
Zhou et al. Advances in Difference Equations        (2019) 2019:335 
https://doi.org/10.1186/s13662-019-2242-x

R E S E A R C H Open Access

A graph-theoretic method to study the
existence of periodic solutions for a coupled
Rayleigh system via inequality techniques
Zheng Zhou1* , Huaying Liao2 and Zhengqiu Zhang3

*Correspondence:
zhouzhengslx@163.com
1School of Applied Mathematical
Science, Xiamen University of
Technology, Xiamen, China
Full list of author information is
available at the end of the article

Abstract
In the paper, we are concerned with the existence of periodic solutions for a coupled
Rayleigh system. By combining graph theory with coincidence degree theory as well
as Lyapunov function method, two new sufficient conditions on the existence of
periodic solutions for the coupled Rayleigh system are established. Our results on the
existence of periodic solutions for the coupled Rayleigh system improve those
obtained in the existing literature for coupled Rayleigh system. Hence, our results are
new and complementary to the existing papers.
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1 Introduction
An important class of Rayleigh systems is described by the following form:

x′′(t) + f
(
t, x′(t)

)
+ g
(
t, x(t)

)
= e(t), (1.1)

where f , g : R × R → R and e : R → R are continuous functions. The dynamic behaviors of
system (1.1) have been an active research topic due to its extensive applications in physics,
mechanics, engineering technique, and other areas (see [1–4] and the references therein).
Such successful applications are greatly dependent on the existence of periodic solutions
for system (1.1). Hence, the periodicity analysis of system (1.1) has been a subject of intense
activities, and many results have been obtained, for example, see [5–8] and the references
therein.

In [7], the authors investigated the following Rayleigh type equation:

x′′(t) + f
(
x′(t)

)
+ g
(
t, x(t)

)
= e(t), (1.2)
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where f : R → R is continuous, g : R2 → R is continuous and T-periodic with respect to
the first variable. Some criteria to guarantee the existence of periodic solutions of this
equation were presented in [7] by using Mawhin’s continuation theorem, Floquet theory,
Lyapunov stability theory, and some analysis techniques. In [6], the authors studied the
existence of periodic solutions of Rayleigh equations:

x′′(t) + f
(
t, x′) + g(x) = e(t), (1.3)

where f : R2 → R is continuous and T-periodic with respect to the first variable, g, e : R →
R are continuous, and e is T-periodic. They proved that the given equation possesses at
least one T-periodic solution under some conditions. In [5], by employing the continua-
tion theorem of coincidence degree theory, the authors studied a kind of Rayleigh equation
with a deviating argument as follows:

x′′(t) + f
(
x′(t)

)
+ g
(
x
(
t – τ (t)

))
= p(t), (1.4)

where g, f : R → R are two continuous functions, τ (t) and p(t) are continuous and T-
periodic functions, and established some new results on the existence of periodic solutions
for system (1.4).

With the popularity of coupled systems, so far, the existence and global stability of pe-
riodic solutions of coupled systems on neural networks have gained increasing research
[9–13], the existence of periodic solutions of coupled systems on the predator-prey sys-
tems [14, 15] has been widely studied, the existence of periodic solutions and stability
of equilibrium point for coupled systems on networks have been widely investigated, for
example, see [16–23] and the references therein.

In [21], the authors were concerned with the following coupled Rayleigh system:

x′′
k (t) + fk

(
t, x′

k(t)
)

+ gk
(
t, xk(t)

)
= ek(t), (1.5)

where k = 1, 2, . . . , n, n is a positive integer, fk , gk : R → R and ek : R → R are continuous
ω-periodic functions in the first argument with period ω > 0, fk(t, xk) is continuously dif-
ferentiable in xk .

In [21], by taking yk(t) = x′
k(t) + ηxk(t), η > 0, system (1.5) was rewritten as

⎧
⎨

⎩
x′

k(t) = yk(t) – ηxk(t),

y′
k(t) = –η2xk(t) + ηyk(t) – fk(t, yk(t) – ηxk(t)) – gk(t, xk(t)) + e(t).

(1.6)

By adding –
∑l

h=1 akh(yk(t) – yh(t)) into the second equation of system (1.6), in [21], the
authors established the following linear coupled Rayleigh system:

⎧
⎪⎪⎨

⎪⎪⎩

x′
k(t) = yk(t) – ηxk(t),

y′
k(t) = –η2xk(t) + ηyk(t) – fk(t, yk(t) – ηxk(t)) – gk(t, xk(t)) + e(t)

–
∑l

h=1 akh(yk(t) – yh(t)), k ∈ K ,

(1.7)

where akh(yh –yk) represents the influence of vertex h on vertex k, akh > 0, and akh = 0 if and
only if there exists no arc from vertex h to vertex k in g , K , g are defined in Definition 2.1.
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In [21, 24–26], by combining graph theory with coincidence degree theory as well as
Lyapunov method, a sufficient criterion for the existence of periodic solutions for system
(1.7) was provided under these conditions (A1)–(A5).

However, the conditions in the results obtained in [21] on the existence of periodic so-
lutions for the coupled system (1.7) are too complicated and there are too many of them.
This motivates us to obtain more concise and easily verified new sufficient conditions for
system (1.7).

Up to now, the global existence of periodic solutions for differential systems has been
investigated mainly by employing the following five methods: (1) Fixed point theorem
methods [26]; (2) Combining continuation theorem of coincidence degree theory with
the a priori estimate of periodic solutions [9, 11, 13–15, 27–30]; (3) Combining continu-
ation theorem of coincidence degree theory with LMI [12]; (4) Combining continuation
theorem of coincidence degree theory with Lyapunov function method [16, 18–21, 31];
(5) The method of upper and lower functions. But, in the above-mentioned methods, (3)
and (4) are used in recent years to study the existence of periodic solutions for different
systems. In this paper, we apply (4) to study the existence of periodic solution for system
(1.7), but the concrete analysis techniques in our paper are different from those used in
[16, 18–21]. In this paper, our purpose is, by combining graph theory with Mawhin’s con-
tinuation theorem of coincidence degree theory as well as Lyapunov functional method,
to improve the results on the existence of periodic solutions obtained in [21] for system
(1.7) by removing conditions (A4) and (A5) in [21]. Consequently, the contribution of this
paper lies in the following two aspects: (1) Novel inequality techniques are cited to study
the existence of periodic solutions for different equations; (2) Novel sufficient conditions
are gained for system (1.7) by improving the results obtained in the existing papers.

This paper is organized as follows. Some preliminaries and lemmas are given in Sect. 2.
In Sect. 3, two sufficient conditions are derived for the existence of periodic solutions for
system (1.7). In Sect. 4, two illustrative examples are given to show the effectiveness of the
proposed theory. In Sect. 5, a conclusion is given.

2 Preliminaries
Let R and Rn be the set of real numbers and an n-dimensional Euclidean space, respectively.
Let | · | and ‖ · ‖ respectively be norms of R and Rn.

We cite the notation as follows:

f = max
t∈[0,ω]

{∣∣f (t)
∣∣},

where f (t) is a continuous ω-periodic function.
We make the assumptions as follows:
(H1) There exist constants b > 0, d > 0 such that, for k ∈ K ,

∣∣gk(t, xk)
∣∣≤ b

∣∣xk(t)
∣∣ + d.

(H2) There exist constants δ < 0, r > 0, e > 0, and a with A = –η – δη2 + 0.5b2 + 0.5bd +
η2 + 0.5ηr + 0.5η|a| + 0.5ηe < 0 such that, for k ∈ K ,

xkfk(t, xk) ≥ δx2
k + axk ,

∣
∣fk(t, xk)

∣
∣≤ r|xk| + e.
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(A1) There exist constants δ and μ1 satisfying 2δ – μ1 ≥ 1 – η2

2 such that, for k ∈ K ,

xkgk(t, xk) ≥ δx2
k , g2

k (t, xk) ≤ μ1x2
k .

(A2) Function fk(t, xk) satisfies, for k ∈ K ,

0 <
2(η + 1)

2 – η
≤ fk(t, xk)

xk
≤ 2, xk �= 0.

(A3) The digraph (g, B) (B = (akh)n×l) is strongly connected.
(A4) There exists ε > 0 such that, for k ∈ K ,

mk(xk) =
1
ω

∫ ω

0 gk(t, xk) dt
xk

≥ ε, xk �= 0,

where mk(xk) ∈ C1(R, R).
(A5) For k ∈ K ,

∫ ω

0
ek(t) dt = 0.

For the sake of convenience, we introduce Gaines and Mawhin’s continuation theorem
about coincidence degree theory [24] and graph theory [25] as follows.

Lemma 2.1 ([24]) Assume that X and Z are two Banach spaces, L : D(L) ⊂ X → Z is a
Fredholm operator with index zero. Let Ω ∈ X be an open bounded set and N : Ω → Z be
L-compact on Ω . Assume that

(1) for each λ ∈ (0, 1), u ∈ ∂Ω ∩ Dom L, Lu �= λNu;
(2) for each u ∈ ∂Ω ∩ Ker L, QNu �= 0;
(3) deg{JQNu,Ω ∩ Ker L, 0} �= 0, where deg denotes the Brouwer degree.

Then the operator equation Lu = Nu has at least one solution in Ω ∩ Dom L.

Definition 2.1 ([23]) A directed graph g = (U , K) contains a set U = {1, 2, . . . , n} of vertices
and a set K of arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph Γ of
g is said to be spanning if Γ and g have the same vertex set. A directed graph g is weighed
if each arc (j, i) is assigned a positive weight bij. The weight W (Γ ) of a subgraph H is the
product of the weights on all its arc. A directed path δ in g is subgraph with distinct vertices
{i1, i2, . . . , im} such that its set of arcs is {(ik , ik+1) : k = 1, 2, . . . , m–1}. For a weighted digraph
g with l vertices, we define the weight matrix B = (bij)n×n whose entry bij > 0 is equal to the
weight of arc (j, i) if it exists, and 0 otherwise. A digraph g is strongly connected if, for any
pair of distinct vertices, there exists a directed path from one to the other. The Laplacian
matrix of (g, B) is defined as L = (pij)l×l , where pij = –bij for i �= j and pij =

∑
k �=i bik for i = j.

Lemma 2.2 ([24]) Suppose that l ≥ 2 and ck denotes the cofactor of the kth diagonal
element of the Laplacian matrix of (g, B). Then

∑l
k,h=1 ckakhGkh(xk , xh) =

∑
Q∈Ω W (Q) ×

∑
(k,h)∈K (CQ) Ghk(xh, xk), where Gkh(xk , xh) is an arbitrary function, Q is the set of all span-

ning unicyclic graphs of (g, B), W (Q) is the weight of Q, CQ denotes the directed cycle of Q,
and K(CQ) is the set of arcs in CQ. In particular, if (g, B) is strongly connected, then ck > 0
for 1 ≤ k ≤ l.
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Lemma 2.3 For any λ ∈ (0, 1), consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

x′
k(t) = λ[yk(t) – ηxk(t)],

y′
k(t) = λ[–η2xk(t) + ηyk(t) – fk(t, yk(t) – ηxk(t)) – gk(t, xk(t)) + ek(t)

–
∑l

h=1 akh(yk(t) – yh(t))], k ∈ K .

(2.1)

If the periodic solutions of system (2.1) exist, then they are bounded and the boundary is
independent of the choice of λ under assumptions (H1), (H2), and (A3). Namely, there exists
a positive constant H such that

∥
∥(x(t), y(t)

)T∥∥ =
∥
∥(x1(t), x2(t), . . . , xl(t), y1(t), y2(t), . . . , yl(t)

)T∥∥≤ H ,

the norm ‖ · ‖ is defined in the proof of Theorem 3.1.

Proof Suppose that (x(t), y(t))T = (x1(t), x2(t), . . . , xl(t), y1(t), y2(t), . . . , yl(t))T is a periodic
solution of system (2.1) for some λ ∈ (0, 1). Letting V (x, y) = 0.5

∑l
k=1 ck(x2

k + y2
k), where

ck denotes the cofactor of the kth diagonal element of Laplacian matrix of (g, (bkh)l×l).
According to assumption (A3) and Lemma 2.2, one has ck > 0, k ∈ K . Making use of as-
sumptions (H1) and (H2), we have

dV (x, y)
dt

= λ

l∑

k=1

ck

[

–ηx2
k(t) – η2xk(t)yk(t) + ηy2

k(t) – yk(t)fk
(
t, yk(t) – ηxk(t)

)

+ yk(t)
(
xk(t) – gk

(
t, xk(t)

))
+ yk(t)ek(t) –

l∑

h=1

akhyk(t)
(
yk(t) – yh(t)

)
]

≤ λ

l∑

k=1

ck

{

–ηx2
k(t) – η2xk(t)yk(t) + ηy2

k(t) – δ
[
yk(t) – ηxk(t)

]2 – a
[
yk(t) – ηxk(t)

]

+ yk(t) × ek(t) + xk(t)yk(t) + 0.5y2
k(t) + 0.5g2

k (t, xk) – ηxk(t)fk
(
t, yk(t) – ηxk(t)

)

–
l∑

h=1

akhy2
k(t) +

1
2

l∑

h=1

akh
[
y2

k(t) + y2
h(t)

]
}

≤ λ

l∑

k=1

ck

{

–ηx2
k(t) – η2xk(t)yk(t) + ηy2

k(t) – δ
[
yk(t) – ηxk(t)

]2 – a
[
yk(t) – ηxk(t)

]

+ yk(t)ek + 0.5y2
k(t) + yk(t)xk(t) + 0.5

[
b2x2

k(t) + d2 + 2bd
∣
∣xk(t)

∣
∣]

+ η
∣
∣xk(t)

∣
∣[r
∣
∣yk(t)

∣
∣ + rη

∣
∣xk(t)

∣
∣ + e

]
+

1
2

l∑

h=1

akh
[
y2

h(t) – y2
k(t)

]
}

≤ λ

l∑

k=1

ck
{(

–η – δη2 + 0.5b2 + 0.5bd + η2r + 0.5ηl + 0.5η|a| + 0.5ηe
)
x2

k(t)
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+
(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ+

)
xk(t)yk(t)

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)} +

λ

2

l∑

h=1,h

ckakhFhk(yk , yh), (2.2)

where Fhk(yk , yh) = y2
h – y2

k . By employing Lemma 2.2, we obtain

l∑

k,h=1

ckakhFhk(yk , yh) = 0,

from which, together with (2.2), it follows that

dV (x, y)
dt

≤ λ

l∑

k=1

ck
{[

–η +
(
–δη2 + 0.5b2 + 0.5bd + η2l + 0.5ηl + 0.5η|a| + 0.5ηe

)]
x2

k(t)

+
(
η – δ + 0.5ηl + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ + 1

)
xk(t)yk(t)

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)}. (2.3)

Since A < 0, δ < 0, then (–η2 + 2ηδ + 1)2y2
k(t) – 4A(η – δ + 0.5ηl + 0.5|a| + 1)y2

k(t) > 0,
∀yk(t) �= 0, xk(t) �= 0. So the equation in xk(t) : Ax2

k(t) + (η – δ + 0.5ηl + 0.5|a| + 1)y2
k(t) +

(–η2 + 2ηδ + 1)xk(t)yk(t) = 0 has two real roots x1, x2 (x1 < x2) for fixed k and

x1 =
–B –

√
B2 – 4AC
2A

yk(t), x2 =
–B +

√
B2 – 4AC
2A

yk(t).

Hence, when xk > x2, or xk < x1, Ax2
k(t) + (η – δ + 0.5ηl + 0.5|a| + 1)y2

k(t) + (–η2 + 2ηδ +
1)xk(t)yk(t) < 0. Namely, when |xk| > max{|x1|, |x2|} = r∗|yk|, Ax2

k(t) + (η –δ + 0.5ηl + 0.5|a|+
1)y2

k(t) + (–η2 + 2ηδ + 1)xk(t)yk(t) < 0. So when

∥
∥(x, y)T∥∥ =

∥
∥(x1, x2, . . . , xn, y1, y2, . . . , yn)T∥∥

=
n∑

k=1

[
max

t∈[0,ω]

(∣∣xk(t)
∣
∣ +
∣
∣yk(t)

∣
∣)
]

> n
(
r∗ + 1

)|yk|,

Ax2
k(t) +

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ + 1

)
xk(t)yk(t) < 0.

So there exists a positive constant r1 such that, when ‖(x, y)T‖ > r1,

Ax2
k(t) +

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ + 1

)
xk(t)yk(t) < 0.

Since Ax2
k(t) + (η – δ + 0.5ηr + 0.5|a| + 1)y2

k(t) + (–η2 + 2ηδ + 1)xk(t)yk(t) is decreasing in xk

when xk > r|yk|, and is increasing in xk when xk < –r∗|yk|, hence there exists a positive H
such that, when ‖(x, y)T‖ > H ,

Ax2
k(t) + qk

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ + 1

)
xk(t)yk(t)

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|) < 0.
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From (2.3), it follows that there exists a positive constant H , which is independent of λ,
such that when

∥
∥(x, y)T∥∥≥ H ,

dV (x, y)
dt

≤ 0. (2.4)

Recalling the fact that (x(t), y(t))T is an ω-periodic solution, we see that V (x(t), y(t)) is
an ω-periodic solution. On the other hand, if ‖(x(t), y(t))T‖ ≥ H , then dV (x(t),y(t))

dt ≤ 0,
which is in contradiction to the fact V (x(t), y(t)) is a continuous ω-periodic solution. Thus
‖(x(t), y(t))T‖ ≤ H . �

Remark 1 From the proof of Lemma 2.3, there exists a positive H such that when
‖(x, y)T‖ > H , then

Ax2
k(t) + qk

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k(t) +
(
–η2 + 2ηδ + 1

)
xk(t)yk(t)

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|) < 0.

3 The existence of periodic solutions
In this section, we establish two sufficient conditions on the existence of periodic solu-
tions for system (1.7) by combining graph theory with Mawhin’s continuation theorem of
coincidence degree theory.

Theorem 3.1 Under assumptions (H1), (H2), and assumption (A3), system (1.7) has at
least an ω-periodic solution.

Proof We will establish the existence of periodic solutions of system (1.7) by using
Lemma 2.1. Let

X = Z =
{

z =
(
x(t), y(t)

)T =
(
x1(t), x2(t), . . . , xl(t), y1(t), y2(t), . . . , yl(t)

)T :
(
x(t), y(t)

)T ∈ C1(R, R2l), xi(t + ω) = xi(t), yi(t + ω) = yi(t)

(i = 1, 2, . . . , l), t ∈ R
}

.

Denote

∥∥(x(t), y(t)
)T∥∥ =

l∑

k=1

[
max

t∈[0,ω]

∣∣xk(t)
∣∣ + max

t∈[0,ω]

∣∣yk(t)
∣∣
]
.

Then X and Z are Banach spaces with the norm ‖ · ‖. Set

Gk = yk(t) – ηxk(t),

Fk(t) = –η2xk(t) + ηyk(t) – fk
(
t, yk(t) – ηxk(t)

)
– gk

(
t, xk(t)

)
+ ek(t)

–
l∑

h=1

akh
(
yk(t) – yh(t)

)
, k = 1, 2, . . . , l.

Lz = z′ =
(
x′(t), y′(t)

)T =
(
x′

1(t), x′
2(t), . . . , x′

l(t), y′
1(t), . . . , y′

l(t)
)T ,
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Nz =
(
G1(t), G2(t), . . . , Gl(t), F1(t), F2(t), . . . , Fl(t)

)
,

Pz =
1
ω

∫ ω

0
z(t) dt, z ∈ X; Qz =

1
ω

∫ ω

0
z(t) dt, z ∈ Z.

It is easy to show that Dim Ker L = Dim R2l = 2l = codim Im L. Hence, L is a Fredholm map-
ping of index zero. We can prove that

Im P = Ker L, Im L = Ker Q = Im(I – Q).

Furthermore, the generalized inverse KP of L is as follows: KP : Im L → Ker P ∩ Dom L
exists and

KP(z) =
∫ t

0
z(s) ds –

1
ω

∫ ω

0

∫ t

0
z(s) ds dt.

Thus

QNz

=
(

1
ω

∫ ω

0
G1(t) dt,

1
ω

∫ ω

0
G2(t) dt, . . . ,

1
ω

∫ ω

0
Gn(t) dt,

1
ω

∫ ω

0
F1(t) dt,

1
ω

∫ ω

0
F2(t) dt,

1
ω

∫ ω

0
Fn(t) dt

)T

and

KP(I – Q)Nz

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

∫ t
0 G1(s) ds – 1

ω

∫ ω

0
∫ t

0 G1(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 G1(t) dt
∫ t

0 G2(s) ds – 1
ω

∫ ω

0
∫ t

0 G2(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 G2(t) dt
· · ·

∫ t
0 Gn(s) ds – 1

ω

∫ ω

0
∫ t

0 Gn(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 Gn(t) dt
∫ t

0 F1(s) ds – 1
ω

∫ ω

0
∫ t

0 F1(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 F1(t) dt
∫ t

0 F2(s) ds – 1
ω

∫ ω

0
∫ t

0 F2(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 F2(t) dt
· · ·

∫ t
0 Fn(s) ds – 1

ω

∫ ω

0
∫ t

0 Fn(s) ds dt – ( t
ω

– 1
2 )
∫ ω

0 Fn(t) dt

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

T

Clearly, QN and KP(I – Q)N are continuous and QN(Ω) is bounded, where Ω is an open
set in X. Then by Arzela–Ascoli theorem, we can prove that KP(I – Q)N(Ω) is compact.
Hence, N is L-compact on Ω .

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have system (2.1). By
Lemma 2.3, for every periodic solution (x(t), y(t))T = (x1(t), x2(t), . . . , xl(t), y1(t), . . . , yl(t))T

of Lz = λNz, there is H > 0, which is independent of the choice of λ, such that ‖(x(t),
y(t))T‖ < H .

We set Ω = {(x(t), y(t))T ∈ X : ‖(x, y)T‖ < H + r}, where r > 0 is chosen so that the bound
is larger. Hence, for any λ ∈ (0, 1), z ∈ ∂Ω ∩ Dom L, Lz �= λNz. When z ∈ ∂Ω ∩ Ker P, we
will show QNz �= 0. When z ∈ ∂Ω ∩ Ker L, z ∈ R2l (namely z is a constant vector) with
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‖z‖ = ‖(x, y)T‖ = H + r. If z is a constant vector with ‖z‖ = H + r, QNz = 0, then it follows
that the constant vector z with ‖z‖ = H + r satisfies, for k = 1, 2, . . . , l,

1
ω

∫ ω

0
Gk(t) dt = 0,

1
ω

∫ ω

0
Fk(t) dt = 0.

Hence, there exist tk (i = 1, 2), ξi ∈ [0,ω] (k = 1, 2, . . . , l) such that

Gk(tk) = 0, Fk(ξk) = 0. (3.1)

From (3.1), we have

0 =
l∑

k=1

ck
(
xkGk(tk) + ykFk(ξk)

)
. (3.2)

By using the same proof as those of (2.4) in Lemma 2.3, from (3.2), it follows that

0 =
l∑

k=1

ck
(
xkGk(tk) + ykFk(ξk)

)

≤
l∑

k=1

ck
{[

–η +
(
–δη2 + 0.5b2 + 0.5bd + η2r + 0.5ηl + 0.5η|a| + 0.5ηe

)]
x2

k

+
(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k +
(
–η2 + 2ηδ + 1

)
xkyk

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)}. (3.3)

It follows from Remark 1 that, since ‖(x, y)T‖ > H ,

l∑

k=1

{[
–η +

(
–δη2 + 0.5b2 + 0.5bd + η2r + 0.5ηl + 0.5η|a| + 0.5ηe

)]
x2

k

+
(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k +
(
–η2 + 2ηδ + 1

)
xkyk

+ 0.5
(
(ek)2 + bd + d2 + η + |a|η + |a|)} < 0, (3.4)

which contradicts with (3.3). Hence, for each z ∈ ∂ ∩ Ker L, QNz �= 0.
Finally, we show that degB{JQN ,Ω ∩ Ker L, (0, 0, . . . , 0)} �= 0. We only show that

degB{JQNz,Ω ∩ Ker L, (0, 0, . . . , 0)} �= 0, when z ∈ ∂Ω ∩ Ker L. To this end, we construct
the following mapping for k = 1, 2, . . . , l:

L(x, y,μ)

= (1 – μ)

(

y1 – ηx1, y2 – ηx2, . . . , yn – ηxn,

– η2x1 + ηy1 – f1(ξ1, y1 – ηx1) – g1(ξ1, x1) + e1(ξ1) –
l∑

h=1

a1h(y1 – yh),

– η2x2 + ηy2 – f2(ξ2, y2 – ηx2) – g2(ξ2, x2) + e2(ξ2) –
l∑

h=1

a2h × (y2 – yh),
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· · · ,

– η2xl + ηyl – fl(ξl, yl – ηxl) – gl(ξl, xl) + el(ξl) –
l∑

h=1

alh(yl – yh)

)

+ μ(m1x1 + n1y1, m2x2 + n2y2, . . . , mlxl + nlyl, u1x1 + v1y1, u2x2 + v2y2,

· · · , ulxl + vlyl),

where μ ∈ [0, 1] is a parameter, mk , nk , uk , vk (k = 1, 2, . . . , l) are chosen constants. We
show that the mapping L(x, y,μ) is a homotopic mapping. Namely, we show when (x, y)T ∈
∂Ω ∩ Ker L, μ ∈ [0, 1], L(x, y,μ) �= 0. If when (x, y)T ∈ ∂Ω ∩ Ker L, μ ∈ [0, 1], L(x, y,μ) = 0,
then for k = 1, 2, . . . , l,

(1 – μ)(yk – ηxk) + μ(mkxk + nkyk) = 0, (3.5)

(1 – μ)

[

–η2xk + ηyk – fk(ξk , yk – ηxk) – gk(ξk , xk) + ek(ξk)

–
l∑

h=1

akh(yk – yh)

]

+ μ(ukxk + vkyk) = 0. (3.6)

From (3.5) and (3.6), it follows that

0 =
l∑

k=1

ck

{

xk
[
(1 – μ)(yk – ηxk) + μ(mkxk + nkyk)

]

+ yk

[

(1 – μ)

(

–η2xk – fk(ξk , yk – η × xk) + gk(ξk , xk) + ek(ξk)

–
l∑

h=1

akh(yk – yh)

)

+ μ(ukxk + vkyk)

]}

≤
l∑

k=1

ck

{

(1 – μ)pk
(
xkyk – ηx2

k
)

+ μ∗(mkx2
k + nkxkyk

)
– (1 – μ)η2xkyk

+ (1 – μ)ηy2
k + μ × (

vky2
k + ukxkyk

)

+ (1 – μ)[–δ(yk – ηxk)2 – a(yk – ηxk) + ηr|xk||yk| + η2rx2
k + ηe|xk|

+ y2
k + 0.5

[

bd + bd + (ek)2 –
l∑

h=1

akh
(
y2

k – y2
h
)

+ ηe + η|a| + |a|
]}

≤
l∑

k=1

ck

{
[
–η +

(
–δη2 + 0.5b2 + 0.5bd + η2r – ηl + 0.5η|a| + 0.5ηe

)

+ μ
(
mk + η – η2r + δη2 – 0.5ηe – 0.5ηr

)]
x2

k

+
[
–η2 + 2ηδ + 1 + μ

(
lk + uk – 1 + η2 – 2δη

)]
xkyk

+
[(

η – δ + 0.5ηr + 0.5|a| + 1
)

+ μ(vk – η + δ – 1 – 0.5ηl)
]
y2

k
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+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)

– 0.5(1 – μ)
l∑

h=1,k=1

ckakh
(
y2

h – y2
k
)
}

, (3.7)

from which it follows that, since
∑l

h=1,k=1 ckakh(y2
h – y2

k) = 0,

0 ≤
l∑

k=1

ck
{[

–η – δη2 + 0.5b2 + 0.5bd + η2r – ηl + 0.5η|a| + 0.5ηe

+ μ
(
mk + η – η2r + δη2 – 0.5ηe – 0.5ηr

)]
x2

k

+
[
–η2 + 2ηδ + 1 + μ

(
nk + uk – 1 + η2 – 2δη

)]
xkyk

+
[(

η – δ + 0.5ηr + 0.5|a| + 1
)

+ μ(vk – η + δ – 1 – 0.5ηr)
]
y2

k

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)}. (3.8)

Choose mk , vk , lk , uk such that

mk + η – η2r + δη2 – 0.5ηe – 0.5ηr = 0, (3.9)

nk + uk – 1 + η2 – 2δη = 0, (3.10)

and

vk – η + δ – 1 – 0.5ηr = 0. (3.11)

Substituting (3.9)–(3.11) into (3.8) gives

0 ≤
l∑

k=1

{[
–η +

(
–δη2 + 0.5b2 + 0.5bd + η2r + 0.5ηr + 0.5η|a| + 0.5ηe

)]
x2

k

+
(
–η2 + 2ηδ + 1

)
xkyk +

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)

}
. (3.12)

Since ‖(x, y)T‖ > H , we have from Remark 1

l∑

k=1

{[
–η +

(
–δη2 + 0.5b2 + 0.5bd + η2r + 0.5ηl + 0.5η|a| + 0.5ηe

)]

+ x2
k
(
–η2 + 2ηδ + 1

)
xkyk +

(
η – δ + 0.5ηr + 0.5|a| + 1

)
y2

k

+ 0.5
(
(ek)2 + bd + d2 + ηe + |a|η + |a|)

}
< 0. (3.13)

Equation (3.13) contradicts with (3.12). Hence, L(x, y,μ) is a homotopic mapping, by topo-
logical degree theory, we have

degB
(
JQN , ∂Ω ∩ Ker L, (0, 0, . . . , 0)

)

= degB
(
L(x, y, 0), ∂Ω ∩ Ker L, (0, 0, . . . , 0)

)
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= degB
(
L(x, y, 1), ∂Ω ∩ Ker L, (0, 0, . . . , 0)

)

= degB(m1x1 + n1y1, m2x2 + n2y2, . . . , mlxl + nlyl, u1x1 + v1y1, . . . , ulxl + vlyl)

= sign

∣∣
∣∣
∣

E F
M N

∣∣
∣∣
∣
, (3.14)

where

E = diag(m1, m2, . . . , ml), F = diag(n1, n2, . . . , nl),

M = diag(u1, u2, . . . , ul), N = diag(v1, v2, . . . , vl).

Since
∣∣
∣∣
∣

E F
M N

∣∣
∣∣
∣

= |EM – FN | =
l∏

k=1

(mkvk – lkuk). (3.15)

Then substituting (3.15) into (3.14) gives

degB
(
JQN , ∂Ω ∩ Ker L, (0, 0, . . . , 0)

)

= sign
l∏

k=1

(mkvk – nkuk)

= sign
l∏

k=1

((
–η + η2r – δη2 + 0.5ηe + 0.5ηl

)
(η – δ + 1 + 0.5ηr) – nkuk

)
.

Again choose nk , uk such that

nkuk �= (–η + η2r – δη2 + 0.5ηe + 0.5ηr
)
(η – δ + 1 + 0.5ηr).

Then

degB
(
JQN , ∂Ω ∩ Ker L, (0, 0, . . . , 0)

) �= 0.

By Lemma 2.1, system (1.7) has at least an ω-periodic solution. This completes the proof
of Theorem 3.1. �

Remark 2 In the proof of Theorem 3.1, mk , nk , uk , vk are chosen such that mk + η – η2r +
δη2 – 0.5ηe – 0.5ηr = 0, nk + uk – 1 + η2 – 2δη = 0, vk – η + δ – 1 – 0.5ηr = 0, nkuk �= (–η +
η2r – δη2 + 0.5ηe + 0.5ηr)(η – δ + 1 + 0.5ηr). Such nk , uk indeed exist, for example, letting
δ = –1, η = 0.5, b = d = 0.001, |a| = 0.003, r = 3, e = 0.003, then vk = 3.25, mk = 1.25075, nk ,
uk satisfy nk + uk = –0.25, nkuk �= 3.25 × 1.25075. Thus by taking nk = –0.5, uk = 0.25, the
task can be fulfilled.

Remark 3 In our Theorem 3.1, conditions (A4) and (A5) in Theorem 1 in [21] are removed
and conditions (A1) and (A2) in Theorem 1 in [21] are replaced with conditions (H1) and
(H2). Hence, our result on the existence of periodic solutions for a coupled Rayleigh system
is different from that obtained in Theorem 1 in [21].
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Theorem 3.2 Under (A1)–(A3), system (1.7) has at least one ω-periodic solution.

Proof Define the same X, Z, Gk , Fk , L, N , P, and Q as those in the proof of Theorem 3.1,
where the norm of X is different from that of X in the proof of Theorem 3.1. Here, we
define the norm of X by ‖x‖ = (

∑l
k=1 maxt∈[0,ω][|xk(t)|2 + |yk(t)|2]) 1

2 .
Clearly, QN and KP(I – Q)N are continuous and QN(Ω) is bounded, where Ω is an open

set in X. Then by Arzela–Ascoli theorem, we can prove that KP(I – Q)N(Ω) is compact.
Hence, N is L-compact on Ω .

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have system (2.1), a.e.,
system (4) in Lemma 3 of [21]. By Lemma 3 in [21], for every periodic solution (x(t), y(t))T =
(x1(t), x2(t), . . . , xl(t), y1(t), . . . , yl(t))T of Lz = λNz, there is H > 0, which is independent of
the choice of λ such that ‖(x(t), y(t))T‖ < H . We set Ω = {(x(t), y(t))T ∈ X : ‖(x, y)T‖ < H +
r}, where r > 0 is a chosen positive constant such that the bound of Ω is larger. Hence, for
any λ ∈ (0, 1), z ∈ ∂Ω ∩ Dom L, Lz �= λNz. When z ∈ ∂Ω ∩ Ker P, we will show QNz �= 0.
When z ∈ ∂Ω ∩ Ker L, z ∈ R2l (namely z is a constant vector) with ‖z‖ = ‖(x, y)T‖ = H + r.
If z is a constant vector with ‖z‖ = H + r, QNz = 0, then it follows that the constant vector
z with ‖z‖ = H + r satisfies, for k = 1, 2, . . . , l,

1
ω

∫ ω

0
Gk(t) dt = 0,

1
ω

∫ ω

0
Fk(t) dt = 0.

Hence, there exist tk (i = 1, 2), ξi ∈ [0,ω] (k = 1, 2, . . . , l) such that

Gk(tk) = 0, Fk(ξk) = 0. (3.16)

From (3.16), we have

0 =
l∑

k=1

ck
(
xkGk(tk) + ykFk(ξk)

)
. (3.17)

From the proof of page 4 in Lemma 3 of [21], it follows from (3.17) that

0 =
l∑

k=1

(
xkGk(tk) + ykFk(ξk)

)

=
l∑

k=1

{

–ηx2
k(t) – η2xk(t)yk(t) + ηy2

k(t) – yk(t)fk
(
t, yk(t) – ηxk(t)

)

+ yk(t)
[
xk(t) – gk

(
t, xk(t)

)]
+ yk(t)ek(t) –

l∑

h=1

akhyk(t)
[
yk(t) – yh(t)

]
}

<
l∑

k=1

ck

[
–

η2

4
x2

k –
η2

2
y2

k + (ek)2
]

< 0. (3.18)

This a contradiction. Hence, for each z ∈ ∂ ∩ Ker L, QNz �= 0.
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Finally, we show that degB{JQN ,Ω ∩ Ker L, (0, 0, . . . , 0)} �= 0. We only show that
degB{JQNz,Ω ∩ Ker L, (0, 0, . . . , 0)} �= 0 when z ∈ ∂Ω ∩ Ker L. To this end, we construct
the following mapping for k = 1, 2, . . . , l:

L1
(
x, y,μ∗)

=
(
1 – μ∗)

[

y1 – ηx1, y2 – ηx2, . . . , yn – ηxn,

– η2x1 + ηy1 – f1(ξ1, y1 – ηx1) – g1(ξ1, x1) + e1(ξ1) –
l∑

h=1

a1h(y1 – yh),

– η2x2 + ηy2 – f2(ξ2, y2 – ηx2) – g2(ξ2, x2) –
l∑

h=1

a2h(y2 – yh) + e2(ξ2), . . . ,

– η2xl + ηyl – fl(ξl, yl – ηxl) – gl(ξl, xl) + el(ξl) –
l∑

h=1

alh(yl – yh)

]

+ μ∗ × (
m∗

1x1 + n∗
1y1, m∗

2x2 + n∗
2y2, . . . , m∗

l xl + n∗
l yl, u∗

1x1 + v∗
1y1,

u∗
2x2 + v∗

2y2, . . . , u∗
l xl + v∗

l yl
)
,

where μ∗ ∈ [0, 1] is a parameter, m∗
k , r∗

k , u∗
k , v∗

k (k = 1, 2, . . . , l) are chosen constants. We
show that the mapping L1(x, y,μ∗) is a homotopic mapping. Namely, we show when
(x, y)T ∈ ∂Ω ∩ Ker L, μ∗ ∈ [0, 1], L1(x, y,μ∗) �= 0. If when (x, y)T ∈ ∂Ω ∩ Ker L, μ∗ ∈ [0, 1],
L1(x, y,μ∗) = 0, then for k = 1, 2, . . . , l,

(
1 – μ∗)(yk – ηxk) + μ∗(m∗

kxk + n∗
kyk
)

= 0, (3.19)

(
1 – μ∗)

[

–η2xk + ηyk – fk(ξk , yk – ηxk) – gk(ξk , xk) + ek(ξk)

–
l∑

h=1

akh(yk – yh)

]

+ μ∗(u∗
kxk + v∗

kyk
)

= 0. (3.20)

From (3.19) and (3.20), it follows that

0 =
l∑

k=1

ck

{

xk
[(

1 – μ∗)(yk – ηxk) + μ∗(m∗
kxk + l∗k yk

)]

+ yk

[
(
1 – μ∗)

(

–η2xk + ηyk – fk(ξk , yk – ηxk) – gk(ξk , xk) + ek(ξk)

–
l∑

h=1

akh(yk – yh)

)

+ μ∗(u∗
kxk + v∗

kyk
)
]}

. (3.21)
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Let fk(ξk , yk – ηxk) = (yk – ηxk)βk(ξk , yk – ηxk), then from (A2) we can easily obtain that
0 < 2(η+1)

2–η
≤ βk(ξk , yk – ηxk) ≤ 2. By using (A1), (A2), we have from (3.21)

0 =
l∑

k=1

ck

{
(
1 – μ∗)(xkyk – ηx2

k
)

+ μ∗(m∗
kx2

k + n∗
kxkyk

)

+
(
1 – μ∗)

(

–η2xkyk + ηy2
k – y2

kβk(ξk , yk – ηxk)

+ ηxkykβk(ξk , yk – ηxk) + yk
[
xk(t) – gk(ξk , xk)

]
– xkyk + ek(ξk) × yk

–
l∑

h=1

akh
(
y2

k – yhyk
)
)

+ μ∗(u∗
kxkyk + v∗

ky2
k
)
}

≤
l∑

k=1

ck

{
(
1 – μ∗)(xkyk – ηx2

k
)

+ μ∗(m∗
kx2

k + n∗
kxkyk

)
+
(
1 – μ∗)

(

–η2xkyk + ηy2
k – y2

k × βk(ξk , yk – ηxk)

+ ηxkykβk(ξk , yk – ηxk) + y2
k + 0.5

[
xk(t) – gk(ξk , xk)

]2 – xkyk

+ 0.5 × e2
k(ξk) + 0.5

l∑

h=1

akh
(
y2

h – y2
k
)
)

+ μ∗(u∗
kxkyk + v∗

ky2
k
)
}

,

from which it follows that noting
∑l

k=1 ckakh(y2
h – y2

k) = 0,

0 ≤
l∑

k=1

ck
{(

1 – μ∗)(xkyk – ηx2
k
)

+ μ∗(m∗
kx2

k + n∗
kxkyk

)

+
(
1 – μ∗)(–η2xkyk + ηy2

k – y2
k × βk(ξk , yk – ηxk)

+ ηxkykβk(ξk , yk – ηxk) + y2
k + 0.5x2

k – δx2
k + 0.5μ1x2

k – xkyk + 0.5

× e2
k(ξk)

)
+ μ∗(u∗

kxkyk + v∗
ky2

k
)}

=
l∑

k=1

ck
{(

η
(
βk(ξk , yk – ηxk) – η

)
+ μ∗[n∗

k + η
(
η – βk(ξk , yk – ηxk)

)
+ u∗

k
])

xkyk

+
[
0.5 – δ + 0.5μ1 – η + μ∗(m∗

k + η – 0.5 + δ – 0.5μ1
)]

x2
k

+
(
η – βk(ξk , yk – ηxk) + 1 + μ∗(–ηβk(ξk , yk – ηxk) – 1 + v∗

k
))

y2
k

+ 0.5(ek)2}. (3.22)

Noting that

η
[
βk(ξk , yk – ηxk) – η

]≥ η

(
2(η + 1)

2 – η
– η

)
= η

(
η2 + 2
2 – η

)
> 0,

η
[
βk(ξk , yk – ηxk) – η

]
xkyk ≤ 0.5η

[
βk(ξk , yk – ηxk) – η

](
x2

k + y2
k
)
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and

μ∗{n∗
k + u∗

k + η
[
η – βk(ξk , yk – ηxk)

]}
xkyk

≤ 0.5μ∗{∣∣n∗
k
∣
∣ +
∣
∣u∗

k
∣
∣ + η

[
βk(ξk , yk – ηxk) – η

]}(
x2

k + y2
k
)
,

it follows from (3.22) that

0 ≤
l∑

k=1

ck
{(

0.5 – δ + 0.5μ1 – η + 0.5η
[
βk(ξk , yk – ηxk) – η

]

+ μ∗[m∗
k + η – 0.5 + δ – 0.5μ1 + 0.5

(∣∣n∗
k
∣∣ +
∣∣u∗

k
∣∣) + 0.5η

[
βk(ξk , yk – ηxk) – η

]])
x2

k

+
(
0.5η

[
βk(ξk , yk – ηxk) – η

]
+ η + 1 – βk(ξk , yk – ηxk)

+ μ∗[–ηβk(ξk , yk – ηxk) – 1 + v∗
k + 0.5

(∣∣n∗
k
∣
∣ +
∣
∣u∗

k
∣
∣) + η

[
–ηβk(ξk , yk – ηxk)

]])
y2

k

+ 0.5(ek)2}

=
l∑

k=1

ck

{[
–

1
2
(
2δ – μ1 – 1 + η2 + η

[
2 – βk(ξk , yk – ηxk)

])

–
1
2
μ∗(–2m∗

k – 4η + 1 – 2δ + μ1 + η2 –
∣
∣n∗

k
∣
∣ –
∣
∣u∗

k
∣
∣ + η

[
2 – βk(ξk , yk – ηxk)

])]
x2

k

+
[

–
1
2

(
η2 + (2 – η)βk(ξk , yk – ηxk) – 2 – 2η

)
+ μ∗

(
– ηβk(ξk , yk – ηxk) – 1

+ v∗
k + 0.5

(∣∣n∗
k + |u∗

k
∣∣) + η

[
βk(ξk , yk – ηxk) – η]

)]
y2

k + (ek)2
}

(3.23)

≤
l∑

k=1

ck

{
–

η2

4
x2

k –
η2

2
y2

k + (ek)2 –
1
2
μ∗(–2m∗

k – 4η + 1 – 2δ + μ1 + η2

–
∣∣n∗

k
∣∣ – |u∗

k
)|x2

k –
1
2
μ∗(2 – 2v∗

k –
∣∣n∗

k
∣∣ –
∣∣u∗

k
∣∣ + 2η2)y2

k

}
. (3.24)

Choose v∗
k , m∗

k , u∗
k , n∗

k such that

2v∗
k = 2 –

∣∣n∗
k
∣∣ –
∣∣u∗

k
∣∣ + 2η2 (3.25)

and

2m∗
k = 1 – 4η – 2δ + μ1 + η2 –

∣∣n∗
k
∣∣ –
∣∣u∗

k
∣∣. (3.26)

Substituting (3.25) and (3.26) into (3.24) gives

0 ≤
l∑

k=1

ck

[
–

η2

4
x2

k –
η2

2
y2

k + (ek)2
]

. (3.27)

From the proof of Lemma 3 in [21], we have

l∑

k=1

ck

[
–

η2

4
x2

k –
η2

2
y2

k + (ek)2
]

< 0. (3.28)
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The rest of the proof is similar to that of the corresponding part in Theorem 3.1, and it is
omitted. �

Remark 4 In our Theorem 3.2, conditions (A4) and (A5) in Theorem 1 in [21] are removed,
the remaining conditions (A1)–(A3) are the same. Hence, our result improves Theorem 1
in [21].

Remark 5 By applying new inequality techniques, we establish new sufficient conditions
for the existence of periodic solutions of a coupled Rayleigh system. Our method can be
applied to studying the existence of periodic solutions for any second-order differential
system.

4 Numerical test
Example 1 Consider the following Rayleigh system:

⎧
⎪⎪⎨

⎪⎪⎩

x′
k(t) = yk(t) – ηxk(t),

y′
k(t) = –η2xk(t) + ηyk(t) – fk(t, yk(t) – ηxk(t)) – gk(t, xk(t))

+ ek(t) –
∑l

h=1 akh[yk(t) – yh(t)],

(4.1)

where k = 1, 2, 3, 4, η = 0.4 and gk(t, xk(t)) = 0.05|xk(t)| + 0.05 cos xk(t) + 0.05 sin xk ,
fk(t, xk(t)) = (0.5 + 0.6 sin xk(t))xk(t) + 0.003, ek(t) = 1 + cos t.

We can check that |gk(t, xk)| ≤ 0.05|xk(t)| + 0.06, and we take b = 0.005, d = 0.06.
xkfk(t, xk) ≥ –0.1x2

k + 0.03xk , and δ = –0.1, a = 0.03. Taking η = 0.4, we get A = –η – δη2 +
0.5b2 + 0.5bd + η2 + 0.5ηr + 0.5η|a| + 0.5ηe < 0, thus conditions (H1), (H2) are satisfied.

Since gk(t, x) is not differential in xk , thus condition (A4) in [21] cannot be satisfied; since
∫ 1

0 (1 + cos t) dt �= 0, hence condition (A5) in [21] cannot be satisfied, hence the existence
of periodic solutions of system (4.1) cannot be verified by these results in [21]. Assuming
that

B = (akh)4×4 =

⎛

⎜⎜
⎜
⎝

0 2 0.6 1
0.3 0 3 0.4
3 0.5 0 2
2 0.6 2 0

⎞

⎟⎟
⎟
⎠

,

Figure 1 The phrase plan (x1(t), y1(t))
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Figure 2 The phrase plan (x2(t), y2(t))

Figure 3 The phrase plan (x3(t), y3(t))

Figure 4 The phrase plan (x4(t), y4(t))

we can check that condition (A3) holds. Now, all the conditions in Theorem 3.1 in our
paper are satisfied. The solution of system (4.1) is shown in Figs. 1–4, from which we can
clearly see that system (4.1) has at least one periodic solution.

Example 2 In system (4.1), we set gk(t, xk(t)) = (1 + 0.001| sin xk(t)| + 0.001 sin t)xk(t),
fk(t, xk(t)) = 0.2xk(t) sin 2t, ek(t) = sin t + 1. It is easy to verify that (A1), (A2), and (A3) are
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Figure 5 The phrase plan (x1(t), y1(t))

Figure 6 The phrase plan (x2(t), y2(t))

satisfied assuming that

B = (akh)4×4 =

⎛

⎜⎜
⎜
⎝

0 2 6 1
0.3 0 1 0.4
3 0.5 0 2
2 0.6 2 0

⎞

⎟⎟
⎟
⎠

.

But (A4) is not satisfied since mk(xk) contains | sin xk(t)|, which is not differential. Hence,
the existence of periodic solutions of system (4.1) cannot be verified by the results in [21].
On the other hand, by our Theorem 3.1, system (4.1) has at least one ω-periodic solution.

The solution of system (4.1) is shown in Figs. 5–8, from which we can clearly see that
system (4.1) has at least one periodic solution.

5 Conclusion
In the paper, we discuss the existence of periodic solutions for a class of coupled Rayleigh
systems by combining graph theory with continuation theorem as well as Lyapunov func-
tions. By the above study methods and by using novel inequality techniques, we obtain
new sufficient conditions to ensure the existence of periodic solutions for system (1.7).
Our results and method are completely new.
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Figure 7 The phrase plan (x3(t), y3(t))

Figure 8 The phrase plan (x4(t), y4(t))
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