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Abstract
The aim of this paper is to study the periodic problem for neutral evolution equation

(u(t) – G(t,u(t – ξ )))′ + Au(t) = F(t,u(t),u(t – τ )), t ∈R,

in a Banach space X , where A : D(A) ⊂ X → X is a closed linear operator, and –A
generates a compact analytic operator semigroup T (t) (t ≥ 0). With the aid of the
analytic operator semigroup theories and some fixed point theorems, we obtain the
existence and uniqueness of periodic mild solution for the neutral evolution equation.
The regularity of periodic mild solutions for the evolution equation with delay is
studied, and some existence results of the classical and strong solutions are obtained.
In the end, we give an example to illustrate the applicability of abstract results. Our
works greatly improve and generalize the relevant results of existing literature.
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1 Introduction
Let X be a real Banach space with norm ‖ · ‖. The purpose of this paper is to discuss
the existence and regularity of ω-periodic solutions for the abstract neutral functional
differential equation with delays

(
u(t) – G

(
t, u(t – ξ )

))′ + Au(t) = F
(
t, u(t), u(t – τ )

)
, t ∈R (1.1)

in X, where A : D(A) ⊂ X → X is a closed linear operator, and –A generates a compact and
exponentially stable analytic operator semigroup T(t) (t ≥ 0) on X, G, F are appropriate
continuous functions which will be specified later, ξ , τ are positive constants which denote
the time delays.

The theory of partial differential equations with delays has extensive physical back-
ground and realistic mathematical model, and it has undergone a rapid development in
the last fifty years, see [19, 42] and the references therein. During the last few decades,
more researchers have given special attention to the study of the equation, in which the
delay argument occurs in the derivative of the state variable as well as in the independent
variable, so-called neutral differential equations.
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Neutral differential equations have many applications. They can model a lot of prob-
lems arising from engineering, such as population dynamics, transmission line, immune
response, or distribution of albumin in the blood. For instance, in the theory of heat con-
duction in fading memory material, see [9, 37], the following partial neutral differential
equation

d
dt

(
u(t, x) +

∫ t

–∞
k1(t – s)u(s, x) ds

)
– c�u(t, x) =

∫ t

–∞
k2(t – s)�u(s, x) ds (1.2)

has been frequently used to describe these phenomena, which has better effects than par-
tial differential equations without neutral item, where Ω ⊂R

n is a bounded domain with
a sufficiently smooth boundary ∂Ω , (t, x) ∈ [0,∞) × Ω represents the temperature in x at
the time t, c is a physical constant, k1, k2 : R →R are the internal energy and the heat flux
relaxation respectively. If the solution u is known on (–∞, 0], k1 ≡ 0 on (r,∞), and k2 ≡ 0,
then we can transform system (1.2) into the abstract neutral evolution equation (1.1).

In fact, many of partial neutral differential equations can be written as first-order ab-
stract neutral functional differential equations on an appropriate Banach space. There has
been an increasing interest in the study of the abstract neutral evolution equations of the
form (1.1). The existence and uniqueness of mild solutions to the abstract neutral evolu-
tion equations with delay have been considered by many authors in literature. Here we
only mention [1–3, 13, 18, 20, 22, 23].

It is noteworthy at this point that the problem concerning periodic solutions of par-
tial neutral functional differential equations has become an important area of investi-
gation. The periodic problems can take into account seasonal fluctuations occurring in
the phenomena appearing in the models, and have been studied by some researchers
in recent years. Specially, the existence of periodic solutions for the neutral evolution
equations has been considered by several authors, see [4–7, 11, 12, 14–17, 21, 24, 43]
and the references therein for more comments. We notice that, in many works, the
key assumption of prior boundedness is employed and the most important ingredient
to prove the existence of periodic solutions is to show that Poincaré’s mapping is con-
densing. Thus, a fixed point theorem can be used to derive periodic solutions. For the
delayed evolution equations without neutral item, the existence of periodic solutions
has been discussed by more authors, see [8, 26, 30–32, 34–36, 44] and the references
therein.

Although there have been many meaningful results on the neutral evolution equation
periodic problem in a Banach space, to our knowledge, these results have a relatively large
limitation. First of all, the most popular approach is the use of boundedness or ultimate
boundedness of solutions and the compactness of Poincaré map realized through some
compact embeddings. However, in some concrete applications, it is difficult to choose
appropriate initial conditions to guarantee the boundedness of the solution. Secondly, we
observe that the most popular condition imposed on the nonlinear term F is its Lipschitz-
type condition. In fact, for equations arising in complicated reaction-diffusion processes,
the nonlinear function F represents the source of material or population, which depends
on time in diversified manners in many contexts. Thus, we may not hope to have the
Lipschitz-type condition of F . Finally, there are few papers to study the regularity of peri-
odic solutions for the neutral evolution equation with delays.
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Motivated by the papers mentioned above, we aim in this work to study the existence
and regularity of periodic solutions for the partial neutral functional differential equation
(1.1). In this paper, it is worth mentioning that the assumption of prior boundedness of
solutions is not necessary. More precisely, the nonlinear term F only satisfies some growth
conditions and the functions G and F may not be defined on the whole space X. These
conditions are much weaker than Lipschitz conditions. The obtained results will improve
the main results in [6, 14, 21] and develop the work in [30].

The paper is organized as follows. In Sect. 2, we collect some known notions and results
on the fractional powers of the generator of an analytic semigroup and provide preliminary
results to be used in theorems stated and proved in the paper. In Sect. 3, we apply the
operator semigroup theory to find the periodic mild solutions for Eq. (1.1), and in Sect. 4,
we investigate conditions for Eq. (1.1) to have the classical and strong periodic solutions.
In the last section, we give an example to illustrate the applicability of abstract results
obtained in Sect. 3 and Sect. 4.

2 Preliminaries
Throughout this paper, we assume that X is a Banach space with norm ‖ · ‖.

Now, we recall some notions and properties of operator semigroups, which are essential
for us. Assume that A : D(A) ⊂ X → X is a closed linear operator and –A generates a
compact analytic operator semigroup T(t) (t ≥ 0) on X. For the detailed theory of operator
semigroups, we refer to [38].

For a general C0-semigroup T(t) (t ≥ 0), there exist M ≥ 1 and ν ∈R such that ‖T(t)‖ ≤
Meνt for all t ≥ 0 (see [38]). Let

ν0 = inf
{
γ ∈R| There exists M ≥ 1 such that

∥
∥T(t)

∥
∥ ≤ Meνt ,∀t ≥ 0

}
,

then ν0 is called the growth exponent of the semigroup T(t) (t ≥ 0). Specially, if ν0 < 0,
then T(t) (t ≥ 0) is called an exponentially stable C0-semigroup. Furthermore, ν0 can be
also obtained by the formula ν0 = lim supt→+∞

ln‖T(t)‖
t . If T(t) is continuous in the uniform

operator topology for every t > 0 in X, it is well known that ν0 can also be determined
by ν0 = – inf{Reλ|λ ∈ σ (A)} (see [38, 41]). We know that T(t) (t ≥ 0) is continuous in the
uniform operator topology for t > 0 if T(t) (t ≥ 0) is a compact semigroup or an analytic
semigroup (see [25]).

If T(t) (t ≥ 0) is analytic satisfying 0 ∈ ρ(A)(ρ(A) is the resolvent set of A), then for any
α > 0, we can define A–α by

A–α :=
1

Γ (α)

∫ ∞

0
tα–1T(t) dt.

It follows that each A–α is an injective continuous endomorphism of X. Hence we can
define Aα := (A–α)–1, which is a closed bijective linear operator on X. We define D(Aα) as
the domain of the operator Aα , obviously, the subspace D(Aα) is dense in X. Furthermore,
D(Aα) endowed with the norm ‖x‖α := ‖Aαx‖ for all x ∈ D(Aα) is a Banach space. Next,
we denote D(Aα) by Xα and Cα := ‖A–α‖. The following properties are well known [38].

Lemma 2.1 If T(t) (t ≥ 0) is an analytic semigroup with infinitesimal generator A satisfy-
ing 0 ∈ ρ(A), then
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(i) D(Aα) is a Banach space for 0 ≤ α ≤ 1;
(ii) A–α is a bounded linear operator for 0 ≤ α ≤ 1 in X ;
(iii) T(t) : X → D(Aα) for each t > 0;
(iv) AαT(t)x = T(t)Aαx for each x ∈ D(Aα) and t ≥ 0;
(v) for every t > 0, AαT(t) is bounded in X and there exists Mα > 0 such that

∥
∥AαT(t)

∥
∥ ≤ Mαt–α ;

moreover, if α ∈ (0, 1), then Mα = MΓ (α);
(vi) Xβ ↪→ Xα for 0 ≤ α ≤ β ≤ 1 (with X0 = X and X1 = D(A)). Xβ ↪→ Xα is compact

whenever the resolvent operator of A is compact.

Observe by Lemma 2.1(iii) and (iv) that the restriction Tα(t) of T(t) to Xα is exactly the
part of T(t) in Xα . Moreover, for any x ∈ Xα , we have

∥∥Tα(t)x
∥∥

α
=

∥∥AαT(t)x
∥∥ =

∥∥T(t)Aαx
∥∥ ≤ ∥∥T(t)

∥∥ · ∥∥Aαx
∥∥ =

∥∥T(t)
∥∥‖x‖α

and

∥∥Tα(t)x – x
∥∥

α
=

∥∥AαT(t)x – Aαx
∥∥ =

∥∥T(t)Aαx – Aαx
∥∥ → 0, t → 0.

It follows that Tα(t) (t ≥ 0) is a strongly continuous semigroup on Xα and ‖Tα(t)‖α ≤
‖T(t)‖ for all t ≥ 0. To prove our main results, we need the following lemmas.

Lemma 2.2 ([33]) If T(t) (t ≥ 0) is a compact semigroup in X, then Tα(t) (t ≥ 0) is a com-
pact semigroup in Xα .

Lemma 2.3 ([10]) If X is reflexive, then Xα is also reflexive.

Now, recall some basic facts on abstract linear evolution equations, which are needed
to prove our main results.

Let J denote the infinite interval [0,∞) and h : J → X, consider the initial value problem
of the linear evolution equation

⎧
⎨

⎩
u′(t) + Au(t) = h(t), t ∈ J ,

u(0) = x0.
(2.1)

It is well known, when x0 ∈ D(A) and h ∈ C1(J , X), the initial value problem (2.1) has a
unique classical solution u ∈ C1(J , X) ∩ C(J , X1) expressed by

u(t) = T(t)x0 +
∫ t

0
T(t – s)h(s) ds. (2.2)

Generally, for x0 and h ∈ C(J , X), the function u given by (2.2) belongs to C(J , X) and it
is called a mild solution of the linear evolution equation (2.1). A function u : J → X is
called a strong solution of Eq. (2.1) if it is continuous on J , differentiable a.e. on (0,∞),
u′ ∈ L1

loc(J , X), and satisfies Eq. (2.1). Furthermore, we have the following results.
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Lemma 2.4 ([38]) Let h ∈ C([0, a], X) (a > 0), 0 ≤ α < β ≤ 1, μ = β – α, x0 ∈ Xβ , then the
mild solution u of Eq. (2.1) satisfies u ∈ cμ([0, a], Xα).

Lemma 2.5 ([38]) Let h ∈ Cμ([0, a], X) (a > 0), 0 < μ < 1, x0 ∈ X. Then the mild solution u
of Eq. (2.1) is a classical solution on [0, a].

Let Cω(R, X) be the Banach space {u ∈ C(R, X)|u(t) = u(t + ω), t ∈ R} endowed with the
norm ‖u‖C = maxt∈[0,ω] ‖u(t)‖, and Cω(R, Xα) be the Banach space {u ∈ C(R, Xα)|u(t) =
u(t + ω), t ∈ R} endowed with the norm ‖u‖Cα = maxt∈[0,ω] ‖u(t)‖α . Clearly, Cω(R, Xα) ↪→
Cω(R, X).

Given h ∈ Cω(R, X), we consider the existence of an ω-periodic mild solution of the
linear evolution equation

u′(t) + Au(t) = h(t), t ∈ R. (2.3)

Lemma 2.6 ([28, 29]) If –A generates an exponentially stable C0-semigroup T(t) (t ≥ 0) in
X, then for h ∈ Cω(R, X), the linear evolution equation (2.3) has a unique ω-periodic mild
solution u, which can be expressed by

u(t) =
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)h(s) ds := (Ph)(t), (2.4)

and the solution operator P : Cω(R, X) → Cω(R, X) is a bounded linear operator.

Proof For any ν ∈ (0, |ν0|), there exists M > 0 such that

∥∥T(t)
∥∥ ≤ Me–νt ≤ M, t ≥ 0.

In X, define the equivalent norm | · | by

|x| = sup
t≥0

∥∥eνtT(t)x
∥∥,

then ‖x‖ ≤ |x| ≤ M‖x‖. By |T(t)| we denote the norm of T(t) in (X, | · |), then for t ≥ 0, it
is easy to obtain that |T(t)| < e–νt . Hence, (I – T(ω)) has a bounded inverse operator

(
I – T(ω)

)–1 =
∞∑

n=0

T(nω),

and its norm satisfies

∣
∣(I – T(ω)

)–1∣∣ ≤ 1
1 – |T(ω)| ≤ 1

1 – e–νω
. (2.5)

Set

x0 =
(
I – T(ω)

)–1
∫ ω

0
T(t – s)h(s) ds := Bh, (2.6)
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then the mild solution u(t) of the linear initial value problem (2.1) given by (2.2) satisfies
the periodic boundary condition u(0) = u(ω) = x0. For t ∈ R

+, by (2.2) and the properties
of the semigroup T(t) (t ≥ 0), we have

u(t + ω) = T(t + ω)u(0) +
∫ t+ω

0
T(t + ω – s)h(s) ds

= T(t)
(

T(ω)u(0) +
∫ ω

0
T(ω – s)h(s) ds

)
+

∫ t

0
T(t – s)h(s – ω) ds

= T(t)u(0) +
∫ t

0
T(t – s)h(s) ds = u(t).

Therefore, the ω-periodic extension of u on R is a unique ω-periodic mild solution of
Eq. (2.3). By (2.2) and (2.6), the ω-periodic mild solution can be expressed by

u(t) = T(t)B(h) +
∫ t

0
T(t – s)h(s) ds

=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)h(s) ds := (Ph)(t).

Evidently, P : Cω(R, X) → Cω(R, X) is a bounded linear operator. In fact, for every h ∈
Cω(R, X),

∥∥Qh(t)
∥∥ =

∥
∥∥
∥
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)h(s) ds
∥
∥∥
∥

≤ ∥
∥(

I – T(ω)
)–1∥∥ ·

∫ t

t–ω

∥
∥T(t – s)

∥
∥ds‖h‖C

≤ CMω‖h‖C ,

where C := ‖(I – T(ω))–1‖, which implies that P is bounded. This completes the proof of
Lemma 2.6. �

To prove our main results, we also need the following lemma.

Lemma 2.7 ([39]) Assume that Q is a condensing operator on a Banach space X, i.e.,
Q is continuous and takes bounded sets into bounded sets, and α(Q(D)) < α(D) for every
bounded set D of X with α(D) > 0. If Q(Ω) ⊂ Ω for a convex, closed, and bounded set Ω

of X, then Q has a fixed point in Ω (where α(·) denotes the Kuratowski measure of non-
compactness).

Remark 2.8 It is easy to see that, if Q = Q1 + Q2 with Q1 a completely continuous operator
and Q2 a contractive map, then Q is a condensing operator on X.

3 Existence of mild solution
Now, we are in a position to state and prove our main results of this section.

Theorem 3.1 For α ∈ [0, 1), we assume that G : R × Xα → X1 and F : R × X2
α → X are

continuous functions, and for every x, x0, x1 ∈ Xα , G(t, x), F(t, x0, x1) are ω-periodic in t. If
the following conditions hold:
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(H1) For any r > 0, there is a positive value function hr : R →R
+ such that

sup
‖x0‖α ,‖x1‖α<r

∥
∥F(t, x0, x1)

∥
∥ ≤ hr(t), t ∈R,

the function s 
→ hr(s)
(t–s)α belongs to Lloc(R,R+) for all t ∈R and there is a positive

constant γ > 0 such that

lim inf
r→∞

1
r

∫ t

t–ω

hr(s)
(t – s)α

ds = γ < ∞;

(H2) G(t, θ ) = θ for t ∈R, and there is a constant L ≥ 0 such that

∥
∥AG(t, x) – AG(t, y)

∥
∥ ≤ L‖x – y‖α , t ∈R, x, y ∈ Xα ;

(H3) CMαγ + C1–αL + CMαL ω1–α

1–α
< 1, where C = ‖(I – T(ω))–1‖, then Eq. (1.1) has at

least one ω-periodic mild solution u.

Proof From the assumption, we know that G(t, u(t – ξ )) ∈ D(A) for every u ∈ Cω(R, Xα),
thus, we can rewrite Eq. (1.1) as follows:

(
u(t) – G

(
t, u(t – ξ )

))′ + A
(
u(t) – G

(
t, u(t – ξ )

))

= F
(
t, u(t), u(t – τ )

)
– AG

(
t, u(t – ξ )

)
, t ∈R. (3.1)

For any r > 0, let

Ωr =
{

u ∈ Cω(R, Xα)|‖u‖Cα ≤ r
}

. (3.2)

Note that Ωr is a closed ball in Cω(R, Xα) with center θ and radius r. Moreover, by condi-
tion (H2), it follows that

∥∥T(t – s)AG
(
s, u(s – ξ )

)∥∥
α

=
∥∥AαT(t – s)A

(
G

(
s, u(s – ξ )

)
– G(s, θ )

)∥∥

≤ ∥
∥AαT(t – s)

∥
∥ · ∥∥A

(
G

(
s, u(s – ξ )

)
– G(s, θ )

)∥∥

≤ MαL
(t – s)α

∥∥u(s – ξ )
∥∥

α
,

which implies that s → T(t – s)AG(s, u(s – ξ )) is integrable on [t – ω, t] for each u ∈ Ω r .
Hence, we can define the operator Q on Cω(R, Xα) by

Qu(t) :=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)F
(
s, u(s), u(s – τ )

)
ds + G

(
t, u(t – ξ )

)

–
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)AG
(
s, u(s – ξ )

)
ds, t ∈R. (3.3)

From Lemma 2.6, it is sufficient to prove that Q has a fixed point.
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Now, we show that there is a positive constant r such that Q(Ωr) ⊂ Ωr . If this were not
the case, then for any r > 0, there exist ur ∈ Ωr and tr ∈ R such that ‖Qur(tr)‖α > r. Thus,
we see by (H1), (H2), and (H3) that

r <
∥
∥Qur(tr)

∥
∥

α

≤
∥∥∥
∥
(
I – T(ω)

)–1
∫ tr

tr–ω

T(tr – s)F
(
s, ur(s), ur(s – τ )

)
ds

∥∥∥
∥

α

+
∥∥G

(
tr , ur(tr – ξ )

)∥∥
α

+
∥
∥∥
∥
(
I – T(ω)

)–1
∫ tr

tr–ω

T(tr – s)AG
(
s, ur(s – ξ )

)
ds

∥
∥∥
∥

α

≤ ∥∥(
I – T(ω)

)–1∥∥ ·
∫ tr

tr–ω

∥∥AαT(tr – s)
∥∥ · ∥∥F

(
s, ur(s), ur(s – τ )

)∥∥ds

+
∥∥Aα–1(AG

(
tr , ur(tr – ξ )

)
– AG(tr , θ )

)∥∥

+
∥
∥(

I – T(ω)
)–1∥∥ ·

∫ tr

tr–ω

∥
∥AαT(tr – s)

∥
∥ · ∥∥AG

(
s, ur(s – ξ )

)
– AG(s, θ )

∥
∥ds

≤ CMα

∫ tr

tr–ω

hr(s)
(tr – s)α

ds + C1–αL‖ur‖Cα + CMαL
∫ tr

tr–ω

1
(tr – s)α

ds‖ur‖Cα

≤ CMα

∫ tr

tr–ω

hr(s)
(tr – s)α

ds + C1–αLr + CMαL
ω1–α

1 – α
r.

Dividing on both sides by r and taking the lower limit as r → ∞, we have

CMαLγ + C1–αL + CMαL
ω1–α

1 – α
≥ 1, (3.4)

which contradicts (H3). Hence, there is a positive constant r such that Q(Ω r) ⊂ Ωr .
In order to show that the operator Q has a fixed point on Ω r , we introduce the decom-

position Q = Q1 + Q2, where

Q1u(t) :=
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)F
(
s, u(s), u(s – τ )

)
ds, (3.5)

Q2u(t) := G
(
t, u(t – ξ )

)
–

(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)AG
(
s, u(s – ξ )

)
ds. (3.6)

Then we will prove that Q1 is a compact operator and Q2 is a contraction.
Firstly, we prove that Q1 is a compact operator. Let {un} ⊂ Ωr with un → u in Ωr , then

by the continuity of F , we have

F
(
t, un(t), un(t – τ )

) → F
(
t, u(t), u(t – τ )

)
, n → ∞,

for each t ∈ R. Since ‖F(t, un(t), un(t – τ )) – F(t, u(t), u(t – τ ))‖ ≤ 2hr(t) for all t ∈ R, then
the dominated convergence theorem ensures that

∥
∥Q1un(t) – Q1u(t)

∥
∥

α

=
∥∥
∥∥
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)F
(
s, un(s), un(s – τ )

)
– F

(
s, u(s), u(s – τ )

)
ds

∥∥
∥∥

α
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≤ ∥∥(
I – T(ω)

)–1∥∥
∫ t

t–ω

∥∥AαT(t – s)
∥∥ · ∥∥F

(
s, un(s), un(s – τ )

)
– F

(
s, u(s), u(s – τ )

)∥∥ds

≤ CMα

∫ t

t–ω

‖F(s, un(s), un(s – τ )) – F(s, u(s), u(s – τ ))‖
(t – s)α

ds

→ 0 as n → ∞,

which implies that ‖Q1un – Q1u‖Cα → 0 as n → ∞, i.e., Q1 is continuous.
It is easy to see that Q1 maps Ωr into a bounded set in Cω(R, Xα). Now, we demonstrate

that Q(Ωr) is equicontinuous. For every u ∈ Ω r , by the periodicity of u, we only consider
it on [0,ω]. Set 0 ≤ t1 < t2 ≤ ω, we get that

Q1u(t2) – Q1u(t1)

=
(
I – T(ω)

)–1
∫ t2

t2–ω

T(t2 – s)F
(
s, u(s), u(s – τ )

)
ds

–
(
I – T(ω)

)–1
∫ t1

t1–ω

T(t1 – s)F
(
s, u(s), u(s – τ )

)
ds

=
(
I – T(ω)

)–1
∫ t1

t2–ω

(
T(t2 – s) – T(t1 – s)

)
F
(
s, u(s), u(s – τ )

)
ds

–
(
I – T(ω)

)–1
∫ t2–ω

t1–ω

T(t1 – s)F
(
s, u(s), u(s – τ )

)
ds

+
(
I – T(ω)

)–1
∫ t2

t1

T(t2 – s)F
(
s, u(s), u(s – τ )

)
ds

:= I1 + I2 + I3.

It is clear that

∥∥Q1u(t2) – Q1u(t1)
∥∥

α
≤ ‖I1‖α + ‖I2‖α + ‖I3‖α . (3.7)

Thus, we only need to check that ‖Ii‖α tends to 0 independently of u ∈ Ω r when t2 –t1 → 0,
i = 1, 2, 3. From the continuity of t 
→ ‖T(t)‖ for t > 0 and condition (H1), we can easily
see

‖I1‖α ≤ C ·
∫ t1

t2–ω

∥∥Aα
(
T(t2 – s) – T(t1 – s)

)∥∥ · ∥∥F
(
s, u(s), u(s – τ )

)∥∥ds

≤ C ·
∫ t1

t2–ω

∥∥∥
∥T

(
t2 – s

2
+

t2 – t1

2

)
– T

(
t1 – s

2

)∥∥∥
∥ ·

∥∥∥
∥AαT

(
t1 – s

2

)∥∥∥
∥ · hr(s) ds

≤ CMα

∫ t1

t2–ω

∥∥
∥∥T

(
t2 – s

2
+

t2 – t1

2

)
– T

(
t1 – s

2

)∥∥
∥∥ · hr(s)

( t1–s
2 )α

ds

→ 0, as t2 – t1 → 0,

‖I2‖α ≤ C ·
∫ t2–ω

t1–ω

∥∥AT(t1 – s)
∥∥ · ∥∥F

(
s, u(s), u(s – τ )

)∥∥ds
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≤ CMα ·
∫ t2–ω

t1–ω

hr(s)
(t1 – s)α

ds

→ 0, as t2 – t1 → 0,

‖I3‖α ≤ C ·
∫ t2

t1

∥
∥A

(
T(t2 – s)

)∥∥ · ∥∥F
(
s, u(s), u(s – τ )

)
)
∥
∥ds

≤ CMα ·
∫ t2

t1

hr(s)
(t2 – s)α

ds

→ 0, as t2 – t1 → 0.

As a result, ‖Q1u(t2) – Q1u(t1)‖α tends to 0 independently of u ∈ Ω r as t2 – t1 → 0, which
means that Q1(Ωr) is equicontinuous.

It remains to show that (Q1Ωr)(t) is relatively compact in Xα for all t ∈R. To do this, we
define a set (QεΩr)(t) by

(QεΩr)(t) :=
{

(Qεu)(t)|u ∈ Ωr , 0 < ε < ω, t ∈R
}

, (3.8)

where

(Qεu)(t) =
(
I – T(ω)

)–1
∫ t–ε

t–ω

Tα(t – s)F
(
s, u(s), u(s – τ )

)
ds

= Tα(ε)
(
I – T(ω)

)–1
∫ t–ε

t–ω

Tα(t – s – ε)F
(
s, u(s), u(s – τ )

)
ds.

From Lemma 2.2, the operator Tα(ε) is compact in Xα , it follows that the set (QεΩr)(t) is
relatively compact in Xα . For any u ∈ Ωr and t ∈ R, from the following inequality

∥∥Q1u(t) – Qεu(t)
∥∥

α

≤ C
∫ t

t–ε

∥∥Tα(t – s)F
(
s, u(s), u(s – τ )

)∥∥
α

ds

≤ C
∫ t

t–ε

∥∥AαT(t – s)F
(
s, u(s), u(s – τ )

)∥∥ds

≤ CMα

∫ t

t–ε

hr(s)
(t – s)α

ds,

one can obtain that the set (Q1Ωr)(t) is relatively compact in Xα for all t ∈R.
Thus, the Arzela–Ascoli theorem guarantees that Q1 is a compact operator.
Secondly, we prove that Q2 is a contraction. Let u, v ∈ Ωr , by condition (H2), Lem-

ma 2.1(vi), and Lemma 2.6, we have

∥∥Q2u(t) – Q2v(t)
∥∥

α

=
∥
∥∥
∥G

(
t, u(t – ξ )

)
–

(
I – T(ω)

)–1
∫ t–ω

t
T(t – s)AG

(
s, u(s – ξ )

)
ds

– G
(
t, v(t – ξ )

)
+

(
I – T(ω)

)–1
∫ t–ω

t
T(t – s)AG

(
s, v(s – ξ )

)
∥∥
∥∥

α

≤ ∥∥G
(
t, u(t – ξ )

)
– G

(
t, v(t – ξ )

)∥∥
α
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+
∥
∥∥
∥
(
I – T(ω)

)–1
∫ t–ω

t
T(t – s)A

(
G

(
s, u(s – ξ )

)
– G

(
s, v(s – ξ )

))
ds

∥
∥∥
∥

α

≤ ∥
∥Aα–1(AG

(
t, u(t – ξ )

)
– AG

(
t, v(t – ξ )

)∥∥

+
∥
∥(

I – T(ω)
)–1∥∥ ·

∫ t–ω

t

∥
∥AT(t – s)

∥
∥
∥
∥A

(
G

(
s, u(s – ξ )

)
– G

(
s, v(s – ξ )

))∥∥ds

≤ C1–α

∥∥AG(t, u(t – ξ ) – AG
(
t, v(t – δ)

)∥∥

+ CM ·
∫ t–ω

t

∥∥AG
(
s, u(s – ξ )

)
– AG

(
s, v(s – ξ )

)∥∥ds

≤ C1–αL
∥∥u(t – ξ ) – v(t – ξ )

∥∥
α

+ CMαL
∫ t–ω

t

1
(t – s)α

∥∥u(s – ξ ) – v(s – ξ )
∥∥

α
ds

≤
(

C1–αL + CMαL
ω1–α

1 – α

)
‖u – v‖Cα ;

therefore,

‖Q2u – Q2v‖C ≤
(

C1–αL + CMαL
ω1–α

1 – α

)
‖u – v‖Cα . (3.9)

Since CMαLγ + C1–αL + CMαL ω1–α

1–α
< 1, so C1–αL + CMαL ω1–α

1–α
< 1, it follows that Q2 is a

contraction.
By Lemma 2.7, we know that Q has a fixed point u ∈ Ω r , that is, Eq. (1.1) has a ω-periodic

mild solution. The proof is completed. �

In condition (H1), if the function hr is independent of t, we can easily obtain a constant
γ ≥ 0 satisfying (H3). For example, we replace condition (H1) with the following: (H1′)
There are positive constants a0, a1, and K such that

∥∥F(t, x0, x1)
∥∥ ≤ a0‖x0‖α + a1‖x1‖α + K

for t ∈R and x0, x1 ∈ Xα .
In this case, for any r > 0 and x0, x1 ∈ Xα with ‖x0‖α ,‖x1‖α ≤ r, we have

∥
∥F(t, x0, x1)

∥
∥ ≤ r(a0 + a1) + K := hr(t), t ∈R,

thus,

lim inf
r→∞

1
r

∫ t

t–ω

hr(s)
(t – s)α

ds = (a0 + a1)
ω1–α

1 – α
:= γ > 0.

Therefore, we have the following result.

Corollary 3.2 For α ∈ [0, 1), we assume that G : R × Xα → X1 and F : R × X2
α → X are

continuous functions, and for every x, x0, x1 ∈ Xα , G(t, x), F(t, x0, x1) are ω-periodic in t. If
conditions (H1′), (H2), and

(H3′) CMα(a0 + a1 + L) ω1–α

1–α
+ C1–αL < 1, where C = ‖(I – T(ω))–1‖,

hold, then Eq. (1.1) has at least one ω-periodic mild solution u.
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Furthermore, we assume that F satisfies the Lipschitz condition, namely
(H1′′) There are positive constants a0, a1 such that

∥
∥F(t, x0, x1) – F(t, y0, y1)

∥
∥ ≤ a0‖x0 – y0‖α + a1‖x1 – y1‖α , t ∈R, x0, x1, y0, y1 ∈ Xα ,

then we can obtain the following result.

Theorem 3.3 For α ∈ [0, 1), we assume that G : R × Xα → X1 and F : R × X2
α → X are

continuous functions, and for every x, x0, x1 ∈ Xα , G(t, x), F(t, x0, x1) are ω-periodic in t. If
conditions (H1′′), (H2), and (H3′) hold, then Eq. (1.1) has a unique ω-periodic mild solu-
tion u.

Proof From (H1′′) we easily see that (H1′) holds. In fact, for any t ∈ R and x0, x1 ∈ Xα , by
condition (H1′′),

∥
∥F(t, x0, x1)

∥
∥ ≤ ∥

∥F(t, x0, x1) – F(t, θ , θ )
∥
∥ +

∥
∥F(t, θ , θ )

∥
∥

≤ a0‖x0‖α + a1‖x1‖α +
∥∥F(t, θ , θ )

∥∥.

From the continuity and periodicity of F , we can choose K = maxt∈[0,ω] ‖F(t, θ , θ )‖, thus,
condition (H1′) holds. Hence, by Corollary 3.2, Eq. (1.1) has ω-periodic mild solutions.
Let u1, u2 ∈ Cω(R, Xα) be the ω-periodic mild solutions of Eq. (1.1), then they are the fixed
points of the operator Q which is defined by (3.3). Hence,

∥∥Qu2(t) – Qu1(t)
∥∥

α

≤
∥∥
∥∥
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)
(
F
(
s, u2(s), u2(s – τ )

)
– F

(
s, u1(s), u1(s – τ )

))
ds

∥∥
∥∥

α

+
∥∥G

(
t, u2(t – ξ )

)
– G

(
t, u1(t – ξ )

)∥∥
α

+
∥
∥∥
∥
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)
(
AG

(
s, u2(s – ξ )

)
– AG

(
s, u1(s – ξ )

))
ds

∥
∥∥
∥

α

≤ C ·
∫ t

t–ω

∥
∥AαT(t – s)

∥
∥ · ∥∥F

(
s, u2(s), u2(s – τ )

)
– F

(
s, u1(s), u1(s – τ )

)
)
∥
∥ds

+
∥
∥Aα–1(AG

(
t, u2(t – ξ )

)
– AG

(
t, u1(t – ξ )

))∥∥

+ C ·
∫ t

t–ω

∥∥AαT(t – s)
∥∥ · ∥∥AG

(
s, u2(s – ξ )

)
– AG

(
s, u1(s – ξ )

)∥∥ds

≤ CMα ·
∫ t

t–ω

1
(t – s)α

(
a0

∥∥u2(s) – u1(s)
∥∥

α
+ a1

∥∥u2(s – τ ) – u1(s – τ )
∥∥

α

)
ds

+ C1–αL
∥∥u2(t – ξ ) – u1(t – ξ )

∥∥
α

+ CMα ·
∫ t

t–ω

L
(t – s)α

∥∥u2(t – ξ ) – u1(t – ξ )
∥∥

α
ds

≤ CMα

ω1–α

1 – α
(a0 + a1)‖u2 – u1‖Cα + C1–αL‖u2 – u1‖Cα + CMα

ω1–α

1 – α
L‖u2 – u1‖Cα

=
(

CMα(a0 + a1 + L)
ω1–α

1 – α
+ C1–αL

)
· ‖u2 – u1‖Cα ,
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which implies that ‖u2 – u1‖Cα = ‖Qu2 – Qu1‖Cα ≤ (CMω(a0 + a1 + L) + C1–αL) · ‖u2 –
u1‖Cα . From this and condition (H3′), it follows that u2 = u1. Thus, Eq. (1.1) has only one
ω-periodic mild solution. �

4 Regularity of mild solutions
In this section, we discuss the regularity properties of the ω-periodic mild solution of
Eq. (1.1) and present essential conditions on the nonlinearity F and G to guarantee that
Eq. (1.1) has ω-periodic classical and strong solutions.

Now, we are in a position to state and prove the main result of this section.

Theorem 4.1 For α ∈ [0, 1), we assume that G : R × Xα → X1 and F : R × X2
α → X are

continuous functions, and for every x, x0, x1 ∈ Xα , G(t, x), F(t, x0, x1) are ω-periodic in t. If
the following conditions hold:

(H4) There exist L1 and μ1 ∈ (0, 1) such that

∥∥F(t2, x0, , x1) – F(t1, y0, y1)
∥∥ ≤ L1

(|t2 – t1|μ1 + ‖x0 – y0‖α + ‖x1 – y1‖α

)

for each t1, t2 ∈R and x0, x1, y0, y1 ∈ Xα ;
(H5) G(t, θ ) = θ for t ∈R, there exist L2 and μ2 ∈ (0, 1) such that

∥∥AG(t2, x) – AG(t1, y)
∥∥ ≤ L2

(|t2 – t1|μ2 + ‖x – y‖α

)

for each t1, t2 ∈R and x, y ∈ Xα ;
(H6) CMα(2L1 + L2) ω1–α

1–α
+ C1–αL2 < 1, where C = ‖(I – T(ω))–1‖, then Eq. (1.1) has an

ω-periodic classical solution.

Proof Let Q be the operator defined by (3.3) in the proof of Theorem 3.1. By the as-
sumptions of Theorem 4.1 and the proof of Theorem 3.1, we know that the opera-
tor Q : Cω(R, Xα) → Cω(R, Xα) is well defined. From conditions (H4) and (H5), for any
u1, u2 ∈ Cω(R, Xα), t ∈R, similar to the proof of Theorem 3.3, we have

∥∥Qu2(t) – Qu1(t)
∥∥

α
≤

(
CMα(2L1 + L2)

ω1–α

1 – α
+ C1–αL2

)
· ‖u2 – u1‖Cα ,

which implies that

‖Qu2 – Qu1‖Cα ≤
(

CMα(2L1 + L2)
ω1–α

1 – α
+ C1–αL2

)
· ‖u2 – u1‖Cα < ‖u2 – u1‖Cα . (4.1)

Hence, Q : Cω(R, Xα) → Cω(R, Xα) is a contraction, thus Q has a unique fixed point u0 ∈
Cω(R, Xα). By the definition of Q, u0 is an ω-periodic mild solution of Eq. (1.1).

Next, we prove that u0 is an ω-periodic classical solution. From the periodicity of u0,
we only need prove it on [0,ω]. Let t ∈ [0,ω] and h(t) = F(t, u(t), u(t – τ )) – AG(t, u(t – δ)),
then h ∈ C([0,ω], X). For ∀ε ∈ (0,ω), since u0 is the ω-periodic mild solution of Eq. (1.1),
hence u0 is the mild solution of the initial value problem

⎧
⎨

⎩
(u(t) – G(t, u(t – δ)))′ + A(u(t) – G(t, u(t – δ))) = h(t), t ∈ [ε,ω],

u(ε) = u0(ε).
(4.2)
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While u0(ε) ∈ Xα , from Lemma 2.4 it follows that

u0 ∈ Cμ3
(
[ε,ω], Xα–μ3

)
↪→ Cμ3

(
[ε,ω], X

)
, μ3 ∈ (0,α).

On the other hand, from conditions (H4) and (H5), we can deduce h ∈ Cμ([ε,ω], X), where
μ = min{μ1,μ2,μ3}. By Lemma 2.5, we obtain that u0 is a classical solution of Eq. (4.2) and
satisfies

u0 ∈ C1((ε,ω], X) ∩ C
(
[ε,ω], X1

)
.

By the arbitrariness of ε, we claim that

u0 ∈ C1([0,ω], X
) ∩ C

(
[0,ω], X1

)
.

Therefore, u0 is an ω-periodic classical solution of Eq. (1.1) and satisfies

u0 ∈ C1
ω(R, X) ∩ Cω(R, X1).

The proof is completed. �

Theorem 4.2 Assume that X is a reflexive Banach space. For α ∈ [0, 1), we assume that
G : R×Xα → X1 and F : R×X2

α → X are continuous functions, and for every x, x0, x1 ∈ Xα ,
G(t, x), F(t, x0, x1) are ω-periodic in t. If the conditions

(H4′) There exists a constant L1 > 0 such that

∥
∥F(t2, x0, x1) – F(t1, y0, y1)

∥
∥ ≤ L1

(|t2 – t1| + ‖x0 – y0‖α + ‖x1 – y1‖α

)

for any t1, t2 ∈R and x0, x1, y0, y1 ∈ Xα ,
(H5′) G(t, θ ) = θ for t ∈R, there exists L2 such that

∥
∥AG(t2, x) – AG(t1, y)

∥
∥ ≤ L2

(|t2 – t1| + ‖x – y‖α

)

for each t1, t2 ∈ R and x, y ∈ Xα , and (H6) hold, then Eq. (1.1) has an ω-periodic
strong solution u.

Proof Let Q be the operator defined by (3.3) in the proof of Theorem 3.1. For a given r > 0,
let Ωr ⊂ Cω(R, Xα) be defined by (3.2). By conditions (H4′)–(H6′), one can use the same
argument as in the proof of Theorem 3.1 to obtain that (QΩr) ⊂ Ωr .

For this r, consider the set

Ω =
{

u ∈ Cω(R, Xα)|‖u‖Cα ≤ r,
∥∥u(t1) – u(t2)

∥∥
α

< L∗|t2 – t1|, t1, t2 ∈ R
}

(4.3)

for some L∗ large enough. It is clear that Ω is a convex closed and nonempty set. We
shall prove that Q has a fixed point on Ω . Obviously, from the proof of Theorem 3.1, it is
sufficient to show that, for any u ∈ Ω ,

∥∥(Qu)(t2) – (Qu)(t1)
∥∥

α
≤ L∗|t2 – t1|, ∀t1, t2 ∈ R. (4.4)
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In fact, by the definition of Q, conditions (H4′), (H5′), and (4.3), we have

∥
∥Qu(t2) – Qu(t1)

∥
∥

α

≤
∥
∥∥∥
(
I – T(ω)

)–1
∫ t2

t2–ω

T(t2 – s)F
(
s, u(s), u(s – τ )

)
ds

–
(
I – T(ω)

)–1
∫ t1

t1–ω

T(t1 – s)F
(
s, u(s), u(s – τ )

)
) ds

∥
∥∥
∥

α

+
∥
∥G

(
t2, u(t2 – ξ )

)
– G

(
t1, u(t1 – ξ )

)∥∥
α

+
∥∥
∥∥
(
I – T(ω)

)–1
∫ t2

t2–ω

T(t2 – s)AG
(
s, u(s – ξ )

)
ds

–
(
I – T(ω)

)–1
∫ t1

t1–ω

T(t1 – s)AG
(
s, u(s – ξ )

)
ds

∥∥
∥∥

α

≤
∥∥
∥∥
(
I – T(ω)

)–1
∫ ω

0
AαT(s)

(
F
(
t2 – s, u(t2 – s), u(t2 – s – τ )

)

– F
(
t1 – s, u(t1 – s), u(t1 – s – τ )

))
ds

∥∥
∥∥

+ C1–α

∥
∥AG

(
t2, u(t2 – ξ )

)
– AG(t1, u(t1 – ξ )

∥
∥

+
∥∥∥
∥
(
I – T(ω)

)–1
∫ ω

0
AαT(s)

(
AG

(
t2 – s, u(t2 – s – ξ )

)

– AG
(
t1 – s, u(t2 – s – ξ )

))
ds

∥∥
∥∥

≤ CMα

ω1–α

1 – α
L1

(
1 + 2L∗)|t2 – t1| + C1–αL2

(
1 + L∗)|t2 – t1|

+ CMα

ω1–α

1 – α
L2

(
1 + L∗)|t2 – t1|

=
(

CMα

ω1–α

1 – α
(L1 + L2) + C1–αL2 +

(
CMα(2L1 + L2)

ω1–α

1 – α
+ C1–αL2

)
L∗

)
|t2 – t1|

:=
(
K0 + K∗L∗)|t2 – t1|,

where K0 = CMα
ω1–α

1–α
(L1 + L2) + C1–αL2 is a constant independent of L∗, and K∗ =

(CMα(2L1 + L2) ω1–α

1–α
+ C1–αL2) < 1. Hence,

∥∥Qu(t1) – Qu(t1)
∥∥

α
≤ L∗|t2 – t1| for all t2, t1 ∈ R, (4.5)

whenever L∗ ≥ K0
1–K∗ . Therefore, Q has a fixed point u which is an ω-periodic mild solution

of Eq. (1.1).
By the above calculation, we see that, for this u(·), all the following functions:

g(t) = G
(
t, u(t – ξ )

)
,

Φ(t) =
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)F
(
s, u(s), u(s – τ )

)
ds,

Ψ (t) =
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)AG
(
s, u(x – ξ )

)
ds
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are Lipschitz continuous, respectively. Since the u is Lipschitz continuous on R and the
space Xα is reflexive by the assumption and Lemma 2.3, then a result of [27] asserts that
u(·) is a.e. differentiable on R and u′(·) ∈ L1

loc(R, Xα). Furthermore, by a standard argument
as Theorem 4.2.4 in [38], we can obtain that

Φ ′(t) =
(
I – T(ω)

)–1
((

I – T(ω)
)
F
(
t, u(t), u(t – τ )

)

–
∫ t

t–ω

AT(t – s)F
(
s, u(s), u(s – τ )

)
ds

)

Ψ ′(t) =
(
I – T(ω)

)–1
(

(
I – T(ω)

)
AG

(
t, u(t – ξ )

)

–
∫ t

t–ω

AT(t – s)AG
(
s, u(x – ξ )

)
ds

)
.

Hence, for almost every t ∈R,

u′(t) = Φ ′(t) + g ′(t) – Ψ ′(t)

=
(
I – T(ω)

)–1
((

I – T(ω)
)
F
(
t, u(t), u(t – τ )

)

–
∫ t

t–ω

AT(t – s)F
(
s, u(s), u(s – τ )

)
ds

)
+ G′(t, u(t – ξ )

)

–
(
I – T(ω)

)–1
(

(
I – T(ω)

)
AG

(
t, u(t – ξ )

)

–
∫ t

t–ω

AT(t – s)AG
(
s, u(x – ξ )

)
ds

)

= F
(
t, u(t), u(t – τ )

)
– AG

(
t, u(t – ξ )

)
+ G′(t, u(t – ξ )

)

– A
((

I – T(ω)
)–1

∫ t

t–ω

T(t – s)F
(
s, u(s), u(s – τ )

)
ds

–
(
I – T(ω)

)–1
∫ t

t–ω

T(t – s)AG
(
s, u(x – ξ )

)
ds

)

= F
(
t, u(t), u(t – τ )

)
– AG

(
t, u(t – ξ )

)
+ G′(t, u(t – ξ )

)

– A
(
u(t) – G

(
t, u(t – ξ )

))
,

which implies that

(
u(t) – G

(
t, u(t – ξ )

))′ + Au(t) = F
(
t, u(t), u(t – τ )

)
, a.e t ∈R. (4.6)

This shows that u is a strong solution for Eq. (1.1) and the proof is completed. �

5 Application
In this section, we present one example, which indicates how our abstract results can be
applied to concrete problems.
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Consider the following parabolic boundary value problem with delays:

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂t (u(x, t) –

∫ 1
0 g(x, y, t, u(y, t – ξ )) dy) – ∂2

∂x2 u(x, t)

= f (x, t, u(x, t), u(x, t – τ )), x ∈ [0, 1], t ∈R,

u(0, t) = u(1, t) = 0,

(5.1)

where g ∈ C([0, 1]× [0, 1]×R×R,R), f ∈ C([0, 1]×R×R×R,R), and f , g are ω-periodic
in t, and ξ , τ are positive constants which denote the time delays.

To treat this system in the abstract form (1.1), we choose the space X = L2([0, 1],R),
endowed with the L2-norm ‖ · ‖L2 . We remark that X is reflexive.

Define operator A : D(A) ⊂ X → X by

D(A) :=
{

u ∈ X|u′′, u′ ∈ X, u(0) = u(1) = 0
}

, Au = –
∂2u
∂x2 . (5.2)

It is well know that –A generates an exponentially stable compact analytic semigroup T(t)
(t ≥ 0) in X. In addition, we note that 0 ∈ ρ(A) and that fractional powers of A are well
defined. Moveover, A has a discrete spectrum with eigenvalues of the form n2π2, n ∈ N,
and the associated normalized eigenfunctions are given by en(x) =

√
2 sin(nπx) for x ∈

[0, 1], the associated semigroup T(t) (t ≥ 0) is explicitly given by

T(t)u =
∞∑

n=1

e–n2π2t(u, en)en, t ≥ 0, u ∈ X, (5.3)

where (·, ·) is an inner product on X, and it is not difficult to verify that ‖T(t)‖ ≤ e–π2t for
all t ≥ 0. Hence, we take M = 1, M 1

2
= Γ ( 1

2 ) and ‖(I – T(ω))–1‖ ≤ 1
1–e–π2ω

. The proof of the
following lemma can be found in [40].

Lemma 5.1 If v ∈ D(A 1
2 ), then v is absolutely continuous with v′ ∈ X and ‖v′‖L2 = ‖A 1

2 v‖L2 .

According to Lemma 5.1, we define the Banach space X 1
2

:= (D(A 1
2 ),‖ · ‖ 1

2
), where

‖v‖ 1
2

= ‖A 1
2 v‖L2 for all v ∈ X 1

2
. Under the above assumptions we discuss the existence and

regularity of mild solutions of time ω-periodic solutions of the delays parabolic boundary
value problem (5.1).

Proposition 5.1 If the following conditions hold:
(F1) There are positive constants a0, a1, and K such that, for every

(x, t, v, w) ∈ [0, 1] ×R×R×R,

∣∣f (x, t, v, w)
∣∣ ≤ a0|v| + a1|w| + K ;

(F2) g : [0, 1] × [0, 1] ×R×R→ R satisfies the following conditions:
(i) There is a positive function b : [0, 1] × [0, 1] ×R →R

+ such that

∣∣g(x, y, t, v2) – g(x, y, t, v1)
∣∣ ≤ b(x, y, t)|v2 – v1|
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for all x, y ∈ [0, 1], t ∈R and v1, v2 ∈R; moreover, (x, y, t) 
→ ∂2

∂x2 b(x, y, t) is well
defined and measurable with

l2 := max
t∈[0,ω]

∫ 1

0

∫ 1

0

(
∂2

∂x2 b(x, y, t)
)2

dy dx < ∞,

(ii) g(0, y, t, v) = g(1, y, t, v) = 0 for all t ∈R, y ∈ [0, 1] and v ∈R;

(F3) 2ω
1
2

1–e–π2ω
Γ ( 1

2 )(a0 + a1 + l) + l < 1, then the neutral partial differential equation with
delays (5.1) has at least one time ω-periodic mild solution.

Proof Let F : R× X 1
2

× X 1
2

→ X and G : R× X 1
2

→ X be defined by

F(t,φ,ϕ)(x) = f
(
x, t,φ(x),ϕ(x)

)
,

G(t,φ)(x) =
∫ 1

0
g
(
x, y, t,φ(y)

)
dy

for t ∈ R, φ,ϕ ∈ X 1
2

and x ∈ [0, 1]. Moreover, if u : R × [0, 1] → R, we define u : R → X
by u(t)(x) = u(x, t) for x ∈ [0, 1], which implies that u(t – τ )(·) = u(·, t – τ ) and u(t – ξ )(·) =
u(·, t – ξ ). Therefore, the partial differential equation with delays (5.1) can be rewritten
into the abstract evolution equation with delays (1.1).

From the definition of F and assumption (F1), we can get F : R × X 1
2

× X 1
2

→ X is a
continuous function, and for each φ,ϕ ∈ X 1

2
and t ∈R,

∥∥F(t,φ,ϕ)
∥∥

L2 =
(∫ 1

0

(
f
(
x, t,φ(x),ϕ(x)

))2 dx
) 1

2

≤
(∫ 1

0

(
a0

∣
∣φ(x)

∣
∣ + a1

∣
∣ϕ(x)

∣
∣ + K

)2 dx
) 1

2

≤ a0‖φ‖L2 + a1‖ϕ‖L2 + K

≤ a0‖φ‖ 1
2

+ a1‖ϕ‖ 1
2

+ K ,

thus, condition (H1′) in Sect. 3 holds.
By the definition of G and assumption (F2), we see that G : R× X 1

2
→ X1(X1 := D(A)) is

continuous and

∥∥AG(t,φ) – AG(t,ϕ)
∥∥2

L2

≤
∫ 1

0

∫ 1

0

(
∂2

∂x2 b(x, y, t) · ∣∣φ(y) – ϕ(y)
∣∣
)2

dy dx

≤
∫ 1

0

∫ 1

0

(
∂2

∂x2 b(x, y, t)
)2

dy dx · ‖φ – ϕ‖2
L2

≤ l2‖φ – ϕ‖2
1
2

,

for each t ∈R and φ,ϕ ∈ X 1
2

. Thus, condition (H2) in Sect. 3 holds.
Finally, by (F3) and Corollary 3.2, it follows that the neutral partial differential equa-

tion with delays (5.1) has at least one time ω-periodic mild solution. The proof is com-
pleted. �
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For showing the existence of classical and strong solutions, the following assumptions
are needed:

(F4) There exist constants l1 and μ1 ∈ (0, 1] such that, for every ti, vi, wi ∈R (i = 1, 2)
and x ∈ [0, 1],

∣∣f (x, t2, v2, w2) – f (x, t1, v1, w1)
∣∣ ≤ l1

(|t2 – t1|μ1 + |v2 – v1| + |w2 – w1|
)
,

(F5) g : [0, 1] × [0, 1] ×R×R→ R satisfies the following conditions:
(i) (x, y, t, v) 
→ ∂2

∂x2 g(x, y, t, v) is well defined and measurable. Moreover, there are
constants l2 > 0 and μ2 ∈ (0, 1] such that, for every ti, vi ∈ R (i = 1, 2),

∣
∣∣
∣

∫ 1

0

∂2

∂x2 g(x, y, t2, v2) dy–
∫ 1

0

∂2

∂x2 g(x, y, t1, v1) dy
∣
∣∣
∣ ≤ l2

(|t2 – t1|μ2 + |v2 –v1|
)
,

(ii) g(0, y, t, v) = g(1, y, t, v) = 0 for all t ∈R, y ∈ [0, 1] and v ∈R,

(F6) 2ω
1
2

1–e–π2ω
Γ ( 1

2 )(2l1 + l2) + l2 < 1.
Hence, for every t1, t2 ∈R and φ1,ϕ1,φ2,ϕ2 ∈ X 1

2
, we have

∥∥F(t2,φ2,ϕ2) – F(t1,φ1,ϕ1)
∥∥

L2

=
(∫ 1

0

(
f
(
x, t2,φ2(x),ϕ2(x)

)
– f

(
x, t1,φ1(x),ϕ1(x)

))2 dx
) 1

2

≤
(∫ 1

0
l2(|t2 – t1|μ1 +

∣
∣φ2(x) – φ1(x)

∣
∣ +

∣
∣ϕ2(x) – ϕ1(x)

∣
∣)2 dx

) 1
2

≤ l1
(|t2 – t1|μ1 + ‖φ2 – φ1‖L2 + ‖ϕ2 – ϕ1‖L2

)

≤ l1
(|t2 – t1|μ1 +

∥
∥(φ2 – φ1)

∥
∥ 1

2
+ ‖ϕ2 – ϕ1‖ 1

2

)
,

and

∥
∥AG(t2,φ2) – AG(t1,φ1)

∥
∥

L2

=
(∫ 1

0

(∫ 1

0

∂2

∂x2 g
(
x, y, t2,φ2(y)

)
dy –

∫ 1

0

∂2

∂x2 g
(
x, y, t1,φ1(y)

)
dy

)2

dx
) 1

2

≤
(∫ 1

0
l2
2
(|t2 – t1|μ2 +

∣∣φ2(x) – φ1(x)
∣∣)2 dx

) 1
2

≤ l2
(|t2 – t1|μ2 + ‖φ2 – φ1‖L2

)

≤ l2
(|t2 – t1|μ2 + ‖φ2 – φ1‖ 1

2

)
,

which implies that conditions (H4) and (H5) for μ1,μ2 ∈ (0, 1) (or (H4′) and (H5′) for
μ1 = μ2 = 1) hold. On the other hand, by condition (F6), we can easily prove that condition
(H6) holds in Sect. 4.

Consequently, all the conditions stated in Theorem 4.1 and Theorem 4.2 are satisfied,
and we obtain the following interesting results.

Proposition 5.2 If conditions (F4)–(F5) hold for μ1,μ2 ∈ (0, 1), then the neutral partial
differential equation with delays (5.1) has time ω-periodic classical solutions.
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Proposition 5.3 If conditions (F4)–(F5) hold for μ1 = μ2 = 1, then the neutral partial dif-
ferential equation with delays (5.1) has time ω-periodic strong solutions.
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