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Abstract
In this paper, we propose and analyze a mathematical model of mealybugs and green
lacewings with time delay to investigate the population dynamics of mealybugs (a
major insect pest of cassava) and green lacewings (a natural enemy of mealybugs)
when the time delay in the development of green lacewings is taken in to account.
Hopf bifurcation theorem and Routh–Hurwitz criteria are utilized so that the
conditions on the model parameters which differentiate various dynamic behaviors
of the model are obtained. Computer simulations are also carried out to illustrate our
theoretical predictions. Chaotic behavior observed in the field data is also
investigated numerically.
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1 Introduction
Cassava (Manihot esculenta Crantz) is extensively cultivated as an annual crop in tropical
and subtropical regions for its edible starchy storage roots. Apart from being the world’s
second largest producer of cassava, Thailand is the world largest exporter of cassava prod-
ucts as well [1].

On the other hand, the demand of energy increases continuously. In 2006, it has been
reported in [2] that the use of energy worldwide is 11,266.7 million tons of oil equiv-
alent and increases to 13,276.3 million tons of oil equivalent, which is an increase of
17.84%, and tends to be increasing continuously. However, the resource of energy is lim-
ited and it might not be sufficient to reach the demand in the future. Therefore it is
necessary to seek for alternative energy. Department of Alternative Energy Development
and Efficiency found that dry crops is one of effective choices that can be transmuted to
the alternative energy. The most suitable dry crops in Thailand are sugar cane (Saccha-
rum officinarum L.) and cassava (Manihot esculenta L. crantz) that can be transmuted
to ethanol. According to [3], 1 ton of cassava roots can be transmuted to 140 liters of
ethanol, 1 ton of tapioca chips can be transmuted to 333 liters of ethanol, 1 ton of tapi-
oca starch can be transmuted to 500 liters of ethanol, 1 ton of sugarcane can be trans-
muted to 70 liters of ethanol, and 1 ton of molasses can be transmuted to 238 liters of
ethanol.

In 2008, the outbreak of cassava mealybugs (a major insect pest of cassava) caused se-
vere damage in cassava fields in Thailand and rapidly spread to other areas [4]. According
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to Thailand’s office of agricultural economics, cassava yields reduced to 23 million tons
in the year 2009–2010, which is approximately 10 million tons lower than the expected
cassava yields [5]. Mealybug is a major insect pest of cassava. It can destroy up to 54% of
roots and 100% of leaves in locations of infestation [6]. It damages cassava plants directly
by sucking the sap and contaminating the plant with its toxic saliva and indirectly by favor-
ing the development of sooty molds [4]. Without control strategy, mealybugs can reduce
cassava yields to less than 80% [7]. To control the spread of mealybugs, there are many
strategies suggested such as insecticide, biological control, or mixed insecticide and bio-
logical control. With biological control, the use of mealybug’s natural enemies has proved
experimentally to be successful [8].

Green lacewing is one of natural enemies mostly used to control the spread of mealy-
bugs. The green lacewing larvae can destroy 100 aphids of mealybugs or more in a week.
They damage the prey by using the hollow suckle-shaped jaws that allow them to withdraw
fluids from many soft-bodied insects. In this work, the population dynamics of mealybugs
and green lacewings will be investigated.

In this paper, we propose and analyze a mathematical model of mealybugs and green
lacewings with time delay to investigate the population dynamics of mealybugs (a major
insect pest of cassava) and green lacewings (a natural enemy of mealybug) when the time
delay in the development of green lacewings is taken in to account.

2 A mathematical model
In this paper, we assume that the following nonlinear system of the delay differential
equations can be used to investigate the population dynamics of mealybugs and green
lacewings:

dM
dt

= a1M
(

1 –
M
k1

)
–

a2MG
k2 + M

– b1M, (2.1)

dG
dt

=
α1a2M(t – τ )G(t – τ )

k2 + M(t – τ )
– b2G, (2.2)

where M(t) and G(t) account for the population densities of mealybugs and green lacewing
larvae at time t, respectively; M(t – τ ) and G(t – τ ) account for the population densities
of mealybugs and green lacewings at time t – τ , respectively. Here a1, a2, k1, b1, b2, α1 are
assumed to be positive.

In Eq. (2.1), the term a1M(1 – M
k1

) represents the the growth rate of mealybugs, a2MG
k2+M

represents the death rate of mealybugs due to the predation by green lacewing larvae, and
b1 represents the natural death rate of mealybugs.

In Eq. (2.2), since only the green lacewing larvae can prey on mealybugs and it takes
approximately 39 days for green lacewing larvae to develop into pupa, an adult that can
lay eggs which will develop into green lacewing larvae [9, 10], we then assume that the
term α1a2M(t–τ )G(t–τ )

(k2+M(t–τ )) represents the growth rate of green lacewings due to the consumption
on mealybugs which incorporates the time delay in the increase of green lacewings; b2

represents the natural death rate of green lacewings.
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3 Modeling analysis
The points (0, 0) and

(
b2k2

α1a2 – b2
,
α1k2(a1a2α1k1 – a1b2k1 – a1b2k2 – a2b1α1k1 + b1b2k1)

k1(α1a2 – b2)2

)

are two steady states of the system of Eqs. (2.1)–(2.2).
Firstly, let us consider the local stability of the washout steady state (0, 0). The Jacobian

matrix of system (2.1)–(2.2) evaluated at the washout steady state (0, 0) is

J|(0,0) =

(
a1 – b1 0

0 –b2

)
. (3.1)

We can see that the eigenvalues of J|(0,0) are λ1 = a1 – b1 and λ2 = –b2, and hence, we
obtain the following theorem.

Theorem 1 The washout steady state (0, 0) of system (2.1)–(2.2) is locally asymptotically
stable if and only if

a1 < b1 and b2 > 0. (3.2)

Proof Since all eigenvalues of J|(0,0) will have negative real parts if and only if inequalities
in (3.2) hold, the washout steady state (0, 0) of system (2.1)–(2.2) is locally asymptotically
stable if and only if (3.2) is satisfied. �

Next, let us consider the non-washout steady state

(
b2k2

α1a2 – b2
,
α1k2(a1a2α1k1 – a1b2k1 – a1b2k2 – a2b1α1k1 + b1b2k1)

k1(α1a2 – b2)2

)
≡ (Ms, Gs).

Note that Ms > 0 and Gs > 0 if and only if

α1a2 > b2 (3.3)

and

(a1a2α1 – a1b2 – a2b1α1 + b1b2) >
a1b2k2

k1
. (3.4)

Letting m = M – Ms and g = G – Gs, we will be led to following linearized system of
(2.1)–(2.2):

(
ṁ(t)
ġ(t)

)
= Js

(
m(t)
g(t)

)
, (3.5)

where Js is the corresponding Jacobian matrix evaluated at (Ms, Gs), namely

Js =

(
(a1–b1)b2

α1a2
+ a1b2k2

α1a2k1
– 2a1b2k2

k1(α1a2–b2) – b2
α1

(k1(a1–b1)(α1a2–b2)–a1b2k2)e–λτ

a2k1
–b2(1 – e–λτ )

)
. (3.6)



Jankaew et al. Advances in Difference Equations        (2019) 2019:283 Page 4 of 16

For simplicity, we introduce new parameters by letting

a = b2 –
(

(a1 – b1)b2

α1a2
+

a1b2k2

α1a2k1
–

2a1b2k2

k1(α1a2 – b2)

)
,

b = –b2

(
(a1 – b1)b2

α1a2
+

a1b2k2

α1a2k1
–

2a1b2k2

k1(α1a2 – b2)

)
,

c = b2

[(
(a1 – b1)b2

α1a2
+

a1b2k2

α1a2k1
–

2a1b2k2

k1(α1a2 – b2)

)

+
(k1(a1 – b1)(α1a2 – b2) – a1b2k2)

α1a2k1

]
,

d = –b2.

Then, the characteristic equation of Js can be written as

F(λ) = λ2 + aλ + b + (c + dλ)e–λτ = 0. (3.7)

According to the Hopf bifurcation theory, for a periodic solution to exist, it is necessary
that Eq. (3.7) has a pair of purely imaginary complex roots λ = ±iω for some value of τ . In
order that such a pair can be found, one must have F(iω) = 0, that is,

(iω)2 + a(iω) + b +
(
c + d(iω)

)
e(–iω)τ = 0. (3.8)

Equating real and imaginary parts on the left of Eq. (3.8) to zero, we obtain the following
equations:

–ω2 + b + c cos(ωτ ) – dω sin(ωτ ) = 0, (3.9)

aω + c sin(ωτ ) + dω cos(ωτ ) = 0. (3.10)

By squaring (3.9) and (3.10), and then adding them, it follows that

ω4 +
(
a2 – 2b – d2)ω2 +

(
b2 – c2) = 0. (3.11)

Let η = ω2, then (3.11) can be written as

δ(η) ≡ η2 +
(
a2 – 2b – d2)η +

(
b2 – c2) = 0. (3.12)

Hence, Eq. (3.7) will have a pair of complex solutions λ = ±iω provided that (3.12) has a
positive real solution η = ω2 > 0.

Lemma 1 If

b2 – c2 < 0 (3.13)

then Eq. (3.12) has at least one positive real root.

Lemma 2 If

b2 – c2 ≥ 0 (3.14)
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then the necessary conditions that Eq. (3.12) has at least one positive real root are

a2 – 2b – d2 < 0 and
(
a2 – 2b – d2)2 ≥ 4

(
b2 – c2). (3.15)

Without loss of generality, we assume that (3.10) has two positive real roots denoted by η1

and η2. Then, (3.9) has two positive roots ωk = √
ηk , k = 1, 2.

Now, let τ0 > 0 be the smallest of such τ for which λ = ±iω. We substitute ω = ωk into
Eqs. (3.9)–(3.10) and have

–ω2
k + b + c cos(ωkτ ) – dωk sin(ωkτ ) = 0, (3.16)

aωk + c sin(ωkτ ) + dωk cos(ωkτ ) = 0. (3.17)

Rewrite Eq. (3.17), we obtain

sin(ωkτ ) =
–aωk – dωk cos(ωkτ )

c
. (3.18)

Substituting (3.18) into (3.16) and rearranging, we then have

cos(ωkτ ) =
(c – ad)ω2

k – bc
c2 + d2ω2

k
. (3.19)

Solving for τ , we obtain

τ
(j)
k =

1
ωk

arccos

[
(c – ad)ω2

k – bc
c2 + d2ω2

k

]
+

(j – 1)π
ωk

, (3.20)

where k = 1, 2, j = 1, 2, . . .
Then ±iωk is a pair of purely imaginary roots of Eq. (3.7) with τ = τ

(j)
k , j = 1, 2, . . . Thus,

we can define

τ0 = min
1≤k≤2,j≥1

(
τ

(j)
k

)
, τ

(j)
k > 0, (3.21)

with τ
(j)
k defined in Eq. (3.20).

Theorem 2
(a) If (3.14) holds and

a2 – 2b – d2 ≥ 0 or
(
a2 – 2b – d2)2 < 4

(
b2 – c2), (3.22)

then all roots of (3.7) have nonzero real parts for all τ ≥ 0.
(b) If

a + d > 0 and b + c > 0, (3.23)

and either (3.13) or ((3.14) and (3.15)) holds, then all roots of (3.7) have negative real
parts for τ ∈ [0, τ0) where τ0 is as defined in (3.21).
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Proof (a) Arguing by contradiction, suppose that (3.7) has a root with zero real part for
some τ ≥ 0. This implies that (3.12) has a positive real root. According to Lemma 2, the
necessary conditions that (3.12) has a positive real root are a2 – 2b – d2 < 0 and (a2 – 2b –
d2)2 ≥ 4(b2 – c2), which is a contradiction. Hence, all roots of (3.7) have nonzero real parts
for all τ ≥ 0.

(b) For τ = 0, (3.7) is reduced to

F(λ) = λ2 + (a + d)λ + (b + c) = 0.

Since all inequalities in (3.23) hold, the Routh–Hurwitz criterion then implies that all roots
of (3.7) have negative real parts at τ = 0. The continuity of λ(τ ) implies that all roots of (3.7)
will have negative real parts for values of τ in some open interval containing τ = 0. Hence,
there is a τc > 0 such that all roots of (3.7) have negative real parts for τ ∈ [0, τc).

Since τ0 defined in (3.21) is the minimum of τ
(j)
k defined in (3.20) for which the real part

of at least one root of (3.7) vanishes provided that (3.22) holds, τc = τ0 and the proof is
complete. �

Theorem 2 implies that if (3.23) and either (3.13) or ((3.14) and (3.15)) hold, the steady
state (Ms, Gs) of our system of Eqs. (2.1)–(2.2) is stable for some values of τ ∈ [0, τ0). At
τ = τ0, Re(λ(τ )) = 0 by the definition of τ0, and hence the stability of steady state (Ms, Gs)
is lost at τ = τ0.

In order for a Hopf bifurcation to occur, and hence a periodic solution of our system of
Eqs. (2.1)–(2.2) to be expected, we still need to show that

d(Re(λ(τ )))
dτ

∣∣∣∣
τ=τ0

�= 0.

Theorem 3 Suppose that (3.13) or ((3.14) and (3.15)) holds, then λ = ±iω0 is a pair of
purely imaginary roots of (3.7). Moreover,

d(Re(λ(τ )))
dτ

∣∣∣∣
τ=τ0

�= 0, (3.24)

where ω0 = ωk|τ=τ0 , provided that

δ′(β0) �= 0, (3.25)

where β0 = ω2
0 and ω0 = ωk|τ=τ0 .

Proof In order to prove that d(Re(λ(τ )))
dτ

|τ=τ0 �= 0, let us consider Eq. (3.7), namely

F(λ) = λ2 + aλ + b + (c + dλ)e–λτ = 0.

Then,

dF(λ)
dτ

=
(
2λ + a – (c + dλ)τe–λτ + de–λτ

)dλ

dτ
– (c + dλ)λe–λτ = 0,
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and hence,

(
dλ

dτ

)–1

=
2λ + a

(c + dλ)λe–λτ
–

τ

λ
+

d
(c + dλ)λ

.

Since (c + dλ)e–λτ = –(λ2 + aλ + b), we get

(
dλ

dτ

)–1

=
2λ + a

–λ3 – aλ2 – bλ
–

τ

λ
+

d
(c + dλ)λ

at τ = τ0, λ = iω0, and thus

(
dλ

dτ

)–1∣∣∣∣
τ=τ0,λ=iω0

=
2iω0 + a

aω2
0 + i(ω3

0 – bω0)
+ i

(
τ

ω0

)
+

d
–dω2

0 + icω0
.

Therefore,

Re

(
dλ

dτ

)–1∣∣∣∣
τ=τ0,λ=iω0

=
2ω2

0 + a2 – 2b
ω04 + (a2 – 2b)ω02 + b2 –

d2

d2ω2
0 + c2 .

Equation (3.11) implies that

ω4
0 +

(
a2 – 2b

)
ω0

2 + b2 = d2ω2
0 + c2,

and then

Re

(
dλ

dτ

)–1∣∣∣∣
τ=τ0,λ=iω0

=
2ω2

0 + a2 – 2b – d2

d2ω2
0 + c2 .

Equation (3.12) implies that

Re

(
dλ

dτ

)–1∣∣∣∣
τ=τ0,λ=iω0

=
δ′(ω2

0)
d2ω2

0 + c2 �= 0.

Hence, d(Re(λ(τ )))
dτ

|τ=τ0 �= 0 and the proof is complete. �

Theorem 4 If either (3.13) or ((3.14) and (3.15)) holds, then a Hopf bifurcation occurs in
our model Eqs. (2.1)–(2.2) for a positive time delay τ = τ0 given by (3.20) provided that
(3.3), (3.4), (3.23), and (3.25) are satisfied.

Proof Since all necessary conditions of the Hopf bifurcation theorem are satisfied,
then Eqs. (2.1)–(2.2) undergo a Hopf bifurcation when τ = τ0, therefore the proof is
complete. �

4 Numerical simulations
In this section, computer simulations of our model Eqs. (2.1)–(2.2) are presented to illus-
trate our theoretical predictions. Some parametric values are obtained from [10–12].

In Fig. 1, the parameters b1 and b2 are taken from [10–12]. The other parameters are
chosen to satisfy conditions in Theorem 1. A computer simulation is run for the system
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Figure 1 A computer simulation of the system (2.1)–(2.2) with a1 = 0.05, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 2, where M(0) = 0.1 and G(0) = 0.1, for which all
conditions in Theorem 1 are satisfied. The solution trajectory tends towards a washout steady state as
theoretically predicted

(2.1)–(2.2) with a1 = 0.05, a2 = 0.6937, b1 = 0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64,
k2 = 12.4113, τ = 2, where M(0) = 0.1 and G(0) = 0.1, for which all conditions in Theorem 1
are satisfied, showing that the solution trajectory tends towards a washout steady state as
theoretically predicted.
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Figure 2 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 3 < τ0 = 22.5131, where M(0) = 5 and G(0) = 0.1, for
which all conditions in Theorem 2(b) are satisfied. The solution trajectory tends towards a non-washout
steady state as theoretically predicted

In Figs. 2–8, the parameters a1, b1 and b2 are taken from [10–12]. The other parameters
are chosen to satisfy conditions in Theorems 2 and 4.
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Figure 3 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 22 < τ0 = 22.5131, where M(0) = 5 and G(0) = 0.1, for
which all conditions in Theorem 2(b) are satisfied. The solution trajectory tends towards a non-washout
steady state as theoretically predicted

A computer simulation for the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 3 < τ0 = 22.5131, where
M(0) = 5 and G(0) = 0.1, for which all conditions in Theorem 2(b) are satisfied, is shown
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Figure 4 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = τ0 = 22.5131, where M(0) = 5 and G(0) = 0.1, for which
all conditions in Theorem 4 are satisfied. The solution trajectory exhibits periodic behavior as theoretically
predicted

in Fig. 2. The solution trajectory tends towards a non-washout steady state as theoretically
predicted.

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 22 < τ0 = 22.5131, where
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Figure 5 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 30 > τ0 = 22.5131, where M(0) = 5 and G(0) = 0.1, for
which all conditions in Theorem 4 are satisfied. The solution trajectory exhibits periodic behavior as
theoretically predicted

M(0) = 5 and G(0) = 0.1, for which all conditions in Theorem 2(b) are satisfied, is shown
in Fig. 3. The solution trajectory tends towards a non-washout steady state as theoretically
predicted.
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Figure 6 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 35 > τ0 = 22.5131, where M(0) = 5 and G(0) = 0.1, for
which all conditions in Theorem 4 are satisfied. The solution trajectory exhibits periodic behavior as
theoretically predicted

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = τ0 = 22.5131, where M(0) =
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Figure 7 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 39, where M(0) = 5 and G(0) = 0.1. The solution
trajectory exhibits chaotic behavior

5 and G(0) = 0.1, for which all conditions in Theorem 4 are satisfied is shown in Fig. 4. The
solution trajectory exhibits periodic behavior as theoretically predicted.

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 30 > τ0 = 22.5131, where
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Figure 8 A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 = 0.0596,
b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 13.4113, τ = 39, where M(0) = 5, M(0) = 4.999, and G(0) = 0.1. The
solution trajectories will stay close only for a short time, before starting to follow noticeably different paths as
time passes

M(0) = 5 and G(0) = 0.1, for which all conditions in Theorem 4 are satisfied, is shown in
Fig. 5. The solution trajectory exhibits periodic behavior as theoretically predicted.

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 35 > τ0 = 22.5131, where
M(0) = 5 and G(0) = 0.1, for which all conditions in Theorem 4 are satisfied, is shown in
Fig. 6. The solution trajectory exhibits periodic behavior as theoretically predicted.

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 39, where M(0) = 5 and
G(0) = 0.1, is shown in Fig. 7. The solution trajectory exhibits chaotic behavior.

A computer simulation of the system (2.1)–(2.2) with a1 = 0.1450, a2 = 0.6937, b1 =
0.0596, b2 = 0.0206, α1 = 0.16385, k1 = 15.64, k2 = 12.4113, τ = 39, where M(0) = 5,
M(0) = 4.999, and G(0) = 0.1, is as shown in Fig. 8. The solution trajectories will stay close
only for a short time, before starting to follow noticeably different paths as time passes.

5 Conclusion and discussion
In this paper, a system of nonlinear delay differential equations is utilized to investigate
the dynamic behaviors of mealybugs and green lacewings when the time delay on the re-
production of green lacewing larvae is taken into account. The system is then analyzed
by using Hopf bifurcation theorem. The conditions on the system parameters that ensure
the existence of a periodic solution are obtained. We found that the non-washout steady
state of our system is asymptotically stable when the time delay is less than a critical value,
i.e., τ < τ0. A Hopf bifurcation occurs at the critical value of τ , i.e., τ = τ0. The time de-
lay on the reproduction of green lacewing larvae plays an important role in controlling
the population of mealybugs. We can see that when the time delay is less than the critical
value, the reproduction of green lacewing larvae is fast enough to control the population
of mealybugs to some certain levels. When the time delay is more than the critical value,
the population of mealybugs could be controlled to lie within some certain ranges and not
at any specific level as we could expect to occur. In addition, our model can also exhibit a
chaotic behavior which has been observed in the field data [13]. Hence, our model might
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be modified further to investigate the effects of biological control, insecticide or pathogen
in controlling the outbreak of mealybugs in cassava fields.
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