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Abstract
A mathematical model which is non-linear in nature with non-integer order φ ,
0 < φ ≤ 1 is presented for exploring the SIRV model with the rate of vaccination μ1

and rate of treatment μ2 to describe a measles model. Both the disease free F0 and
the endemic F∗ points have been calculated. The stability has also been argued for
using the theorem of stability of non-integer order differential equations.R0, the
basic reproduction number exhibits an imperative role in the stability of the model.
The disease free equilibrium point F0 is an attractor whenR0 < 1. ForR0 > 1, F0 is
unstable, the endemic equilibrium F∗ subsists and it is an attractor. Numerical
simulations of considerable model are also supported to study the behavior of the
system.
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1 Introduction
Measles is a worldwide disease. Both epidemic and endemic occurrences are known. The
highest incidence is in winter and spring. It is a respiratory disease (measles) triggered
by a virus known as paramyxovirus. It is generally held that measles is not a good reason
to consult a doctor. Instead, the parents prefer to visit a temple. The poorer community
has the higher occurrence of infection at lower age [1]. All this adds up to the problems
of the child with measles. No specific treatment is available. General measures consist
of isolation, cough sedatives, vasoconstrictor nasal drops, antipyretics, attention to eye
and mucous membrane of mouth, antihistaminic for itching, and maintenance of proper
fluid and dietary intake. In the case bacterial infection is superimposed, proper antibi-
otics should be given. Antiviral agents are not of proven value. Gamma globulins, hyper
immune gamma globulins and steroids are of doubtful value [2]. The symptoms of the
measles appear 10 to 14 days after a person is infected with the measles virus. Worldwide,
measles vaccination has been effective, reducing measles deaths by 78% from an estimated
562,400 deaths in 2000 to 122,000 in 2012. A few nonlinear models are given in [3–16, 36,
37].

Measles cases have continued to climb into 2019. Preliminary global data shows that
reported cases rose by 300% in the first 3 months of 2019, compared to the same period
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in 2018. In 2017, it caused nearly 110,000 deaths [17]. During 2000–2017, measles vacci-
nation prevented an estimated 21.1 million deaths. Global measles death has decreased
by 80% from an estimated 545,000 in 2000 to 110,000 in 2017 [18]. The WHO estimated
that 875,000 children died of measles in 1999 [19]. This is 56% of all estimated deaths from
vaccine-preventable diseases of childhood for that year, making measles the leading cause
of vaccine-preventable child mortality.

In recent years’ fractional order derivatives have been introduced in compartment mod-
els, replacing ordinary derivatives with fractional derivatives. This has been motivated
by the utility of fractional derivatives in incorporating history effects. The geometrical
and physical significance of the fractional integral having a complex and real conjugate
power-law exponent has been suggested. One somatic implication of the non-integer or-
der in non-integer derivatives concerns the index of memory [7]. Moreover, non-integer
calculus displays a vivacious part of superdiffusive and subdiffusive measures, which make
it an obliging instrument in the learning of syndrome transmission [6]. As integer or-
der differential equations cannot authoritatively depict the exploratory and field estima-
tion information, as an alternative approach fractional order differential equations mock-
ups are at the moment being widely applied [20]. The fractional modeling is a benefi-
cial approach which has been practiced to understand the comportment of syndromes;
the non-integer derivative is a generalization of the ordinary derivative. The non-integer
order is global in nature whereas the ordinary derivative is local. The fractional order
may offer extra ‘freedom’ to amend the model to factual data from particular patients;
specifically, that the fractional order index subsidizes positively to better fits of the pa-
tients’ information. The benefit of FDE systems over ODE frameworks is that they allow
for more notable degrees of flexibility and they include a memory effect in the model.
In other words, they give a superb manoeuvre for the portrayal of memory and tradi-
tional gears which were not considered in the established non-fractional order prototypi-
cal. Fractional calculus has heretofore been applied in epidemiological research [6]. Also,
fractional order models retain memory so a fractional order differential equation gives
us a more realistic way to model measles. A significant role of modeling enterprises is
that it can alert us to the paucities in our up-to-date understanding of the epidemiol-
ogy of numerous infectious ailments, and propose critical queries for analysis and data
that need to be collected. Lately, it has been applied to analyze dengue internal transmis-
sion model, bovine babesiosis disease and a tick population model, a HIV/AIDS epidemic
model and the Lengyel–Epstein chemical reaction model [6, 7, 20, 21]. Although the op-
erating of the non-integer approach is more complex than the out-dated one, there are
numerical approaches for cracking systems of DEs which are nonlinear. Recently, a ma-
jority of the dynamical frameworks centered on the non-fractional order calculus have
been altered into the non-integer order domain with regard of the additional degrees
of opportunity and the malleability which can be utilized to resolutely fit the test in-
formation this being much superior over anything concerned with integer order mold-
ing.

As of not long ago, FC was considered as a fairly exclusive numerical hypothesis with-
out applications, yet over the most recent couple of decades there has been a blast of
research efforts on the use of FC to assorted scientific fields extending from the material
science of dispersion and shift in weather conditions phenomena, to control frameworks
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to economics and financial matters. Without a doubt, at present, applications and/or ef-
forts identified with FC have showed up in at least the following fields [22]:

– Non-integer control of engineering systems.
– Development of calculus of variations and optimal control to non-integer dynamic

structures.
– Numerical and analytical tools and procedures.
– Essential investigations of the electrical, mechanical, and thermal constitutive

relations and other properties of numerous engineering materials, for instance foams,
gels, animal tissues, and viscoelastic polymers, and their engineering and scientific
applications.

– Essential understanding of diffusion and wave phenomena, their measurements and
verifications, comprising applications to plasma physics (such as diffusion in
Tokamak).

– Biomedical and bioengineering applications.
– Thermal modeling of engineering structures for instance brakes and machine tools.
– Signal and image processing.
This article contains five sections. The overview is the first section wherein we present

some antiquities of non-integer calculus. In Sect. 2, we will present details of the concept
of FDEs. In Sect. 3, we deliberate on the non-integer order model allied with the dynamics
of measles model. Qualitative dynamics of the considerable system is resolute using ele-
mentary reproduction number. We provide the local stability analysis of the disease free
equilibrium (DFE) and endemic equilibrium (EE) points. In Sect. 4, numerical replications
are shown to confirm the core outcomes and the conclusion is in Sect. 5.

2 Beginnings
For numerous ages, there have been many demarcations that address the idea of non-
integer derivatives [6, 7]. In this section, the Caputo (C), Riemann Liouville (RL) and
Grunwald–Letnikov (GL) fractional derivative (FD) demarcations are presented. Firstly,
we present the definition of the RL non-integer integral,

Jς g(z) =
(
Γ (ς )

)–1
∫ z

0

g(s)
(z – s)1–γ

ds, (1)

where γ > 0, g ∈ L1(R+), and Γ (·) is the Gamma function.
The RL derivative is

Dγ

Rg(z) =
dm

dzm

[
Jm–γ g(z)

]

=
1

Γ (m – γ )
dm

dzm

∫ z

0

g(s)
(z – s)1–m+γ

ds, m – 1 ≤ γ < m. (2)

The Caputo fractional derivative is given by

Dγ

Cg(x) = JM–ς

[
dM

dxM g(x)
]

=
1

Γ (M – ς )

∫ x

0
(x – s)M–ς–1g(M)(s) ds, (3)

where M > γ , ∀M ∈ Z+.
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The GL derivative is given by

aDγ
xk

g(x) = lim
h→0

1
hγ

[ x–a
h ]∑

j=0

(–1)j
(

γ

j

)
g(x – jh), (4)

where [ · ] means the non-fractional quantity.
The Laplace transform of the Caputo FD is written

L
[
Dϕ

Cg(x)
]

= sϕG(s) –
n–1∑

j=0

g(j)(0)sϕ–j–1. (5)

The Mittag-Leffler (ML) function is defined by using an infinite power series:

Eα,β (s) =
∞∑

k=0

sk

(αk + β)
. (6)

The Laplace transform of the functions is

L
[
tβ–1Eα,β

(±atα
)]

=
sα–β

sα ∓ a
. (7)

Let α,β > 0 and z ∈ C, and the Mittag-Leffler functions mollify the equality given by
Theorem 4.2 in [6],

Eα,β (z) = zEα,α+β (z) +
1

Γ (β)
. (8)

Definition 1 “A function F is Hölder continuous if there are non-negative amounts W , ν
such that

∥∥F(p) – F(τ )
∥∥ ≤ W‖p – τ‖ν , (9)

for all p, τ in the purview of F and ν is the Hölder exponent. We represent the space of
Hölder-continuous functions by W 0,ν” [7].

Consider the fractional order system:

Dϕ
C� (h) = z(h,� ). (10)

We have the initial condition � (0) = �0 where Dς

C� (h) = (Dς

C�1(h), Dς

C�2(h),
Dς

C�3(h), . . . , Dς

C�m(h))T , 0 < ς < 1, � (h) ∈ F ⊂ Rm, h ∈ [0, T) (T ≤ ∞), F is an open
set, 0 ∈ F , and z : [0, T) × F → Rm is not discontinuous in h and placates the Lipschitz
condition:

∥
∥z

(
h,� ′) – z

(
h,� ′′)∥∥ ≤ P

∥
∥� ′ – � ′′∥∥, H ∈ [0, T) (11)

for all � ′,� ′′ ∈ Ω ⊂F , where P > 0 is a Lipschitz constant.
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Theorem 1 “Let the solution of (10) be u(h), h ∈ [0, H). If there exists a vector function
� = (�1,�2, . . . ,�m)H : [0, H) →F such that �i ∈ G0,ν , ς < � < 1, i = 1, 2, . . . , m and

Dϕ
C� ≤ g(h,� ), H ∈ [0, H]. (12)

If � (0) ≤≤ u0, u0 ∈F , then w ≤≤ u, h ∈ [0, H]” [7].

Let g : F → Rm, F ∈ Rm, we study the following system of non-integer order:

Dς

Cx(τ ) = g(x), x(0) = x0. (13)

Definition 2 We say that F is an equilibrium point of (13), iff, g(F ) = 0.

Remark 1 When ς ∈ (0, 1), the fractional system Dς

Cx(τ ) = g(x) has the identical equilib-
rium points as the arrangement dx(τ )

dt = g(x) [7].

Definition 3 “The equilibrium point F of autonomous (13) is said to be stable if, for all
ε > 0, ε > 0 exists such that if ‖x0 – F‖ < ε, then ‖x – F‖ < ε, t ≥ 0; the equilibrium point
F of autonomous (13) is said to be asymptotically unwavering if limt→∞ x(τ ) = F” [7].

Theorem 2 “The equilibrium points of system (13) are locally asymptotically stable if all
eigenvalues λi of Jacobian matrix J , calculated in the equilibrium points, satisfy | arg(λi)| >
ς π

2 ” [6, 16].

3 Mathematical model
Many researchers have discussed a measles model, like the SEIR measles model discussed
in [23], the SIR measles model discussed in [24, 25], and the SVIER measles model dis-
cussed in [26]. Some authors have discussed the model using ordinary differential equa-
tions and some using fractional order differential equations to control the measles model.
In this paper, we are going to study a non-integer order SIRV epidemic model with vac-
cination and treatment rates. We assume that the total populace N(t) is divided into four
compartments, S(t), I(t), R(t) and V (t). Here, S(t) be the proportion of populace which are
susceptible at time t, I(t) be the populace proportion which are infected at time at time
t, R(t) be the populace proportion which are recovered and V (t) be the populace pro-
portion which are vaccinated at time t. Let b denote the birth rate; β denotes the disease
transmission rate, which is supposed to occur with straight contact among infectious and
susceptible hosts. We denote the natural death degree d(N) for the populace. For conve-
nience, d is supposed to be continuous, which does not disagree with natural death rates.
We assume α to be the disease-induced death rate and there exist μ1 and μ2 which in turn
signify the proportion of susceptibles that are vaccinated per unit time and the proportion
of infectives that are picked per unit time. (1 – μ1) denotes the unvaccinated rate. The dy-
namical system signifying the epidemic blowout in the populace is set by the subsequent



Bashir et al. Advances in Difference Equations        (2019) 2019:334 Page 6 of 27

Figure 1 Flow chart of the model

system of non-linear ODEs [27] and the flow cart is given in Fig. 1. We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = b – β(1 – μ1)SI – (d + μ1)S,
dI
dt = β(1 – μ1)SI – (d + μ2 + α)I,
dR
dt = μ2I – dR,
dV
dt = μ1S – dV ,

(14)

with S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0 and V (0) = V0 > 0.
Note that individuals in V are different from those in both S and R. The immune system

will create antibodies against the disease because vaccination is taken care of during this
process. The vaccination individuals, before obtaining immunity, still have the possibility
of infection while contacting with infected individuals. Individuals in V may be assumed
to move into R when they gain immunity. We assume that b, β , d, α, μ1 and μ2 are all
non-negative constants. We must note that, for the ailment free case (i.e. I = 0), the total
populace has logistic growth.

Adding all the equations of (14) we have

d(S + I + R + V )
dt

=
dS
dt

+
dI
dt

+
dR
dt

+
dV
dt

= b – β(1 – μ1)SI – (d + μ1)S + β(1 – μ1)SI

– (d + μ2 + α)I + μ2I – dR + μ1S – dV

= b – d(S + I + R + V ) – αI.

Let S + I + R + V = N , then

dN
dt

= b – dN – αI,

dN
dt

≤ b – dN .

On solving the above equation

N(t) ≤ b
d

(
1 – e–dt) + N(0)e–dt ,
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where N(0) represents the initial value of the respective variables. Then 0 ≤ N(t) ≤ b
d as

t → ∞. Therefore, b
d is an upper bound of N(t) provided N(0) ≤ b

d . This means that the
population size is not constant or in other words the population is dynamic.

The following equations can be transformed by the given model [27]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = b – β(1 – μ1)SI – (d + μ1)S,
dI
dt = β(1 – μ1)SI – (d + μ2 + α)I,
dR
dt = μ2I – dR,
dV
dt = μ1S – dV ,
dN
dt = b – Nd – αI.

(15)

In system (15) R is not involved in any other equations except in the third equation so it
can be removed from system (15) and we obtain the system (16):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = b – β(1 – μ1)SI – (d + μ1)S,
dI
dt = β(1 – μ1)SI – (d + μ2 + α)I,
dV
dt = μ1S – dV ,
dN
dt = b – Nd – αI.

(16)

If we solve the system (16) then we can evaluate the factor R(t), because R(t) = N(t) –
S(t) – I(t) – V (t).

3.1 Fractional order model
The system of non-integer order non-linear ODEs for the system (16), with φ ∈ (0, 1], is
given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dφ1 S
dtφ1 = b – β(1 – μ1)SI – (d + μ1)S,
dφ2 I
dtφ2 = β(1 – μ1)SI – (d + μ2 + α)I,
dφ3 V
dtφ3 = μ1S – dV ,
dφ4 N
dtφ4 = b – Nd – αI,

(17)

with

S(0) = S0, I(0) = I0, V (0) = V0 and N(0) = N0 (18)

as the initial conditions. We use for all the values of fractional order φ1 = φ2 = φ3 = φ4 = φ.
If all the values are the same then the system is called a commensurate model. If some
values of φ are the same and some are different or all the values are different, then the
system is called an incommensurate model.

In this manuscript we use a commensurate model to observe the dynamic behavior of
the measles.

3.2 Non-negative solution
Symbolize R4

+ = {X ∈ R4 : X ≥ 0} and X(t) = (S, I, V , N)T . For the evidence of the non-
negative solution, study the subsequent theorem and corollary.



Bashir et al. Advances in Difference Equations        (2019) 2019:334 Page 8 of 27

Theorem 3 (Generalized mean value theorem) “Let f (x) ∈ C(0, a) and Dαf (x) ∈ C(0, a],
for 0 < α ≤ 1. Then we have

f (x) = f (0+) +
1

Γ (α)
(
Dαf

)
(ξ )(x)α (19)

with 0 ≤ ξ ≤ x, ∀x ∈ (0,α]” [8, 28].

Proof The proof is given in [28]. �

Corollary 1 “Suppose that f (x) ∈ C[0, a] and Dαf (x) ∈ C(0,α] for 0 < α ≤ 1. It is clear from
Theorem 3 that if Dαf (x) ≥ 0, ∀x ∈ (0, a), then f (x) is non-decreasing, and if Dαf (x) ≤ 0,
∀x ∈ (0, a), then f (x) is non-increasing for all x ∈ [0, a]” [8].

Theorem 4 “There is a unique solution X(t) = (S, I, V , N)T for the initial value problem
given (17) at t ≥ 0 and the solution remains in R4

+” [8].

Proof It is easy to understand the existence and uniqueness of the result of the initial value
problem (17)–(18) in (0,∞). We will display that the purview R4

+ remains positively invari-
ant.

Then

dφ1 S
dtφ1

∣
∣∣
∣
S=0

= b ≥ 0,

dφ2 I
dtφ2

∣
∣∣
∣
I=0

= 0,

dφ3 V
dtφ3

∣∣
∣∣
V =0

= μ1S ≥ 0,

dφ4 N
dtφ4

∣
∣∣∣
N=0

= b – αI ≥ 0,

on each hyperplane bounding the non-negative orthant and, because of Corollary 1, the
result will linger in R4

+. �

Lemma “Let u(t) be continuous function on [t0,∞] satisfying

dαu(t)
dtα

≤ –μu(t) + λ, u(t0) = ut0 ,

where 0 < α < 1, (μ,λ) ∈ R2, μ 
= 0 and t0 ≥ 0 is the initial time. Then its solution has the
form

u(t) =
(

u0 –
λ

μ

)
Eα

[
–μ(t – t0)α

]
+

λ

μ
,

where Eα(z) is the Mittag-Leffler function with parameter α.”
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3.3 Stability and equilibrium points
Addressing the nonlinear algebraic equations, the equilibrium points of (17) are found:

Dφ1 S(t) = Dφ2 I(t) = Dφ3 V (t) = Dφ4 N(t) = 0.

System (17) has DFE point F0( b
(d+μ1) , 0, μ1

d
b

(d+μ1) , b
d ) if R0 < 1, while if R0 > 1, in addition

to F0, there is a positive endemic equilibrium F∗(S∗, I∗, V ∗, N∗) and S∗, I∗, V ∗ and N∗ are
given by

S∗ =
μ2 + d + α

β(1 – μ1)
=

b
R0(d + μ1)

,

I∗ =
bβ(1 – μ1) – (μ1 + d)(μ2 + d + α)

β(1 – μ1)(μ2 + d + α)
=

b
(μ2 + d + α)

(
1 –

1
R0

)
,

V ∗ =
μ1(μ2 + d + α)

dβ(1 – μ1)
=

bμ1

R0(d + μ1)d
,

N∗ =
bβ(μ2 + d – μ1d – μ1μ2) + α(μ1 + d)(μ2 + d + α)

dβ(1 – μ1)(μ2 + d + α)
=

(μ2 + d + α
R0

)
(μ2 + d + α)

,

where R0 is the basic reproduction number denoted in [27]

R0 =
bβ(1 – μ1)

(d + μ2 + α)(d + μ1)
. (20)

The value that R0 takes can signal the conditions where an epidemic is feasible. R0, a
key threshold number, is used for a stability analysis of (17).

3.4 Sensitivity analysis (R0)
To check the sensitivity of R0 for each parameter,

∂R0

∂b
=

β(1 – μ1)
(d + μ2 + α)(d + μ1)

> 0,

∂R0

∂β
=

b(1 – μ1)
(d + μ2 + α)(d + μ1)

> 0,

∂R0

∂d
=

bβ(–1 + μ1)(2d + μ2 + μ1 + α)
(d + μ2 + α)2(d + μ1)2 > 0,

∂R0

∂μ1
= –

bβ(1 + d)
(d + μ2 + α)(d + μ1)2 < 0,

∂R0

∂μ2
= –

β(1 – μ1)
(d + μ2 + α)2(d + μ1)

< 0,

∂R0

∂α
= –

bβ(1 – μ1)
(d + μ2 + α)2(d + μ1)

< 0.

Thus R0 is increasing with b, β and d, decreasing with α, μ2 and μ1.
The following theorem describes the stability behavior of system (17) around the DFE

point F0.
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3.5 Stability behavior around F0

The following theorem describes the stability behavior of (17) around the infection free
equilibrium point F0.

Theorem 5 If R0 < 1, then (17) will be locally asymptotically stable around F0 and un-
stable if R0 > 1.

Proof For the system (17), the Jacobian matrix around F0 has the following characteristic
equation:

(ξ + d + μ1)
(

ξ – β(1 – μ1)
b

(d + μ1)
+ (d + μ2 + α)

)
(ξ + d)(ξ + d) = 0. (21)

The eigenvalues of Eq. (21) are

ξ1 = –(d + μ1) < 0,

ξ2 = β(1 – μ1)
b

(d + μ1)
– (d + μ2 + α),

ξ3 = –d < 0,

ξ4 = –d < 0.

Here ξ1, ξ3, and ξ4 are clearly negative. Now we will see that the eigenvalue ξ2 is negative.
For disease free equilibrium, R0 < 1. We have

β(1 – μ1)
b

(d + μ1)
– (d + μ2 + α) < 0,

R0 =
bβ(1 – μ1)

(d + μ2 + α)(d + μ1)
< 1

so, ξ2 < 0.
So F0 is asymptotically stable which is local in nature. �

Theorem 6 The endemic equilibrium point is asymptotically stable if R0 > 1.

Proof The Jacobian matrix for system (17) around F0 has the following characteristic
equation:

(
ξ 2 + R0(d + μ1)ξ + (μ2 + d + α)(R0 – 1)(d + μ1)

)
(ξ + d)(ξ + d) = 0 (22)

The eigenvalues of J0(F∗) are

(ξ + d) = 0 ⇒ ξ1 = –d,

(ξ + d) = 0 ⇒ ξ2 = –d



Bashir et al. Advances in Difference Equations        (2019) 2019:334 Page 11 of 27

and

ξ 2 + R0(d + μ1)ξ + (μ2 + d + α)(R0 – 1)(d + μ1) = 0,

ξ3,4 =
–B ± √

B2 – 4AC
2A

,

where

A = 1,

B = R0(d + μ1),

C = (μ2 + d + α)(R0 – 1)(d + μ1).

This shows that if R0 > 1, then ξ3 < 0 and ξ4 < 0, hence the system will be asymptotically
stable. �

4 Numerical study
In this section we give an illustrative example to authenticate the obtained results on sys-
tems (17). We have applied the numerical schemes to examine the paraphernalia of fluc-
tuations in the non-integer order exponent on the qualitative behavior of results. The
numerical results congregate to the intended equilibrium states of the fractional SIRV
model, when the parameters are constant. Considering four fractional order techniques
in the paper, actually we check the best performance wise efficiency of the model. One
of the incredible favorable circumstances of the Caputo non-integer derivative is that it
permits outmoded initial and boundary conditions to be incorporated in the formation
of the issue. Furthermore, its derivative for an invariable is zero. The Caputo non-integer
derivative also permits the utilization of the initial and boundary conditions when deal-
ing with real world issues. The Caputo derivative is the most suitable non-integer opera-
tor to be utilized in displaying the true issue. We use MATLAB software for the simula-
tions.

Studying the effects of φ on the dynamics of the non-integer paradigm (17), we address
numerous numerical efforts varying the value of the parameters. These simulations re-
veal the dynamics of the system disturbed using the value of φ. Figures 2, 4, 7, 10, 15–17,

Figure 2 Dynamic of S by varying the value of φ
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Figure 3 Dynamic of I by varying the value of φ

Figure 4 Dynamic of V by varying the value of φ

Figure 5 Dynamic of N by varying the value of φ

20, 21, 26, 28 and 31 depict that, for lower values of φ, the rampant peak is eclectic and
less than the true equilibrium points. Figures 3, 5–6, 8–9, 12–14, 18–19, 27, 29–30, 32
and 33 illustrate that, for lower values of φ, the epidemic peak is eclectic and greater for
true steady states. Also we find the length of time to approach equilibrium within a given
tolerance. The early transient behaviors vary greatly among the methods. Numerical im-
itations of an amended epidemic model with capricious order show that the non-integer
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Figure 6 Dynamic of S by varying the value of φ

Figure 7 Dynamic of I by varying the value of φ

Figure 8 Dynamic of V by varying the value of φ

order is linked to the relaxation time, i.e., the time engaged to reach equilibrium. The
chaotic comportment of the system when the total order of the system is less than four is
delineated. A comparison among the four diverse values of non-integer order is shown in
Figs. 2–33. For all cases, the ailment evolves to the disease-free and endemic equilibrium
points. Figures 2–33 illustrate that the model gradually tends towards the steady state for
different φ.
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Figure 9 Dynamic of N by varying the value of φ

Figure 10 Dynamic of S(t) by varying the value of φ

Figure 11 Dynamic of I(t) by varying the value of φ

4.1 Generalized Euler method (GEM)
The generalized Euler method is a generalization of the classical Euler method; for details
see [28–32]. The key points of this technique are set as shadows. Let us study the following
initial value problem:

Dα
∗y(t) = f

(
y(t), t

)
; y(0) = y0, 0 < α ≤ 1, t > 0 (23)
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Figure 12 Dynamic of V(t) by varying the value of φ

Figure 13 Dynamic of N(t) by varying the value of φ

Figure 14 Dynamic of S(t) by varying the value of φ

where Dα∗ is the Caputo FD. Let [0, a] be the interval over which we need to find the result
of the problem (23). The interval will be sectioned into ℵ subintervals [tj, tj+1] of identical
width h = a

ℵ by via knots tj = jh, for j = 0, 1, 2, . . . ,ℵ – 1. The common formulation for GEM
when tj+1 = tj + h is

y(tj+1) = y(tj) +
hα

Γ (α + 1)
f
(
y(tj), tj

)
+ O

(
h2α

)
(24)
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Figure 15 Dynamic of I(t) by varying the value of φ

Figure 16 Dynamic of V(t) by varying the value of φ

Figure 17 Dynamic of N(t) by varying the value of φ

for j = 0, 1, 2, . . . ,ℵ – 1. If the step size h is selected small enough, then we may neglect the
second order term (involving h2α) and develop

y(tj+1) = y(tj) +
hα

Γ (α + 1)
f
(
y(tj), tj

)
. (25)

For α = 1, Eq. (25) reduces to the classical Euler method.
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Figure 18 Dynamic of S(t) by varying the value of φ

Figure 19 Dynamic of I(t) by varying the value of φ

Figure 20 Dynamic of V(t) by varying the value of φ

So by using the generalized Euler method for system (17), we have the subsequent dis-
cretized equations

S(tℵ+1) = S(tℵ) +
hφ1

Γ (φ1 + 1)
{

b – β(1 – μ1)S(tℵ)I(tℵ) – (d + μ1)S(tℵ)
}

,

I(tℵ+1) = I(tℵ) +
hφ2

Γ (φ2 + 1)
{
β(1 – μ1)S(tℵ+1)I(tℵ) – (d + μ2 + α)I(tℵ)

}
,
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Figure 21 Dynamic of N(t) by varying the value of φ

Figure 22 Dynamic of S(t) by varying the value of φ

Figure 23 Dynamic of I(t) by varying the value of φ

V (tℵ+1) = V (tℵ) +
hφ3

Γ (φ3 + 1)
{
μ1S(tℵ+1) – dV (tℵ)

}
,

N(tℵ+1) = N(tℵ) +
hφ4

Γ (φ4 + 1)
{

b – dN(tℵ) – αI(tℵ+1)
}

.
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Figure 24 Dynamic of V(t) by varying the value of φ

Figure 25 Dynamic of N(t) by varying the value of φ

Figure 26 Dynamic of populace S(t) by varying the value of φ

4.2 Piece wise continuous argument method
In this subsection, we apply the discretization process represented in Refs. [33, 34] for a
measles model. Here we have used the piece wise constant arguments (PWCA) method
to see the behavior of the system (17) by varying the parameters and order of the system.
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Figure 27 Dynamic of populace I(t) by varying the value of φ

Figure 28 Dynamic of populace V(t) by varying the value of φ

Figure 29 Dynamic of populace N(t) by varying the value of φ

We can discretize (17) with the PWCA method as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφ1 S(t) = b – β(1 – μ1)S([ t
s ]s)I([ t

s ]s) – (d + μ1)S([ t
s ]s),

Dφ1 I(t) = β(1 – μ1)S([ t
s ]s)I([ t

s ]s) – (d + μ2 + α)I([ t
s ]s),

Dφ1 V (t) = μ1S([ t
s ]s) – dV ([ t

s ]s),

Dφ1 N(t) = b – N([ t
s ]s)d – αI([ t

s ]s).

(26)
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Figure 30 Dynamic of populace S(t) by varying the value of φ

Figure 31 Dynamic of populace I(t) by varying the value of φ

Figure 32 Dynamic of populace V(t) by varying the value of φ

First, let t ∈ [0, s), i.e., t
s ∈ [0, 1). Thus, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφ1 S(t) = b – β(1 – μ1)S(0)I(0) – (d + μ1)S(0),

Dφ2 I(t) = β(1 – μ1)S(0)I(0) – (d + μ2 + α)I(0),

Dφ3 V (t) = μ1S(0) – dV (0),

Dφ4 N(t) = b – N(0)d – αI(0),

(27)
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Figure 33 Dynamic of populace N(t) by varying the value of φ

Table 1 Parameters used for Numerical study

Parameters Values

DFE EE

β 0.75 0.75
b 0.03 0.03
d 0.02 0.02
μ1 1 0
μ2 1 0
α 0.1 0.1

and the solution of (27) is reduced to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1(t) = S(0) + Jφ1 (b – β(1 – μ1)S(0)I(0) – (d + μ1)S(0)),

I1(t) = I(0) + Jφ2 (β(1 – μ1)S(0)I(0) – (d + μ2 + α)I(0)),

V1(t) = V (0) + Jφ3 (μ1S(0) – dV (0)),

N1(t) = N(0) + Jφ4 (b – N(0)d – αI(0)),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1(t) = S(0) + tφ1
φ1Γ (φ1) (b – β(1 – μ1)S(0)I(0) – (d + μ1)S(0)),

I1(t) = I(0) + tφ2
φ2Γ (φ2) (β(1 – μ1)S(0)I(0) – (d + μ2 + α)I(0)),

V1(t) = V (0) + tφ3
φ3Γ (φ3) (μ1S(0) – dV (0)),

N1(t) = N(0) + tφ4
φ4Γ (φ4) (b – N(0)d – αI(0)),

(28)

second, let t ∈ [s, 2s), i.e., t
s ∈ [1, 2). Thus, we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφ1 S(t) = b – β(1 – μ1)S1(t)I1(t) – (d + μ1)S1(t),

Dφ2 I(t) = β(1 – μ1)S1(t)I1(t) – (d + μ2 + α)I1(t),

Dφ3 V (t) = μ1S1(t) – dV1(t),

Dφ4 N(t) = b – N1(t)d – αI1(t),

(29)
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which has the following solution:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S2(t) = S1(s) + Jφ1 (b – β(1 – μ1)S1(s)I1(s) – (d + μ1)S1(s)),

I2(t) = I1(s) + Jφ2 (β(1 – μ1)S1(s)I1(s) – (d + μ2 + α)I1(s)),

V2(t) = V1(s) + Jφ3 (μ1S1(s) – dV1(s)),

N2(t) = N1(s) + Jφ4 (b – N1(s)d – αI1(s)),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S2(t) = S1(s) + tφ1
φ1Γ (φ1) (b – β(1 – μ1)S1(s)I1(s) – (d + μ1)S1(s)),

I2(t) = I1(s) + tφ2
φ2Γ (φ2) (β(1 – μ1)S1(s)I1(s) – (d + μ2 + α)I1(s)),

V2(t) = V1(s) + tφ3
φ3Γ (φ3) (μ1S1(s) – dV1(s)),

N2(t) = N1(s) + tφ4
φ4Γ (φ4) (b – N1(s)d – αI1(s)),

(30)

where Jαi
s = 1

Γ (αi)
∫ τ

s (t – p)αi–1 dp, 0 < αi ≤ 1 and i = 1, 2, 3, 4. Thus after repeating the dis-
cretization process n times, we obtain the discretized form of system (17) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sn+1(t) = Sn(ns) + tφ1
φ1Γ (φ1) (b – β(1 – μ1)Sn(ns)In(ns) – (d + μ1)Sn(ns)),

In+1(t) = In(ns) + tφ2
φ2Γ (φ2) (β(1 – μ1)Sn(ns)In(ns) – (d + μ2 + α)In(ns)),

Vn+1(t) = Vn(ns) + tφ3
φ3Γ (φ3) (μ1Sn(ns) – dVn(ns)),

Nn+1(t) = Nn(ns) + tφ4
φ4Γ (φ4) (b – Nn(ns)d – αIn(ns)),

(31)

where t ∈ [ns, (n + 1)s). For t → (n + 1)s, the system (31) is reduced to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sn+1(t) = Sn + tφ1
φ1Γ (φ1) (b – β(1 – μ1)SnIn – (d + μ1)Sn),

In+1(t) = In + tφ2
φ2Γ (φ2) (β(1 – μ1)SnIn – (d + μ2 + α)In),

Vn+1(t) = Vn + tφ3
φ3Γ (φ3) (μ1Sn – dVn),

Nn+1(t) = Nn + tφ4
φ4Γ (φ4) (b – Nnd – αIn).

(32)

It should be noticed that if φi → 1 (i = 1, 2, 3, 4) in (32), we obtain the corresponding Eu-
ler discretization of the discretized measles model with commensurate order. It is different
from the predictor corrector method. The obtained result is a four dimensional discrete
system.

According to Angstmann et al. [35], the generalized Euler method (GEM) and piece
wise continuous argument (PCWA) methods do not give the proper results, which is
why we also used two other techniques (the Adams–Bashforth–Moulton method and the
Grunwald–Letnikov method) to show the efficiency of the measles model in Sects. 4.3
and 4.4.

4.3 Grunwald–Letnikov method (Binomial Coefficients)
For numerical use of the non-integer order derivative we can use Eq. (33) resulting from
the Grunwald–Letnikov approach. This tactic is centered on the point that, for a wide-
ranging class of functions, two approaches, the Grunwald Letnikov definition and the Ca-
puto definition, are comparable. The relation for the explicit numerical approximation of
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ϕth derivative at the points kh (k = 1, 2, . . . ) has the following form [6]:

(k–L/h)Dϕ
tk f (t) ≈ 1

hϕ

k∑

j=0

(–1)j
(

ϕ

j

)
f (tk–j), (33)

where L is the “memory length”, tk = kh, h is the time step and the (–1)j(ϕ

j
)

are the binomial
coefficients C(ϕ)

j (j = 0, 1, 2, . . . ). For them we can use the expression [6]

C(ϕ)
0 = 1, C(ϕ)

j =
(

1 –
1 + ϕ

j

)
C(ϕ)

j–1.

Then the common numerical elucidation of the non-integer differential equation

aDϕ
t y(t) = f

(
t, y(t)

)

can be written as

y(tk) = f
(
tk , y(tk)

)
hϕ –

k∑

j=0

C(ϕ)
j y(tk–j).

Now we express system (17) in the above format,

S(tk) =
{

b – β(1 – μ1)S(tk–1)I(tk–1) – (d + μ1)S(tk–1)
}

hφ1 –
k∑

j=1

C(φ1)
j S(tk–j),

I(tk) =
{
β(1 – μ1)S(tk)I(tk–1) – (d + μ2 + α)I(tk–1)

}
hφ2 –

k∑

j=1

C(φ2)
j I(tk–j),

V (tk) =
{
μ1S(tk) – dV (tk–1)

}
hφ3 –

k∑

j=1

C(φ3)
j V (tk–j),

N(tk) =
{

b – dN(tk–1) – αI(tk)
}

hφ3 –
k∑

j=1

C(φ3)
j N(tk–j),

where C(φi)
0 = 1, C(φi)

j = (1 – 1+φi
j )C(φi)

j–1 , i = 1, 2, 3, 4.

4.4 Adams–Bashforth–Moulton method
One can use the generalized Adams–Bashforth–Moulton method for numerical solutions
of the system (17) (see [6]).

So

Sn+1 = S(0) +
hφ1

Γ (φ1 + 2)
(
b – β(1 – μ1)Sp

n+1Ip
n+1 – (d + μ1)Sp

n+1
)

+
hφ1

Γ (φ1 + 2)

n∑

l=0

al,n+1
(
b – β(1 – μ1)SlIl – (d + μ1)Sl

)
,
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In+1 = I(0) +
hφ2

Γ (φ2 + 2)
(
β(1 – μ1)Sp

n+1Ip
n+1 – (d + μ2 + α)Ip

n+1
)

+
hφ2

Γ (φ2 + 2)

n∑

l=0

al,n+1
(
β(1 – μ1)SlIl – (d + μ2 + α)Il

)
,

V n+1 = V (0) +
hφ3

Γ (φ3 + 2)
(
μ1Sp

n+1 – dV p
n+1

)

+
hφ3

Γ (φ3 + 2)

n∑

l=0

al,n+1(μ1Sl – dVl),

Nn+1 = N(0) +
hφ3

Γ (φ3 + 2)
(
b – dNp

n+1 – αIp
n+1

)

+
hφ3

Γ (φ3 + 2)

n∑

l=0

al,n+1(b – dNl – αIl),

where

Sp
n+1 = S(0) +

1
Γ (φ1)

n∑

l=0

bl,n+1
(
b – β(1 – μ1)SlIl – (d + μ1)Sl

)
,

Ip
n+1 = I(0) +

1
Γ (φ2)

n∑

l=0

bl,n+1
(
β(1 – μ1)SlIl – (d + μ2 + α)Il

)
,

V p
n+1 = V (0) +

1
Γ (φ3)

n∑

l=0

bl,n+1(μ1Sl – dVl),

Np
n+1 = N(0) +

1
Γ (φ3)

n∑

l=0

bl,n+1(b – dNl – αIl),

with

al,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nφi+1 – (n – φi)(n + 1)φi , l = 0,

(n – l + 2)φi+1 + (n – l)φi+1 – 2(n – l + 1)φi+1, 1 ≤ l ≤ n,

1, l = n + 1,

and

bl,n+1 =
hφi

φi

(
(n – l + 1)φi – (n – l)φi

)
, 0 ≤ l ≤ n

with i = 1, 2, 3, 4.

5 Conclusion
In this paper, a non-linear mathematical Measles model with fractional order φi, i =
1, 2, . . . , 4 is formulated. The stability of both the DFE and the EE points is discussed. Suf-
ficient conditions for local stability of the DFE point F0 are given in terms of the basic
reproduction numberR0 of the model, where it is asymptotically stable ifR0 < 1. The pos-
itive infected equilibrium F∗ exists when R0 > 1 and sufficient conditions that guarantee
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the asymptotic stability of this point are given. Beside this sensitivity analysis of the pa-
rameters involved the threshold parameter (R0) is discussed. Considering three fractional
order techniques, we actually checked the best performance wise efficiency of the model.
When simulating the model with all four algorithms, we have observed that all methods
are converging to disease free and endemic equilibrium points but through different paths
for diverse values of φ. The values are very close to each other in all three techniques. How-
ever, the time consumed (Core i7 Desktop) by GEM is 10 sec, PWCA is 43 sec, Grunwald–
Letnikov (binomial coefficient) is 7716.97 sec, and the Adams–Bashforth–Moulton algo-
rithm is 87,326.743 sec, which indicates that the computational cost for GEM is lower than
the rests. Measles is an infectious disease highly contagious from person to person occur-
ring during childhood. So, the main goal of analyzing such techniques for a measles model
is to benefit the researchers and policy makers in targeting, in preclusion and in treatment
resources for supreme effectiveness. Also the length of time of approaching equilibrium
within a given tolerance is interesting. The early transient behaviors vary greatly among
the methods. Each method converges to the same disease free and endemic equilibrium
points. For different values of φi, i = 1, . . . , 4, the system approaches the same equilibrium
point but through different paths. Numerical studies with diverse order show that the sys-
tem decays to equilibrium with a power, t–φ . The outcome shows an important picture
of the use of non-integer order to model the SIRV. The fractional order may offer extra
‘freedom’ to fine-tune the model to real data from particular patients. Specifically, the
fractional order index contributes positively to better fits of the patients’ data.
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