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1 Introduction
In this paper, we consider the blow-up phenomenon of the following degenerate and sin-
gular parabolic equation with a nonlocal source:

ut = (xβ (um)x)x +
∫ a

0 up(x, t) dx, (x, t) ∈ (0, a) × (0,∞),
u(0, t) = u(a, t) = 0, t > 0,
u(x, 0) = g(x), x ∈ [0, a],

⎫
⎪⎬

⎪⎭
(1)

where β ∈ [0, 1) and p > m > 1 and g satisfies the following hypotheses:
(H1) g ∈ C2+α(0, a) ∩ C[0, a] with 0 < α < 1,
(H2) g > 0 on (0, a), g(0) = g(a) = 0, and g ′(0) > 0 and g ′(a) < 0,
(H3) (xβ (gm)′)′ +

∫ a
0 gp(x) dx > 0 for x ∈ (0, a),

(H4) limx→0+ (xβ(gm)′)′ = –
∫ a

0 gp(x) dx and limx→a– (xβ(gm)′)′ = –
∫ a

0 gp(x) dx,
(H5) (xβ (gm)′)′ ≤ 0 for x ∈ (0, a).
We note that the idea for constructing the function g satisfying the assumptions (H1)–

(H5) is in the appendix of [14]. Since β ∈ [0, 1), coefficients of terms ux, uxx may tend to
0 or ∞ as x converges to 0+. We thus can regard (1) as degenerate and singular. Let us
introduce the definition of blow-up in a finite time.

Definition 1.1 The solution u of (1) is said to show blow-up at the point xb in a finite time
Tb (> 0) if there exists a sequence {(xn, tn)} in (0, a) × (0,∞) such that (xn, tn) → (xb, Tb)
as n → ∞ and limn→∞ u(xn, tn) = ∞. The point xb and the time Tb are called a blow-up
point and blow-up time, respectively. Furthermore, we call the set of all blow-up points
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to be the blow-up set, which is denoted by S. If S = [0, a], we say that the solution u of (1)
shows global blow-up.

The first paper concerning the blow-up problem for the reaction-diffusion equation was
written by Fujita [9]. He studied the Cauchy problem: ut –�u = u1+α , α > 0 and shown that
if 0 < Nα < 2 (N is the space dimension), then the initial value problem had no non-trivial
global solutions while if Nα > 2, there were non-trivial global solutions. In this second
case, it was essential that the initial values were sufficiently small. After the publication
of Fujita’s paper, the blow-up phenomenon for the reaction-diffusion equations has been
the object of intensive research. Degenerate parabolic equations with/without nonlocal
source have been studied by under various types of initial and boundary conditions since
the early 1970s by many researchers ([1, 3, 5, 10–12] and [15]).

In 1997, Aderson and Deng [2] studied the following problem:

ut = ((um)x + εun)x + au‖u‖p–1
q , (x, t) ∈ (0, 1) × (0,∞),

u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ [0, 1].

⎫
⎪⎬

⎪⎭
(2)

They showed that the solution of (2) blows up in a finite time for a sufficiently large data
u0 if p > max{1, max{m, n}}. They, however, did not consider the blow-up profile of the
blow-up solution.

In 2001, Deng et al. [6] considered the following problem:

ut = (um)xx + a
∫ l

–l uq dx, (x, t) ∈ (–l, l) × (0,∞),
u(–l, t) = u(l, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ [–l, l],

⎫
⎪⎬

⎪⎭
(3)

with l > 0, a > 0 and q > m > 1. They established that, under certain conditions, the solution
of (3) either exists globally or blows up completely in a finite time. Moreover, they obtained

C1(Tb – t)–1/(q–1) ≤ max
x∈[–l,l]

u(x, t) ≤ C2(Tb – t)–1/(q–1).

In 2003, Liu et al. [14] studied the following problem:

ut = xα(um)xx +
∫ a

0 up dx – kuq, (x, t) ∈ (0, a) × (0,∞),
u(0, t) = u(a, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ [0, a],

⎫
⎪⎬

⎪⎭
(4)

and, under some assumptions, they proved the local existence and uniqueness of a classical
solution of (4) and obtained some sufficient conditions for blow-up in a finite time of a
solution of (4). Furthermore, they showed that the blow-up set of the solution is the whole
domain.

In 2003, Li et al. [13] considered the following problem:

ut = �(um) + aup ∫
Ω

uq dx, (x, t) ∈ Ω × (0,∞),
u(x, t) = 0, x ∈ ∂Ω , t > 0,
u(x, 0) = u0(x), x ∈ Ω ,

⎫
⎪⎬

⎪⎭
(5)
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where Ω ⊂ RN is a bounded domain with sufficiently smooth boundary ∂Ω . They showed
that the solution of (5) either exists globally or blows up in a finite time. Moreover, if p+q >
m, then they showed

C1(Tb – t)–1/(p+q–1) ≤ max
x∈[–l,l]

u(x, t) ≤ C2(Tb – t)–1/(p+q–1).

This paper is organized as follows. In the next section, we establish local existence and
uniqueness of the solution of (1). We give some criteria for the solution of (1) to exist
globally or blow up in a finite time in Sect. 3. The blow-up set and blow-up profile of the
solution are presented in Sect. 4.

2 Local existence
Since (1) is degenerate and singular, the standard theory of parabolic type cannot be ap-
plied directly to obtain the existence and uniqueness of its classical solution. To investi-
gate the local existence of the solution of (1), we need some transformation. Let v = um,
t = τ

maβ–2 and x = aξ in (1). Then (1) becomes

vτ = vr[(ξβvξ )ξ + a3–β
∫ 1

0 vq(ξ , τ ) dξ ], (ξ , τ ) ∈ (0, 1) × (0,∞),
v(0, τ ) = v(1, τ ) = 0, τ > 0,
v(ξ , 0) = k(ξ ), ξ ∈ [0, 1],

⎫
⎪⎬

⎪⎭
(6)

where 0 < r = m–1
m < 1, q = p

m > 1, k = gm and k satisfies the following:
(H1′) k ∈ C2+α(0, 1) ∩ C[0, 1] with 0 < α < 1,
(H2′) k > 0 on (0, 1), k(0) = k(1) = 0, and k′(0) ≥ 0 and k′(1) ≤ 0,
(H3′) (ξβk′)′ + a3–β

∫ 1
0 kq(ξ ) dξ > 0 for ξ ∈ (0, 1),

(H4′) limξ→0+ (ξβk′(ξ ))′ = –a3–β
∫ 1

0 kq(ξ ) dξ and limξ→1– (ξβk′(ξ ))′ = –a3–β
∫ 1

0 kq(ξ ) dξ ,
(H5′) (ξβk′)′ ≤ 0 for ξ ∈ (0, 1).
In the part of showing the local existence of problem (6), we need the following lemma.

Lemma 2.1 Let bi is bounded and continuous and bi(ξ , τ ) ≥ 0 on [0, 1] × [0, T] for i =
1, 2, 3, 4 and d(ξ , τ ) ≥ 0 on [0, 1] × [0, T] with 0 < T ≤ ∞. Suppose that w ∈ C2,1((0, 1) ×
(0, T)) ∩ C([0, 1] × [0, T]) satisfies

wτ – d(ξ , τ )
(
ξβwξ

)
ξ
≥ b1wξ + b2w + b3

∫ 1

0
b4w(ξ , τ ) dξ , (ξ , τ ) ∈ (0, 1) × (0, T],

w(0, τ ) ≥ 0, w(1, τ ) ≥ 0, τ ∈ (0, T],

w(ξ , 0) ≥ 0, ξ ∈ [0, 1].

Then w ≥ 0 on [0, 1] × [0, T].

Proof Suppose that there exists a point (ξ0, τ0) in (0, 1) × (0, T] such that w(ξ0, τ0) < 0. Let
Bi = max(ξ ,τ )∈[0,1]×[0,T] bi(ξ , τ ) for i = 1, 2, 3, 4 and let w(ξ , τ ) = ecτ v(ξ , τ ) for (ξ , τ ) ∈ [0, 1] ×
[0, T] where c is a positive constant and c > B2 + B3B4. Then we have, for any (ξ , τ ) ∈
(0, 1) × (0, T],

vτ – d(ξ , τ )
(
ξβvξ

)
ξ

– b1vξ + (c – b2)v – b3

∫ 1

0
b4v(ξ , τ ) dξ ≥ 0.
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It follows from w(ξ0, τ0) < 0 and w = ecτ v that v(ξ0, τ0) < 0. Since v is non-negative on the
parabolic boundary and v ∈ C2,1((0, 1) × (0, T)) ∩ C([0, 1] × [0, T]), there exists a point
(ξ1, τ1) in (0, 1) × (0, T] such that v attains its negative minimum at the point (ξ1, τ1). This
yields v(ξ1, τ1) < 0, vτ (ξ1, τ1) = 0, vξ (ξ1, τ1) = 0 and vξξ (ξ1, τ1) ≥ 0. By the second mean value
theorem for integrals, we find that there exists a ξ2 ∈ (0, 1) such that

∫ 1

0
b4(ξ , τ )v(ξ , τ ) dξ = v(ξ2, τ )

∫ 1

0
b4(ξ , τ ) dξ for any τ ∈ (0, T].

It is clear that v(ξ2, τ1) ≥ v(ξ1, τ1). Let us consider that

vτ (ξ1, τ1) – d(ξ1, τ1)
[
ξ

β
1 vξξ (ξ1, τ1) + βξ

β–1
1 vξ (ξ1, τ1)

]
– b1(ξ1, τ1)vξ (ξ1, τ1)

+
(
c – b2(ξ1, τ1)

)
v(ξ1, τ1) – b3(ξ1, τ1)v(ξ2, τ1)

∫ 1

0
b4(ξ , τ1) dξ

≤ (c – B2)v(ξ1, τ1) – B3B4v(ξ1, τ1)

= –v(ξ1, τ1)
[
–(c – B2) + B3B4

]

< 0.

This contradiction implies that w(ξ , τ ) ≥ 0 for any (ξ , τ ) ∈ [0, 1] × [0, T]. Hence, the proof
of Lemma 2.1 is completed. �

Since (6) is also degenerate, we will prove the local existence of the solution of (6) by
considering the following problem:

(v1)τ = (v1 + δ)r[(ξβ(v1)ξ )ξ + a3–β
∫ 1

0 (v1)q(ξ , τ ) dξ ], (ξ , τ ) ∈ (0, 1) × (0,∞),
v1(0, τ ; δ) = v1(1, τ ; δ) = 0, τ > 0,
v1(ξ , 0; δ) = k(ξ ), ξ ∈ [0, 1],

⎫
⎪⎬

⎪⎭
(7)

where δ is a positive constant and δ < 1. We note that the function v1 = v1(x, t; δ) depends
on x, t and δ. Let ε be a positive constant and ε < δ. To show the existence of the classical
solution of (7), we have to use the function given by Dunford and Schwartz [7]. There
exists a non-decreasing and continuously differentiable function ρ such that ρ = 0 if ξ ≤ 0
and ρ = 1 if ξ ≥ 1. Let

ρ(ξ ; ε) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ξ ≤ ε,

ρ( ξ

ε
– 1), ε < ξ < 2ε,

1, ξ ≥ 2ε,

and let k(ξ ; ε) = ρ(ξ ; ε)k(ξ ). We note that

∂

∂ε
k(ξ ; ε) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ξ ≤ ε,

– ξ

ε2 ρ ′( ξ

ε
– 1)k(ξ ), ε < ξ < 2ε,

0, ξ ≥ 2ε.

By the non-decreasing property of ρ , we have ∂
∂ε

k(ξ ; ε) ≤ 0. It follows from 0 ≤ ρ ≤ 1 that
k(ξ ) ≥ k(ξ ; ε) and limε→0 k(ξ ; ε) = k(ξ ).
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We see that (7) is degenerate and singular. By the regularization technique again, we
consider the problem:

(v2)τ = (v2 + δ)r[(ξβ(v2)ξ )ξ + a3–β
∫ 1
ε

(v2)q dξ ], (ξ , τ ) ∈ (ε, 1) × (0,∞),
v2(0, τ ; δ, ε) = v2(1, τ ; δ, ε) = 0, τ > 0,
v2(ξ , 0; δ, ε) = k(ξ ; ε), ξ ∈ [ε, 1].

⎫
⎪⎬

⎪⎭
(8)

Now, the function v2 = v2(ξ , τ ; δ, ε) depends on ξ , τ , δ and ε. It is clear that, since the zero
function is a lower solution of (8), that is, v2 ≥ 0. The next lemma show that the solution
v2 of (8) is non-decreasing in τ .

Lemma 2.2 Let ε and δ be any positive real number with ε < δ < 1. If ∂
∂ξ

(ξβ ∂
∂ξ

k(ξ ; ε)) +
a3–β

∫ 1
ε

kq(ξ ; ε) dξ > 0 for any ξ ∈ (ε, 1), then (v2)τ ≥ 0 for any (ξ , τ ) ∈ [ε, 1] × [0,∞).

Proof Let z = (v2)τ . Then we have, for any (ξ , τ ) ∈ (ε, 1) × (0,∞),

zτ = r(v2 + δ)–1((v2)τ
)2 + (v2 + δ)r(ξβzξ

)
ξ

+ q(v2 + δ)ra3–β

∫ 1

ε

vq–1
2 (ξ , τ ; δ, ε)z(ξ , τ ) dξ .

Thus, the function z satisfies the following:

zτ – (v2 + δ)r(ξβzξ

)
ξ
≥ q(v2 + δ)ra3–β

∫ 1

ε

vq–1
2 z(ξ , τ ) dξ , (ξ , τ ) ∈ (ε, 1) × (0,∞),

z(ε, τ ) = (v2)τ (ε, τ ; δ, ε) = 0, z(1, τ ) = (v2)τ (1, τ ; δ, ε) = 0, τ > 0,

z(ξ , 0) =
(
k(ξ ; ε) + δ

)r
[

d
dξ

(

ξβ d
dξ

k(ξ ; ε)
)

+ a3–β

∫ 1

ε

kq(ξ ; ε) dξ

]

> 0, ξ ∈ [ε, 1].

Lemma 2.1 implies that (v2)τ ≥ 0 for any (ξ , τ ) ∈ [ε, 1] × [0,∞). �

The boundedness and monotonicity properties of v2 are shown in Lemma 2.3 and
Lemma 2.4, respectively.

Lemma 2.3 There exist a time τ1 and a function f ∈ C1[0, τ1] such that, for all ε, δ > 0
with ε < δ < 1, (8) has a unique classical solution v2 and 0 ≤ v2(ξ , τ ; δ, ε) ≤ f (τ ) for any
(ξ , τ ) ∈ [ε, 1] × [0, τ1].

Proof Let us consider the following ordinary differential equation:

f ′(τ ) = a3–β f q(τ )(f (τ ) + 1)r , τ > 0,
f (0) = maxξ∈[0,1] k(ξ ).

}

(9)

Then there exists a positive constant τ1 such that (9) has a unique positive solution f on
[0, τ1]. We next show that, for all ε, δ > 0 with ε < δ < 1, f (τ ) ≥ v2(ξ , τ ; δ, ε) for any (ξ , τ ) ∈
[ε, 1] × [0, τ1]. Let z(ξ , τ ) = f (τ ) – v2(ξ , τ ; δ, ε) for (ξ , τ ) ∈ [ε, 1] × [0, τ1]. We then consider
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that, for any (ξ , τ ) ∈ (ε, 1) × (0, τ1],

zτ ≥ (
f (τ ) + δ

)ra3–β

∫ 1

ε

f q(τ ) dξ – (v2 + δ)r
[
(
ξβ (v2)ξ

)
ξ

+ a3–β

∫ 1

ε

vq
2 dξ

]

=
(
f (τ ) + δ

)r(
ξβzξ

)
ξ

+ rηr–1
1 (v2 + δ)–r(v2)τ z

+ qa3–β
(
f (τ ) + δ

)r
∫ 1

ε

η
q–1
2 z(ξ , τ ) dξ ,

where η1 and η2 are some intermediate values between h and v2. Thus, the function z
satisfies zτ –(f (τ )+δ)r(ξβzξ )ξ ≥ rηr–1

1 (v2)τ
(v2+δ)r z+qa3–β (f (τ )+δ)r ∫ 1

ε
η

q–1
2 z(ξ , τ ) dξ for any (ξ , τ ) ∈

(ε, 1) × (0, τ1] and on the parabolic boundary:

z(ε, τ ) = f (τ ) > 0, z(1, τ ) = f (τ ) > 0, τ ∈ (0, τ1],

z(ξ , 0) = f (0) – v2(ξ , 0; δ, ε) = max
s∈[0,1]

k(s) – k(ξ ; ε) ≥ 0, ξ ∈ [ε, 1].

Lemma 2.1 ensures that z ≥ 0, that is, v2 ≤ f for any (ξ , τ ) ∈ [ε, 1]×[0, τ1]. By modifying the
proof of Theorem A.1. in [6], we see that there exists a unique classical positive solution
v2 of (8) and 0 ≤ v2 ≤ f for all ε and δ. The proof of this lemma is completed. �

Lemma 2.4 Let 0 < ε1 < ε2 < δ < 1 and assume that v2(ξ , τ ; δ, ε1) and v2(ξ , τ ; δ, ε2) are so-
lutions of (8). Then v2(ξ , τ ; δ, ε1) > v2(ξ , τ ; δ, ε2) for any (ξ , τ ) ∈ [ε2, 1] × [0, τ1].

Proof Let z(ξ , τ ) = v2(ξ , τ ; δ, ε1) – v2(ξ , τ ; δ, ε2) on [ε2, 1] × [0, τ1]. We have, for any (ξ , τ ) ∈
(ε2, 1) × (0, τ1],

zτ ≥ (
v2(ξ , τ ; δ, ε1) + δ

)r
[
(
ξβ

(
v2(ξ , τ ; δ, ε1)

)
ξ

)
ξ

+ a3–β

∫ 1

ε2

vq
2(ξ , τ ; δ, ε1) dξ

]

–
(
v2(ξ , τ ; δ, ε2) + δ

)r
[
(
ξβ

(
v2(ξ , τ ; δ, ε2)

)
ξ

)
ξ

+ a3–β

∫ 1

ε2

vq
2(ξ , τ ; δ, ε2) dξ

]

=
(
v2(ξ , τ ; δ, ε1) + δ

)r(
ξβzξ

)
ξ

+ rηr–1
3

(
v2(ξ , τ ; δ, ε2) + δ

)–r(v2(ξ , τ ; δ, ε2)
)
τ
z

+ qa3–β
(
v2(ξ , τ ; δ, ε1) + δ

)r
∫ 1

ε2

η
q–1
4 z(ξ , τ ) dξ ,

where η3 and η4 are some intermediate values between v2(ξ , τ ; δ, ε1) and v2(ξ , τ ; δ, ε2).
Then it follows from ∂

∂ε
k(ξ ; ε) ≤ 0 that the function z satisfies

zτ –
(
v2(ξ , τ ; δ, ε1) + δ

)r(
ξβzξ

)
ξ

≥ rηr–1
3 (v2(ξ , τ ; δ, ε2))τ

(v2(ξ , τ ; δ, ε2) + δ)r z + qa3–β
(
v2(ξ , τ ; δ, ε1) + δ

)r
∫ 1

ε2

η
q–1
4 z(ξ , τ ) dξ ,

(ξ , τ ) ∈ (ε2, 1) × (0, τ1],

z(ε2, τ ) = v2(ε2, τ ; δ, ε1) ≥ 0, z(1, τ ) = 0, τ ∈ (0, τ1],

z(ξ , 0) = k(ξ ; ε1) – k(ξ ; ε2) ≥ 0, ξ ∈ [ε, 1].
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By Lemma 2.1, we can conclude that v2(ξ , τ ; δ, ε1) > v2(ξ , τ ; δ, ε2) for any (ξ , τ ) ∈ [ε2, 1] ×
[0, τ1]. The proof is completed. �

From Lemma 2.3 and Lemma 2.4, we can construct the function v1 which is a good
candidate for the solution for (7), by

v1(ξ , τ ; δ) =

⎧
⎨

⎩

limε→0+ v2(ξ , τ ; δ, ε), (ξ , τ ) ∈ (ε, 1] × [0, τ1],

0, (ξ , τ ) ∈ {0} × [0, τ1],
(10)

for all δ > 0. By modifying the proofs of Theorem 2.3 in [8] and Lemma 10 and Theorem 12
in [4], we obtain the existence result.

Theorem 2.5 Assume that (H1′)–(H3′) hold. The function v1(ξ , τ ; δ) given by (10) is a
unique classical solution of (7) for any (ξ , τ ) ∈ [0, 1] × [0, τ1] and δ > 0.

In the next step, we show the existence of solutions of (6). By using the same technique as
in Lemma 2.2 and Lemma 2.3, we can show that the solution v1 of (7) satisfies ∂

∂τ
v1(x, t; δ) ≥

0 for all δ and k(ξ ) ≤ v1(ξ , τ ; δ) ≤ f (τ ) for any (ξ , τ ) ∈ [0, 1] × [0, τ1] where the function f
is given in Lemma 2.3. We give an additional property of v1 which is the monotonicity
property with respect to δ.

Lemma 2.6 Let 0 < δ1 < δ2 < 1 and suppose that v1(ξ , τ ; δ1) and v1(ξ , τ ; δ2) are solutions of
(7). Then v1(ξ , τ ; δ2) > v1(ξ , τ ; δ1) for any (ξ , τ ) ∈ [0, 1] × [0, τ1].

Proof Let z = v1(ξ , τ ; δ2) – v1(ξ , τ ; δ1) for any (ξ , τ ) ∈ [0, 1] × [0, τ1]. By (7), we obtain, for
any (ξ , τ ) ∈ (0, 1) × (0, τ1],

zτ ≥ (
v1(ξ , τ ; δ2) + δ2

)r
[
(
ξβ

(
v1(ξ , τ ; δ2)

)
ξ

)
ξ

+ a3–β

∫ 1

0
vq

1(ξ , τ ; δ2) dξ

]

–
(
v1(ξ , τ ; δ1) + δ2

)r
[
(
ξβ

(
v1(ξ , τ ; δ1)

)
ξ

)
ξ

+ a3–β

∫ 1

0
vq

1(ξ , τ ; δ1) dξ

]

=
(
v1(ξ , τ ; δ2) + δ2

)r(
ξβzξ

)
ξ

+ rηr–1
5

(
v1(ξ , τ ; δ1) + δ1

)–r(v1(ξ , τ ; δ1)
)
τ
z

+ qa3–β
(
v1(ξ , τ ; δ2) + δ2

)r
∫ 1

0
η

q–1
6 z(ξ , τ ) dξ ,

where η5 and η6 are some intermediate values between v1(ξ , τ ; δ1) and v1(ξ , τ ; δ2). Then
the function z satisfies zτ – (v1(ξ , τ ; δ2) + δ2)r(ξβzξ )ξ ≥ rηr–1

5 (v1(ξ ,τ ;δ1))τ
(v1(ξ ,τ ;δ1)+δ1)r z + qa3–β (v1(ξ , τ ; δ2) +

δ2)r ∫ 1
0 η

q–1
6 z(ξ , τ ) dξ for (ξ , τ ) ∈ (0, 1) × (0, τ1] and on the parabolic boundary: z(0, τ ) = 0,

z(1, τ ) = 0 for τ ∈ (0, τ1] and z(ξ , 0) = 0 for ξ ∈ [0, 1]. By Lemma 2.1, we have v1(ξ , τ ; δ2) >
v1(ξ , τ ; δ1) for any (ξ , τ ) ∈ [0, 1] × [0, τ1]. �

By Lemma 2.6 and k(ξ ) ≤ v1(ξ , τ ; δ) ≤ f (τ ) for any (ξ , τ ) ∈ [0, 1] × [0, τ1] and for all δ, we
define the function v by

v(ξ , τ ) = lim
δ→0

v1(ξ , τ ; δ), (ξ , τ ) ∈ (0, 1) × (0, τ1]. (11)
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Based on Lemma 2.7 in [6], and Lemma 10 and Theorem 12 in [4], we get the following
theorem.

Theorem 2.7 Assume that (H1′)–(H3′) hold. The function v given by (11) is a unique clas-
sical solution of (6) on [0, 1] × [0, τ1] for some positive constant τ1.

Note that by the transformations v = um, t = τ

maβ–2 and x = aξ and Theorem 2.7, we find
the following.

Corollary 2.8 Assume that (H1)–(H3) hold. Then there exists a time τ̃1 > 0 such that (1)
admits a unique non-negative classical solution on [0, a] × [0, τ̃1].

3 Blow-up in a finite time
The sufficient condition for the occurrence of blow-up in a finite time of (1) is given in this
section. Let us consider the following problem:

–(ξβϕ′(ξ ))′ = λϕ(ξ ), ξ ∈ (0, 1),
ϕ(0) = ϕ(1) = 0.

}

(12)

From [4], the eigenvalue problem (12) is solvable. Denote the first eigenvalue of (12) by
λ1 > 0 and the corresponding eigenfunction by ϕ1, with the normalization ϕ1 > 0 in (0, 1)
and maxξ∈[0,1] ϕ1(ξ ) = 1. The next theorem deals with the condition that guarantee for the
occurrence of blow-up in a finite time depending on the value of the constant a.

Theorem 3.1 Suppose that the function k satisfies (H1′)–(H3′). If the constant a satisfies

a > max

{(
λ1

∫ 1
0 ϕ1(ξ ) dξ

) q
3–β

,
(

1
∫ 1

0 kq(ξ ) dξ

) 1
3–β

}

,

then the solution v of (6) blows up in a finite time.

Proof Let H(τ ) =
∫ 1

0 v1–r(ξ , τ )ϕ1(ξ ) dξ . We then have

1
1 – r

H ′(τ ) =
∫ 1

0

(
ξβvξ

)
ξ
ϕ1(ξ ) dξ + a3–β

∫ 1

0
vq dξ

∫ 1

0
ϕ1(ξ ) dξ

= –λ1

∫ 1

0
v(ξ , τ )ϕ1(ξ ) dξ + a3–β

∫ 1

0
vq dξ

∫ 1

0
ϕ1(ξ ) dξ .

From

∫ 1

0
v(ξ , τ )ϕ1(ξ ) dξ ≤ 1

a(3–β)/q

(∫ 1

0
a3–βvq dξ

) 1
q
(∫ 1

0
ϕ

q
q–1

1 (ξ ) dξ

)1– 1
q

≤ 1
a(3–β)/q

(∫ 1

0
a3–βvq dξ

) 1
q

,

we obtain

1
1 – r

H ′(τ ) ≥ –
λ1

a(3–β)/q

(∫ 1

0
a3–βvq dx

) 1
q

+ a3–β

∫ 1

0
vq dx

∫ 1

0
ϕ1(ξ ) dξ .
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From vτ ≥ 0 and a3–β
∫ 1

0 kq(ξ ) dξ ≥ 1, we obtain a3–β
∫ 1

0 vq(ξ , τ ) dξ ≥ 1. It follows that
(
∫ 1

0 a3–βvq dξ )
1
q ≤ a3–β

∫ 1
0 vq(ξ , τ ) dξ with q > 1. Then

1
1 – r

H ′(τ ) ≥ –
λ1a3–β

a(3–β)/q

∫ 1

0
vq(ξ , τ ) dξ + a3–β

∫ 1

0
vq(ξ , τ ) dξ

∫ 1

0
ϕ1(ξ ) dξ

= a3–β

∫ 1

0
vq(ξ , τ ) dξ

[

–
λ1

a(3–β)/q +
∫ 1

0
ϕ1(ξ ) dξ

]

.

By the assumption that λ1 < a(3–β)/q ∫ 1
0 ϕ1(ξ ) dξ , we have – λ1

a(3–β)/q +
∫ 1

0 ϕ1(ξ ) dξ ≥ η9 where
η9 is a positive constant. Thus,

1
1 – r

H ′(τ ) ≥ η9a3–β

∫ 1

0
vq(ξ , τ ) dξ .

Since

∫ 1

0
v1–r(ξ , τ )ϕ1(ξ ) dξ ≤

(∫ 1

0
vq(ξ , τ ) dξ

) 1–r
q

(∫ 1

0
ϕ

q
q+r–1

1 (ξ ) dξ

) q+r–1
q

,

we get

∫ 1

0
vq(ξ , τ ) dξ ≥

(∫ 1

0
v1–r(ξ , τ )ϕ1(ξ ) dξ

) q
1–r /(∫ 1

0
ϕ

q
q+r–1

1 (ξ ) dξ

) q+r–1
1–r

.

We then obtain

1
1 – r

H ′(τ ) ≥ η9a3–β

(∫ 1

0
v1–r(ξ , τ )ϕ1(ξ ) dξ

) q
1–r /(∫ 1

0
ϕ

q
q+r–1

1 (ξ ) dξ

) q+r–1
1–r

≥ η9a3–βH
q

1–r (τ ),

that is,

(
H1–q/(1–r)(τ )

)′ ≤ η9a3–β(1 – r – q). (13)

Integrating (13) over (0, τ ), we get

H1–q/(1–r)(τ ) – H1–q/(1–r)(0) ≤ η9a3–β(1 – r – q)τ

or

H
q

1–r –1(τ ) ≥ H
q

1–r –1(0)
1 – η9a3–β(q + r – 1)H

q
1–r –1(0)τ

.

We can see that H
q

1–r –1(τ ) exists for τ ∈ [0, Tb) but H
q

1–r –1(τ ) is unbounded as τ converges
to Tb where

Tb =
H1– q

1–r (0)
η9a3–β(q + r – 1)

=
1

η9a3–β(q + r – 1)

(∫ 1

0
k1–r(ξ )ϕ1(ξ ) dξ

) –(q+r–1)
1–r

.
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Therefore, H blows up in a finite time. This implies that v blows up in a finite time. Then
the proof of this theorem is completed. �

By the transformation technique and Theorem 3.1, we obtain the following.

Corollary 3.2 Suppose that g satisfies (H1)–(H3). Then the solution u of (1) blows up in a
finite time if the constant a is sufficiently large.

In the following, we show that under some conditions, the solution v of (6) can exist
globally. To obtain the desired results, we need the following comparison theorem.

Lemma 3.3 Let v be the solution of (6) and suppose that a non-negative function w ∈
C2,1((0, 1) × (0, T)) ∩ C([0, 1] × [0, T]) satisfies

wτ ≥ (≤) wr
[
(
ξβwξ

)
ξ

+ a3–β

∫ 1

0
wq(ξ , τ ) dξ

]

, (ξ , τ ) ∈ (0, 1) × (0, T],

w(0, τ ) ≥ (=) 0, w(1, τ ) ≥ (=) 0, τ ∈ (0, T],

w(ξ , 0) ≥ (≤) k(ξ ), ξ ∈ [0, 1].

Then w ≥ (≤) v on [0, 1] × [0, T].

Proof We first consider in the case “≥”. Let z(ξ , τ ) = w(ξ , τ ) – v(ξ , τ ) on [0, 1] × [0, T]. It
is clear that, from Lemma 2.1 and (H2′), v > 0 in (0, 1) × (0, T]. We then have, for any
(0, 1) × (0, T],

zτ = wr(ξβzξ

)
ξ

+ rηr–1
7 v–rvτ z + qa3–βwr

∫ 1

0
η

q–1
8 z(ξ , τ ) dξ ,

where η7 and η8 are some intermediate values between w and v. Then the function z sat-
isfies

zτ – wr(ξβzξ

)
ξ

= rηr–1
7 v–rvτ z + qa3–βwr

∫ 1

0
η

q–1
8 z(ξ , τ ) dξ , (ξ , τ ) ∈ (0, 1) × (0, T],

z(0, τ ) ≥ 0, z(1, τ ) ≥ 0, τ ∈ (0, T],

z(ξ , 0) ≥ 0, ξ ∈ [0, 1].

Lemma 2.1 implies that w(ξ , τ ) ≥ v(ξ , τ ) for any (ξ , τ ) ∈ [0, 1] × [0, T]. By using the above
technique, we can get the result in the case “≤”. The proof of this lemma is completed. �

Let us consider the following boundary value problem:

–
(
ξβψ ′(ξ )

)′ = 1, ξ ∈ (0, 1) and ψ(0) = ψ(1) = 0.

The solution ψ is given by ψ(ξ ) = 1
2–β

ξ 1–β(1 – ξ ) for ξ ∈ (0, 1). By direct computation, we
obtain

∫ 1
0 ψq(ξ ) dξ = B(q(1–β)+1,q+1)

(2–β)q where B(l, m) is the Beta function which is defined by
B(l, m) =

∫ 1
0 ξ l–1(1–ξ )m–1 dξ . The following theorem deals with the global existence result.
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Theorem 3.4 Suppose that k satisfies (H1′)–(H3′). Then the solution v of (6) exists globally
if a is small enough.

Proof Let z(ξ , τ ) = M1ψ(ξ ) on [0, 1] × [0,∞) where M1 is a positive constant and
M1ψ(ξ ) ≥ k. We choose a ≤ ( (2–β)q

Mq–1B(q(1–β)+1,q+1) )
1

3–β and then the function z satisfies

zτ – zr
[
(
ξβzξ

)
ξ

+ a3–β

∫ 1

0
zq(ξ , τ ) dξ

]

= Mr
1ψ

r(ξ )
[

M1 – a3–βMq
1

B(q(1 – β) + 1, q + 1)
(2 – β)q

]

for any (ξ , τ ) ∈ (0, 1) × (0,∞). Thus, zτ – zr[(ξβzξ )ξ + a3–β
∫ 1

0 zq(ξ , τ ) dξ ] ≥ 0 for (ξ , τ ) ∈
(0, 1) × (0,∞). Furthermore, z(0, τ ) = z(1, τ ) = 0 for τ > 0 and z(ξ , 0) = M1ψ(ξ ) ≥ k(ξ ) for
ξ ∈ [0, 1]. Lemma 3.3 implies that z ≥ v on [0, 1] × [0,∞). We can conclude that the solu-
tion v of (6) exists globally. �

It follows from the transformation technique and Theorem 3.4 that we have the follow-
ing.

Corollary 3.5 Suppose that g satisfies (H1)–(H3). Then the solution u of (1) exists globally
if a is small enough.

4 Blow-up set and uniform blow-up profile
In this section, we assume that the solution u of (1) blows up at the blow-up time Tb. Then
we discuss the set of blow-up points and the blow-up profile for the solution u of (1). From
the assumptions (H1)–(H5), we know that there are a sufficiently small positive constant
ε1 and a non-negative function h(ξ ; ε) for 0 < ε ≤ ε1 such that:

(H1∗) h(ξ ; ε) ∈ C2+α(ε, 1 – ε) ∩ C[ε, 1 – ε] with α ∈ (0, 1),
(H2∗) h(ε; ε) = 0 and h(1 – ε; ε) = 0,
(H3∗) h(ξ ; ε) < k(ξ ) for ξ ∈ (ε, 2ε) ∪ (1 – 2ε, 1 – ε) and h(ξ ; ε) = k(ξ ) for ξ ∈ (2ε, 1 – 2ε),
(H4∗) (ξβhξ (ξ ; ε))ξ ≤ 0 for ξ ∈ (ε, 1 – ε),
(H5∗) h(ξ ; ε) is non-increasing with respect to ε ∈ (0, ε1], limξ→ε(ξβhξ (ξ ; ε))ξ = –a3–β ×

∫ 1–ε

ε
hq(ξ ; ε) dξ and limξ→1–ε(ξβhξ (ξ ; ε))ξ = –a3–β

∫ 1–ε

ε
hq(ξ ; ε) dξ ,

(H6∗) (ξβhξ (ξ ; ε))ξ + a3–β
∫ 1–ε

ε
hq(ξ ; ε) dξ ≥ 0 for ε ∈ (0, ε1] and ξ ∈ (ε, 1 – ε).

It is obvious that limε→0 h(ξ ; ε) = k(ξ ). We next consider the following regularized prob-
lem:

wτ = (w + δ)r[(ξβwξ )ξ + a3–β
∫ 1–ε

ε
wq(ξ , τ ; δ, ε) dξ ],

(ξ , τ ) ∈ (ε, 1 – ε) × (0,∞),
w(ε, τ ; δ, ε) = w(1 – ε, τ ; δ, ε) = 0, τ > 0,
w(ξ , 0; δ, ε) = h(ξ ; ε), ξ ∈ [ε, 1 – ε].

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(14)

In the same way as before, it is not difficult to show that the regularized problem (14) has
a unique positive solution w and

lim
δ→0,ε→0

w(ξ , τ ; δ, ε) = v(ξ , τ ),
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where v is the solution of (6). To find the blow-up set and blow-up profile of the blow-up
solution u of (1), we need the following lemma.

Lemma 4.1 Assume that k satisfies (H1′)–(H5′). Before blow-up occurs, (ξβvξ )ξ ≤ 0 for
(ξ , τ ) ∈ (0, 1) × [0, Tb).

Proof Let ε and δ be positive constants with ε < δ < 1. From (ξβhξ )ξ + a3–β
∫ 1–ε

ε
hq(ξ ;

ε) dξ ≥ 0 for ξ ∈ (ε, 1–ε), we have wτ ≥ 0 for (ξ , τ ) ∈ (ε, 1–ε)×[0, Tb). Let z(ξ , τ ) = (ξβwξ )ξ
for (ξ , τ ) ∈ (ε, 1 – ε) × [0, Tb). We consider that, for (ξ , τ ) ∈ (ε, 1 – ε) × (0, Tb),

zτ – (w + δ)r(ξβzξ

)
ξ

– 2r(w + δ)r–1ξβwξ zξ – r(w + δ)–1wτ z

= r(r – 1)(w + δ)–2ξβwτ (wξ )2.

This means that zτ – (w + δ)r(ξβzξ )ξ – 2r(w + δ)r–1ξβwξ zξ – r(w + δ)–1wτ z ≤ 0. for (ξ , τ ) ∈
(ε, 1 – ε) × (0, Tb). Furthermore, we have

z(ε, τ ) =
(
ξβwξ

)
ξ
|ξ=ε = –a3–β

∫ 1–ε

ε

wq(ξ , τ ; δ, ε) dξ < 0

and

z(1 – ε, τ ) =
(
ξβwξ

)
ξ
|ξ=1–ε = –a3–β

∫ 1–ε

ε

wq(ξ , τ ; δ, ε) dξ < 0.

It follows from (H4∗) that z(ξ , 0) ≤ 0 for ξ ∈ [ε, 1 – ε]. By applying Lemma 2.1, we obtain
z ≤ 0 on [ε, 1 – ε] × [0, Tb). Since ε and δ are arbitrary, we have (ξβvξ )ξ ≤ 0 for (ξ , τ ) ∈
(0, 1) × [0, Tb). Hence, the proof of this lemma is completed. �

From Lemma 4.1, we obtain the following corollary.

Corollary 4.2 Assume that g satisfies (H1)–(H5). Before blow-up occurs, (xβum
x )x ≤ 0 for

(x, t) ∈ (0, a) × [0, Tb).

The next theorem states about the set of blow-up point of the solution u of (1). By mod-
ifying techniques in [16], we obtain this result.

Theorem 4.3 Assume that the solution u of (1) blows up in a finite time Tb. Then S = [0, a].

Proof Let ε be any positive constant. We construct functions φ and Φ by φ(t) =
∫ a

0 up(x, t) dx and Φ(t) =
∫ t

0 φ(s) ds. We set M2 = infx∈(ε,a–ε) μ(x) where μ is the unique
positive solution of the following problem

–
d

dx

(

xβ d
dx

μm(x)
)

= 1, x ∈ (0, a),

μ(0) = μ(a) = 0.

Corollary 4.2 yields, for t ∈ (0, Tb),

∫ a

0
um(x, t) dx = –

∫ a

0
um(x, t)

d
dx

(

xβ d
dx

μm(x)
)

dx ≥ –Mm
2

∫ a–ε

ε

(
xβum

x
)

x dx.
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We then obtain

0 ≤ lim
t→Tb

–Mm
2

∫ a–ε

ε
(xβum

x )x dx
φ(t)

≤ lim
t→Tb

∫ a
0 um(x, t) dx

∫ a
0 up(x, t) dx

= 0

and this implies that limt→Tb

∫ a–ε
ε (xβ um

x )x dx
φ(t) = 0. As ε → 0, we obtain

lim
t→Tb

(xβum
x )x

φ(t)
= 0 for x ∈ (0, a). (15)

Integrating the first equation in (1) with respect to t from 0 to t, we have

u(x, t) – g(x) =
∫ t

0

(
xβum

x (x, s)
)

x ds + Φ(t). (16)

Since u blows up at the finite time Tb, limt→Tb u(xb, t) = ∞ for some xb ∈ (0, a), and then
we obtain

lim
t→Tb

u(xb, t) – lim
t→Tb

g(xb) = lim
t→Tb

∫ t

0

(
xβ

b um
x (xb, s)

)
x ds + lim

t→Tb
Φ(t)

or

lim
t→Tb

Φ(t) = ∞. (17)

It follows from (15) and (17) that

lim
t→Tb

∫ t
0 (xβum

x (x, s))x ds
Φ(t)

= 0 for x ∈ (0, a). (18)

Let x̃ be a fixed point in (0, a). We have, by (16),

lim
t→Tb

u(̃x, t)
Φ(t)

= lim
t→Tb

g (̃x)
Φ(t)

+ lim
t→Tb

∫ t
0 (̃xβum

x (̃x, s))x ds
Φ(t)

+ 1.

Equations (17) and (18) imply

lim
t→Tb

u(̃x, t)
Φ(t)

= 1, (19)

which means that the solution u of (1) blows up at the point x̃. Since x̃ is arbitrary in
(0, a), we can conclude that the solution u of (1) blows up everywhere in (0, a). For x̃ ∈
{0, a}, we can always find a sequence {(xn, tn)} in (0, a) × (0, Tb) such that (xn, tn) → {̃x, Tb}
and limn→∞ u(xn, tn) = ∞. Hence, the blow-up set is [0, a]. The proof of Theorem 4.3 is
completed. �

Finally, we consider the uniform blow-up profile of the solution u of (1).

Theorem 4.4 Assume that g satisfies (H1)–(H5).
Then u(x, t) ∼ [a(p – 1)(Tb – t)]– 1

p–1 for any x ∈ (0, a) as t → Tb.
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Proof Equation (19) tells us that, for any x ∈ (0, a),

u(x, t) ∼ Φ(t) as t → Tb. (20)

Then we get

Φ ′(t) =
∫ a

0
up(x, t) dx ∼ aΦp(t) as t → Tb. (21)

Integrating (21) over (t, Tb), we have, by (17),

Φ(t) ∼ [
a(p – 1)(Tb – t)

]– 1
p–1 as t → Tb. (22)

It follows from (20) and (22) that, as t approaches the blow-up time Tb, u(x, t) ∼ [a(p –
1)(Tb – t)]– 1

p–1 for any x ∈ (0, a). �

5 Conclusion
In this paper, we study a degenerate and singular parabolic problem with a nonlocal term.
We show that such a problem has a local classical solution. Furthermore, the conditions
that the solution exists globally or blows up in finite time are given. Finally, we demonstrate
the uniform blow-up profile of the blow-up solution.
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