 f (tk , yk)
h

(μ – tk–1) –
f (tk–1, yk–1)

h
(μ – tk). (57)
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Again, considering equation (55) for f (μ, y(μ)), one obtains

yn+1 = y(0) +
1 – Ω

F(Ω)
f
(
tn, y(tn)

)
+

Ω

F(Ω)Γ (Ω)

×
n∑

k=0

(
f (tk , yk)

h

∫ tk+1

tk

(μ – tk–1)(tn+1 – μ)Ω–1 dμ

–
f (tk–1, yk–1)

h

∫ tk+1

tk

(μ – tk)(tn+1 – μ)Ω–1 dμ

)

. (58)

Simplifications yield the following:

yn+1 = y(0) +
1 – Ω

F(Ω)
f
(
tn, y(tn)

)

+
Ω

F(Ω)

n∑

k=0

(
hΩ f (tk , yk)
Γ (Ω + 2)

(
(n + 1 – k)Ω (n – k + 2 + Ω)

– (n – k)Ω (n – k + 2 + 2Ω)
)

–
hΩ f (tk–1, yk–1)

Γ (Ω + 2)
(
(n + 1 – k)Ω – (n – k)Ω (n – k + 1 + Ω)

)
)

+ JΩ
n , (59)

where JΩ
n n is the remainder term obtained as

JΩ
n =

Ω

F(Ω)Γ (Ω)

n∑

k=0

∫ tk–1

tk

(μ – tk)(μ – tk–1)
2!

· ∂2

∂μ2

[
f
(
μ, y(μ)

)]

τ=εμ
(tn+1 – μ)Ω–1 dμ. (60)

6 Numerical simulations
Using the AB fractional-order integral for the proposed fractional-order model (13) with
the kernels Kj, j = 1, 2, 3, the following structure is obtained:

X(t) = X(0) +
1 – Ω

F(Ω)
K1(t, X) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K1(μ, X) dμ,

Y (t) = Y (0) +
1 – Ω

F(Ω)
K2(t, Y ) +

Ω

F(Ω)Γ (Ω)
×

∫ t

a
(t – μ)Ω–1K2(μ, Y ) dμ,

V (t) = V (0) +
1 – Ω

F(Ω)
K3(t, V ) +

Ω

F(Ω)Γ (Ω)
×

∫ t

0
(t – μ)Ω–1K3(μ, V ) dμ,

(61)

subject to the following initial conditions:

X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, V (0) = V0 ≥ 0. (62)
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Using the numerical technique at a point t = tn+1, one obtains

Xn+1 = X(0) +
1 – Ω

F(Ω)
K1

(
tn, X(tn)

)

+
Ω

F(Ω)

n∑

k=0

(
hΩK1(tk , Xk)
Γ (Ω + 2)

(
(n + 1 – k)Ω (n – k + 2 + Ω)

– (n – k)Ω (n – k + 2 + 2Ω)
)

–
hΩK1(tk–1, Xk–1)

Γ (Ω + 2)
(
(n + 1 – k)Ω – (n – k)Ω (n – k + 1 + Ω)

)
)

+ 1JΩ
n , (63)

Yn+1 = Y (0) +
1 – Ω

F(Ω)
K2

(
tn, Y (tn)

)

+
Ω

F(Ω)

n∑

k=0

(
hΩK2(tk , Yk)
Γ (Ω + 2)

(
(n + 1 – k)Ω (n – k + 2 + Ω)

– (n – k)Ω (n – k + 2 + 2Ω)
)

–
hΩK2(tk–1, Yk–1)

Γ (Ω + 2)
(
(n + 1 – k)Ω – (n – k)Ω (n – k + 1 + Ω)

)
)

+ 2JΩ
n , (64)

Vn+1 = V (0) +
1 – Ω

F(Ω)
K3

(
tn, V (tn)

)

+
Ω

F(Ω)

n∑

k=0

(
hΩK3(tk , Vk)
Γ (Ω + 2)

(
(n + 1 – k)Ω (n – k + 2 + Ω)

– (n – k)Ω (n – k + 2 + 2Ω)
)

–
hΩK3(tk–1, Rk–1)

Γ (Ω + 2)
(
(n + 1 – k)Ω – (n – k)Ω (n – k + 1 + Ω)

)
)

+ 3JΩ
n , (65)

where jJΩ
n , j = 1, 2, 3 are the remainder terms represented by the relations [29]:

1JΩ
n =

Ω

F(Ω)Γ (Ω)

n∑

k=0

∫ tk–1

tk

(μ – tk)(μ – tk–1)
2!

· ∂2

∂μ2

[
K1

(
μ, X(μ)

)]

μ=εμ
(tn+1 – μ)Ω–1 dμ, (66)

2JΩ
n =

Ω

F(Ω)Γ (Ω)

n∑

k=0

∫ tk–1

tk

(μ – tk)(μ – tk–1)
2!

· ∂2

∂μ2

[
K2

(
μ, Y (μ)

)]

μ=εμ
(tn+1 – μ)Ω–1 dμ, (67)

3JΩ
n =

Ω

F(Ω)Γ (Ω)

n∑

k=0

∫ tk–1

tk

(μ – tk)(μ – tk–1)
2!

· ∂2

∂μ2

[
K3

(
μ, V (μ)

)]

μ=εμ
(tn+1 – μ)Ω–1 dμ. (68)

Since not only the proposed fractional-order model but the classical HIV-I model is also
non-linear, so it carries the possibility of having no closed form solution in all cases.
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Figure 1 Density of the uninfected cells with initial conditions X(0) = 10, Y(0) = 10, V(0) = 0 for t ∈ [0, 50]

Figure 2 Density of the uninfected cells with initial conditions X(0) = 5, Y(0) = 20, V(0) = 0 for t ∈ [0, 30]

Therefore the classical version of the model has been solved using the standard Runge–
Kutta fourth-order method from standard numerical analysis with time step-size h = 10–4,
whereas the fractional model is dealt with equations (63)–(65) using the non-negative ini-
tial conditions with the time step-size h = 10–2. Simulations given in Figs. 1–6 reveal the
past or memory behavior for the numerical solutions of the proposed fractional-order
model under the ABC operator. Before eventually reaching the solution curve of the clas-
sical HIV-I model, it has various shapes that speak for the past behavior of the underlying
system, and this is something that cannot be obtained via classical mathematical mod-
els. Hence, this justifies the fact that fractional-order models estimate the real or experi-
mental data more efficiently than their classical counterparts in most physical and natural
phenomena such as the one presented in this research study. The values of the working
parameters used in the present numerical simulations are listed in Table 1. Numerical
simulations obtained in the tables and figures are summarized as follows:

• On the basis of the parameters from Table 1, the graphical simulation results have
shown that when the initial amount of density of the virus is not present, then the
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Figure 3 Density of the infected cells with initial conditions X(0) = 10, Y(0) = 10, V(0) = 0 for t ∈ [0, 40]

Figure 4 Density of the infected cells with initial conditions X(0) = 5, Y(0) = 20, V(0) = 0 for t ∈ [0, 30]

Figure 5 Density of the virus X(0) = 1, Y(0) = 10, V(0) = 0 for t ∈ [0, 30]
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Figure 6 Density of the virus with initial conditions X(0) = 1, Y(0) = 2, V(0) = 40 for t ∈ [0, 30]

Table 2 Approximate solutions using RK4 (first row) and numerical technique (59) (second row,
Ω = 0.99) with step-size h = 10–3 over [0, 10] for X(0) = 1, Y(0) = 2, V(0) = 40 having parameter k = 0

Solution t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Xt 1.0000e+00 4.8558e+00 8.7192e+00 1.2507e+01 1.6219e+01 1.9859e+01
1.0000e+00 4.8420e+00 8.6224e+00 1.2311e+01 1.5915e+01 1.9441e+01

Yt 2.0000e+00 7.7616e–01 2.8586e–01 1.0516e–01 3.8687e–02 1.4232e–02
2.0000e+00 7.8834e–01 3.0603e–01 1.2332e–01 5.2975e–02 2.5252e–02

Vt 4.0000e+01 9.9150e–02 2.4577e–04 6.0920e–07 1.5101e–09 3.7430e–12
4.0000e+01 2.2535e–01 4.2880e–02 2.6096e–02 1.8916e–02 1.4857e–02

Table 3 Approximate solutions using RK4 (first row) and numerical technique (59) (second row,
Ω = 0.99) with step-size h = 10–3 over [0, 10] for X(0) = 10, Y(0) = 10, V(0) = 0 having parameters
k = 5, p = 0

Solution t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Xt 1.0000e+01 1.0401e+01 7.0138e+00 3.7920e+00 2.2327e+00 1.6525e+00
1.0000e+01 1.0364e+01 7.0442e+00 3.8876e+00 2.3160e+00 1.7078e+00

Yt 1.0000e+01 6.1286e+00 6.8936e+00 6.9577e+00 5.9635e+00 5.0381e+00
1.0000e+01 6.1771e+00 6.9000e+00 6.9722e+00 6.0372e+00 5.1345e+00

Vt 0.0000e+00 7.2562e+01 1.3702e+02 2.0754e+02 2.7250e+02 3.2717e+02
0.0000e+00 7.2356e+01 1.3578e+02 2.0457e+02 2.6791e+02 3.2139e+02

density of the uninfected cells decreases for the starting four units of time and then
starts to increase; but eventually, after 35 units of time, it gets the stabilization as
shown in Figs. 1–2 in contrast to Figs. 3–4 wherein such a stabilization becomes
evident after about 20 units of time for the density of infected cells.

• Similar sort of trend appears in the case with no initial density of virus in Fig. 5, but
when initially there is some amount of initial density of virus present in the system,
then the system gets stabilized after a longer period of time as shown in Fig. 6.

• Looking at the tabular data, it is observed that when initially there is some amount of
density of the virus V (0) = 40 and there is no production of new virus k = 0, then
density of the virus starts to vanish but is not completely wiped out due to the
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Table 4 Approximate solutions using RK4 (first row) and numerical technique (59) (second row,
Ω = 0.98) with step-size h = 10–3 over [0, 10] for X(0) = Y(0) = V(0) = 20 having parameter p = 6

Solution t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Xt 2.0000e+01 8.3821e+00 6.0235e+00 6.6745e+00 8.2887e+00 1.0300e+01
2.0000e+01 8.6224e+00 6.3305e+00 6.8376e+00 8.2317e+00 9.9723e+00

Yt 2.0000e+01 1.6589e+01 9.7699e+00 5.5563e+00 3.4266e+00 2.3859e+00
2.0000e+01 1.6521e+01 1.0108e+01 6.0760e+00 3.9577e+00 2.8768e+00

Vt 2.0000e+01 1.4282e+02 8.5516e+01 4.8488e+01 2.9634e+01 2.0405e+01
2.0000e+01 1.4174e+02 8.8162e+01 5.2874e+01 3.4167e+01 2.4592e+01

presence of β value, and this real behavior is clearly depicted in Table 2 for the
fractional-order parameter Ω = 0.99.

• Table 3 suggests that for no initial presence of the virus but with clearance rate p = 0,
the density of the virus increases at a lower rate than the classical case Ω = 1, whereas
the density of uninfected and infected cells increases at a faster rate.

• Finally, the doubling of the clearance rate p = 6 for the fractional-order parameter
Ω = 0.98 in Table 4 leads to slowing down the virus production, which is obvious in
the real situations.

7 Concluding remarks
It has been shown in the present study that the proposed fractional-order HIV-I model is
capable of capturing all those memory effects which are not possible to obtain via a classi-
cal version of the model. Being a non-linear system, the special solution of the HIV-I model
has been guaranteed through existence and uniqueness theorems carried out via Picard–
Lindelöf theory. During the analysis of the proposed model, it has been observed that the
fractional-order model gives the entire history for the solution of the system (HIV-I) un-
der consideration and is thus capable of predicting the experimental data more accurately.
This is due to an essential feature of the fractional-order operators called the non-locality
which makes them more suitable for memory-dependent dynamical systems. It is this
non-locality that provides us an infinite number of degrees of freedom for the fractional-
order parameter Ω > 0.
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