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1 Introduction

Rice is considered as the major staple food for over 50% of the population of the world es-
pecially for those living in the Asian—Pacific region [1]. It is a rich source of carbohydrates
and a range of nutrients. The world’s rice production is mainly produced in the Asian—
Pacific region including Thailand [2]. In rice production, the estimates for the averages of
the potential losses worldwide is approximately 37, 25 and 13% due to weeds, animal pests
and pathogens, respectively [3].

One of the major insect pests of rice is brown planthopper (BPH). It sucks sap from the
leaves and lays egg masses in the leaf blade and the leaf sheath to blocks the xylem and
phloem [4]. The leaves of the infested rice plants will turn yellow and the rice plants will
be dried up and die. The damage is the symptom of hopperburn, it begins in patches and
spreads rapidly as BPH moves from dying plants to the others. In addition, virus diseases
such as grassy stunt, ragged stunt and wilted stunt can be transmitted from a rice plant to
the others by BPH as well [4, 5]. When the outbreak of BPH occurs, the rice yield will be
decreased leading to large economic losses.

Although insecticides have been widely used for controlling the pest, BPH has devel-
oped their resistance to some major insecticides such as carbamates, organophosphates,
neonicotinoids, phenylpyrazoles and pyrethroids [4, 5]. As it is quick, easy to use and cost-
effective against insects, chemical control is a popular choice in pest management. How-
ever, excessive and irrational use of chemical pesticides could lead to negative effects in
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the environment such as biodiversity’s reduction and the decrease in population of natu-
ral enemies. Alternatively, biological control is a safe and an effective method. Cyrtorhinus
Lividipennis and Lycosa Pseudoannulata are two important natural enamies of BPH. In-
vestigating biological control of BPH requires an understanding of the life cycles, fecundity
and consumption behavior of BPH, Cyrtorhinus Lividipennis and Lycosa Pseudoannulata.

Cyrtorhinus lividipennis is one of natural enemies of BPH, which mainly preys on eggs
and nymphs of BPH [6, 7]. The predatory activity of Cyrtorhinus lividipennis against BPH
has been investigated by many researcher and the study indicated that the Cyrtorhinus
lividipennis’s preying on BPH’s eggs was an important cause of the decrease in BPH pop-
ulation [6, 8]. A nymph of Cyrtorhinus lividipennis consumes approximately 7.5 BPH’s
eggs or 1.4 adult BPH per day for a period of 14 days. An adult Cyrtorhinus lividipennis
consume approximately 10.2 BPH’s eggs or 4.7 BPH’s nymphs or 2.4 adult BPH per day
for a period of 10 days [8]. However, the population of Cyrtorhinus lividipennis do not
reproduce rapidly enough to control an infestation of BPH in a paddy field.

Lycosa pseudoannulata is also a natural enemy of BPH [9, 10]. It plays an important role
in controlling BPH populations. It was found that in a 14-day period one Lycosa pseudoan-
nulata could consume approximately 17 BPH’s nymphs or 15-20 adult BPH per day [11].
It inhabits at the lower part of rice plants during the daytime to prey on BPH and moves
to the middle and upper sections during the night time to prey on leathoppers [9, 10, 12].

Therefore, in order to control the population of brown planthoppers which are insect
pest of rice efficiently by using two biological control agents, Cyrtorhinus lividipennis and
Lycosa pseudoannulata, we should start with studying their population dynamics. In this
paper, a mathematical model is proposed to investigate the population dynamics of BPH
and its natural enemies, Cyrtorhinus lividipennis and Lycosa pseudoannulata. The analy-

ses of our model will be carried out both theoretically and numerically.

2 A mathematical model
In what follows, let X(¢) denote the population density of BPH at time ¢, Y (¢) denote the
population density of Cyrtorhinus Lividipennis at time t, and Z(¢) denote the population
density of Lycosa Pseudoannulata at time t.

Firstly, the dynamics of the population of BPH is assumed to follow the following equa-

tion:

dx ( X> aXY BXZ O

2 -\ ) T T ax T T mpx
Consider the right-hand side of (1). The first term accounts for the reproduction rate of
BPH, while 4, is the intrinsic growth rate of BPH and k; is the carrying capacity of BPH.
The functional responses of Cyrtorhinus Lividipennis and Lycosa Pseudoannulata feeding
on BPH were reported to be Holling’s type II [13, 14]. The second and the third terms
then account for the death rate of BPH due to the predation of Cyrtorhinus Lividipen-
nis and Lycosa Pseudoannulata, respectively, while « is the attacking rate of Cyrtorhinus
Lividipennis to BPH, § is the attacking rate of Lycosa Pseudoannulata to BPH, h; is the
handling time of Cyrtorhinus Lividipennis to BPH, and /, is the handling time of Lycosa
Pseudoannulata to BPH. The last term account for the natural death rate of BPH.
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Next, the dynamics of the population of Cyrtorhinus Lividipennis is assumed to follow

the following equation:

ay arY biaXY
el + _
dt k+Y 1+hoaX

dyY. (2)

Consider the right-hand side of (2). The first term on accounts for the reproduction
rate of Cyrtorhinus Lividipennis, while a, and k, are the intrinsic growth rate and the
carrying capacity of Cyrtorhinus Lividipennis, respectively. The functional responses of
Cyrtorhinus Lividipennis feeding on BPH were reported to be Holling’s type II [13].The
second term then accounts for the reproduction rate of Cyrtorhinus Lividipennis due to
the predation on BPH, while b, is the conversion rate of BPH to Cyrtorhinus Lividipennis.
The last term accounts for the natural death rate of Cyrtorhinus Lividipennis.

Finally, the dynamics of the population of Lycosa Pseudoannulata is assumed to follow

the following equation:

AZ _ aZ  bpXZ
dt ~ ks+22  1+hpX

dsZ. (3)

Consider the right-hand side of (3). The first term accounts for the reproduction rate
of Lycosa Pseudoannulata, while as and ks are the intrinsic growth rate and the carrying
capacity of Lycosa Pseudoannulata, respectively. The functional responses of Lycosa Pseu-
doannulata feeding on BPH were reported to be Holling’s type II [14].The second term
then accounts for the reproduction rate of Lycosa Pseudoannulata due to the predation
on BPH, while b, and /, are the conversion rate of BPH to Lycosa Pseudoannulata and
the handing time of Lycosa Pseudoannulata to BPH, respectively. The last term accounts
for the natural death rate Lycosa Pseudoannulata.

Therefore, our model consists of Egs. (1)—(3), where all parameters are assumed to be

positive.

3 Model analysis

BPH is a small brownish insect pest. Females start laying eggs which are white and elon-
gated along with the midribs of the leaf sheath and leaf blade. The average number of eggs
laid by a female is about 300. Eggs hatch in about 4—8 days into nymph period. The nymph
then undergoes five instars for a period of 15-20 days to grow up into adult which can live
for 10-20 days. Therefore, the life cycle is completed in about 30—40 days [15].

The green miridbug, Cyrtorhinus lividipennis, is an important natural enemy of BPH
and mainly preys on BPH eggs and young nymphs. Adult females lay eggs either singly or
in groups within the leaf sheath and the average number of eggs laid by a female is about
93. The incubation period of Cyrtorhinus lividipennis ranges about 6—9 days and then it
grow up into nymphal. Nymphal stages undergo four instars for a period of 10—17 days and
they develop into adult. The longevity for females range 5-21 days and the males range
7-25 days [16]. Therefore, the total life cycle of green miridbug is about 21-37 days.

The wolf spider, Lycosa pseudoannulata, is one of the predominant spiders in paddy
fields and is an important predator of BPH. It has a fork-shaped mark on the back and the
abdomen has white markings. This wolf spider can play a major role in keeping down BPH
populations. It was found that in a 14-day period each wolf spider killed an average of 17
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BPH nymphs/day and it also could kill about 15-20 adult BPH/day [11]. An adult female
of Lycosa pseudoannulata lays about 30 eggs. A female wolf spider carries her egg sac
under abdomen and after hatching, the spiderlings climb on their mother’s back. Lycosa
pseudoannulata inhabits around on water surface and the lower part of rice plants to catch
its prey directly without creating web. In 1973, Gavarra et al. [17] reported that Lycosa
pseudoannulata egg stage lasted for 59 days and the young spiders took about 170 days to
reach maturity. The life cycle of this wolf spider lasted for an average of 116.3 days form
egg to egg but the average generation time is about 263.9 days from egg to adult death.

Hence, we assume in what follows that the dynamics of BPH population is fastest while
the dynamics of Cyrtorhinus lividipennis population and Lycosa pseudoannulata popula-
tion are intermediate and slowest, respectively.

To analyse our model of equations (1)—(3) by the geometric singular perturbation
method [18-20], & and § which are the small dimensionless positive parameters will be
used to scale the variables and parameters of the system. Lettingx = X,y =Y,z =Z, ¢; = a,

G=a,c=hc=2,0=2, =2 9,=2 ¢ =d,e =%, e;= %, and we obtain
dx x Xy C3xZ
dt Clx(l - k_l) Cl+hox 1+hox e =Fx.5.2) W
% = 8<k§4+yy + % - ezy) =eG(x,9,2), (5)
% = <k3CiZ22 + 13:_223;;6 - 632) =eSH(x,y,2). (6)

During transitions, when the right-hand sides of Eqs. (4)—(6) are finite and nonzero, |j|
will be of the order ¢ and |z| will be of the order &8 represented by the notations x = O(1),
¥ = O(¢e) and z = O(&6), respectively, in what follows.

Next, we will show that, for suitable parametric values with the sufficiently small ¢ and
8, the manifolds {F(x,y,z) = 0}, {G(x,,z) = 0} and H(x,y,z) = 0 are as shown in Figs. 1-3.

Manifold {F = 0}

Since

x Coxy C3x2
F=cx|1-—)- - —ex,
! ( k1> 1+hicox 1+ hyesx !

the manifold {F = 0} is composed of the trivial manifold x = 0 and the nontrivial manifold

1+h ky —
z:< + 203x>(61 1 — X c2y 61) — Rx,y). 7

C3 kl B 1+ hlch -

Let us consider the intersection of the nontrivial manifold and the (x, y)-plane. The in-
tersection of the nontrivial manifold and the (x, y)-plane occurs along the curve

1+h ki —ax—ek
y= ( + 1C2x><C1 1—Cix¥x—¢€; 1) = T(x) ®)
Cy kl
and the intersection of the nontrivial manifold and the y-axis occurs at the point for which
x=0and
c—e
y= "=y ©)

C2
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Figure 1 Shapes and relative positions of the manifolds where the parametric values of system of Egs. (4)-(6)

Z3

F=G=0
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satisfy the conditions in Theorem 2

Figure 2 Shapes and relative positions of the manifolds where the parametric values of system of Egs. (4)-(6)
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F=H=0
F=G=0

Figure 3 Shapes and relative positions of the manifolds where the parametric values of system of Egs. (4)-(6)
satisfy the conditions in Theorem 3

Moreover, the intersection of the nontrivial manifold and the x-axis occurs at the point
for which y =0 and

(c1 — ek

X=—"""=x;. (10)
C1

Note that x; > 0 and y; > 0 if and only if
c1>er. (11)
Since

T’(x) _ C1C2h1k1 — C2€1h1k1 —C — 2C1C2h1x

’

coky

T'(x) = 0 at the point where

= m((cl —e1)eshiky — ¢1) = x,. (12)

Moreover, T”(x5) < 0. Therefore, the nontrivial manifold has a relative maximum at the
point where x = x;, y = T'(x3) = y, on the (x, y)-plane where we note that x, > 0 if and only

if

(c1—en)ealiky > cy. (13)
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Now, let us consider the intersection of the nontrivial manifold and the (x, z)-plane. The
intersection of the nontrivial manifold and the (x, z)-plane occurs along the curve

.- <1 + hZng) (C1k1 —ax 61) = U(x), o

C3 ki

which intersects the z-axis at the point where x = 0 and

C1— €

zZ= =2Z. (15)
C3
Since
C1 201}12%
Ux)=cihy— —— —eihy - ,
(x) = c1hy caky ey ke
U'(x) = 0 at the point where
((c1 - e1)eshaky — c1) = x3. (16)

- 2C163h2

Moreover, U" (x3) < 0. Therefore, the nontrivial manifold has a relative maximum at the
point where x = x3, z = U(x3) = z3 on the (x,z)-plane where we note that x3 > 0 if and only
if

(C1 — 61)03]’12/(1 > (1. (17)

Next, let us consider the intersection of the nontrivial manifold and the (y, z)-plane. The
intersection of the nontrivial manifold and the (y,z)-plane occurs along the line

z= (7@ —a _c2y> (18)
€1

which intersects the y-axis at the point for which z = 0 and y = y;. In addition, it intersects
the z-axis at the point for which y =0 and z = z;.

Consider the nontrivial manifold

2= R(xy) = (1 + h2C3x) <c1k1 —-ax coy 61>

C3 k1 B 1+ hICQx B

in the first octant. We observe that %’;” <0and

BR(x,y) C1 2(311’1296 h1(32 - h2C3
—|n o) | 19
ox |: 2(61 el) k103 /(1 * 63(1 + hlch)2 2y ( )
Note that % =0 along the curve
c3(1 + hlczx)z(%x + Cg—}q — hy(c1 —e1))
y= . (20)

ca(hicy — hacs)
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Manifold {G = 0}

Since

Ca) V1Caxy
G= - - ,
<k2 +y * 1+ hicx ezy)

the manifold {G = 0} is composed of the trivial manifold y = 0 and the nontrivial manifold

Cq t+ C2€4h1x

y= —ky = V(x). (21)
ey + (caeshi — y162)x

Here, the nontrivial manifold is independent of z and parallel to the z-axis. The inter-

section of the nontrivial manifold and the y-axis occurs at the point for which x = 0 and

— ek
y= 222y (22)
€

Note that y; > 0 if and only if
Cq > ezkz. (23)

Since V'(x) = ——12% 50, V(x) is an increasing function of x.
(ex+(c2e2h1~y2c2)%)

In addition,

—exkoy)h k
lim V(x) = (¢4 — e2ka)y + y1ky = 75, (24)
x*=>0 exhi—y,

Note that y, > 0 if

(¢4 — €2kl + y1ky >0 (25)
and

exh1>y;. (26)

The intersection of {F = 0} and {G = 0} is composed of {x = 0,y = 0}, {x = 0,y = y3},
{y =0,z=U(x)} and {y = V(x),z = R(x,)}. Note that {y = V(x),z = R(x, )} intersects the
(%, y)-plane at the point where x = x4, y = T'(x4) = y5 and z = 0.

Manifold {H = 0}

Since

C52 Y2C3X2
H = 5+ —e3z |,
kg +Z 1+ thgx

the manifold {H = 0} is composed of the trivial manifold z = 0, and the nontrivial manifold

83k3 —C5 + 8322

vac3ks — (esks — cs)cshy + (yacs — csesh)z?
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which is independent of y and parallel to the y-axis. The intersection of the nontrivial
manifold and the x-axis occurs at the point for which z = 0 and

Jea —

¥ yac3ks f3(62k36—505)c3h2 =% (28)
Note that x5 > 0 if

esks > cs (29)
and

¥aks > (esks — ¢5)ha. (30)
Since

W (z) = 2y y¢3¢52 ’

(yacsks — (esks — cs)c3hy + (yacs — Cg€3h2)22)2

W (z) is an increasing function of z in the first octant.
In addition,
€3

lim W(z) = ———— = . (31)
oo Yacs — cseshy

Note that x¢ > 0 if and only if
Y2 > e3hs. (32)

Next, the intersection of {F = 0} and {H = 0} is composed of {x =0,z =0}, {x =0,z = 24},
{y = T(x),z =0} where z4 = /(i—i —k3) and {x = W(z),z = R(x,)}. Moreover, {x = W(z),z =
R(x,y)} intersects the (x, z)-plane where y = 0 at the point for which x = x; and z = U(x;) =
z7.

Hence, all six possible equilibrium points of the system of Eqs. (4)—(6) can be listed as
follows:

So =(0,0,0),

S1 = (x1,0,0) = (452, 0,0),

$2=(0.93,0) = (0, “522,0),

S3 = (x4,75,0) (the intersection of y = V(x) and z = R(x, y) on the (x,y)-plane),

S4 = (x7,0,27) (the intersection of x = W(z) and z = R(x, y) on the (y,z)-plane),

and Ss = (xg,ys,2g) (the intersection of x = W(z), y = V(x), and z = R(x, y)).

The different shapes and positions of the three manifolds {F = 0}, {G = 0} and {H = 0}
can lead to different dynamic behaviors of the solution of the system of Eqs. (4)—(6). Hence,
we identify the possible cases according to the shapes and positions of the three manifolds.
Here, only the five possible cases are stated since the other possible cases lead to similar
dynamic behaviors occurred in these five cases.

Theorem 1 If the inequalities

0 < x5 < X3 <Xy < X1, (33)
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0<ys3 <y, (34)

hold, the system of Eqs. (4)—(6) will have a periodic solution and the equilibrium points, Sy,

81, 82, S3, Sa, S5, are all unstable, provided ¢ and § are sufficiently small.

Proof Since the inequalities (33) and (34) hold, the positions and shapes of the manifolds
are as shown in Fig. 1. In what follows, we indicate the slow, intermediate and fast tran-
sitions by one, two and three arrows, respectively. In this case, there are six equilibrium
points, So, S1, S2, S3, S4 and Ss, in the first octant.

Starting from a point I = (xo, Yo, zo), with F(xo, Y0, 20) # 0 in Fig. 1. Here, the position of
the point [ is located in front of the nontrivial manifold {F = 0} for which F < 0 here. The
solution trajectory then moves from the point I to the point J on the nontrivial manifold
{F = 0} with the fast transition parallel to the x-axis in the direction that x decreases.
The solution trajectory then moves along the nontrivial manifold {F = 0} from the point
J located on the right-hand side of the nontrivial manifold {G = 0} where G < 0 to the
point K on the curve {F = G = 0} located in front of the nontrivial manifold {H = 0} with
intermediate transition parallel to the y-axis in the direction that y decreases. At the point
K, H > 0 and hence the solution trajectory then moves along the curve {F = G = 0} from the
point K in the direction that z increases to the point L where the stability of the manifold is
lost and the solution trajectory then jumps to the point M on the straight line {x = 0,y = y3}
on the (y,z)-plane in which F = G = 0 with the fast transition parallelled to the x-axis in
the direction that x decreases because F < 0 here. Here, H < 0, the solution trajectory
then moves from the point M to the point N along the straight line {x = 0,y = y3} on
the (y,z)-plane with the slow transition in the direction that z decreases. The point N is
located below the nontrivial manifold {F = 0}, the stability of the manifold is lost again
and the solution trajectory then jumps to the point O on the curve {F = G = 0} with the
fast transition parallel to the x-axis in the direction that x increases because F > 0 below
nontrivial manifold {F = 0}. At the point O, H > 0 and hence the solution trajectory then
moves along the curve {F = G = 0} from the point O in the direction that z decreases to the
point L where the stability is lost and the solution trajectory then jumps to the point M.
The solution trajectory then moves to the point N and O forming a closed cycle OLMNO
and hence a limit cycle occurs.

By starting at other initial point that closes to each equilibrium point, the local stabil-
ity for each equilibrium point can be determined in a similar manner and the proof is

complete. O

Theorem 2 If the inequalities

0< X3 <Xy <X <Xs, (35)
0<ys3 <y, (36)
hold, the solution of the system of Eqs. (4)—(6) tends toward a stable equilibrium point S3

as time passes and the equilibrium points, Sy, S1 and S, are unstable provided ¢ and § are

sufficiently small.
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Proof Since the inequalities (35) and (36) hold, the positions and shapes of the manifolds
are as shown in Fig. 2. In this case, there are four equilibrium points, Sy, S1, Sz and Ss, in
the first octant.

Starting from a generic point I = (x, Y0, 20) close to S3, with F(x¢,%0,20) # 0 in Fig. 2.
The position of the point [ is located in front of the nontrivial manifold {F = 0} for which
F < 0 here. The solution trajectory then moves from the point / to the point J on the
nontrivial manifold {F = 0} with the fast transition parallel to the x-axis in the direction
that x decreases. The solution trajectory then moves along the nontrivial manifold {F = 0}
from the point J located on the right-hand side of the nontrivial manifold {G = 0} where
G < 0 to the point K on the curve {F = G = 0} located behind the nontrivial manifold
{H = 0} with intermediate transition parallel to the y-axis in the direction that y decreases.
At the point K, H < 0 and hence the solution trajectory then moves along the curve {F =
G = 0} from the point K in the direction that z decreases to the equilibrium point Ss.
Therefore, the solution trajectory in this case tends toward the stable equilibrium point
S3 as time passes.

By starting at other initial point that closes to each equilibrium point, the local stabil-
ity for each equilibrium point can be determined in a similar manner and the proof is

complete. 0

Theorem 3 If the inequalities

0< X3 <Xy <Xs < X1, (37)

0<y3<y1<ys5<Y, (38)

hold, the solution of the system of Eqs. (4)—(6) tends toward a stable equilibrium point Ss as
time passes and the equilibrium points, Sy, S1, S2, S3 and Sy, are unstable provided ¢ and

8 are sufficiently small.

Proof Since the inequalities (37) and (38) hold, the positions and shapes of the manifolds
are as shown in Fig. 3. In this case, there are six equilibrium points, Sy, S1, Sz, S3, S4 and
Ss, in the first octant.

Starting from a generic point I = (xo, Yo, 20), with F(x0,%0,20) > 0 in Fig. 3. The solution
trajectory then moves from the point I to the point / on the nontrivial manifold {F = 0}
with the fast transition parallel to the x-axis in the direction that x decreases. The solution
trajectory then moves along the nontrivial manifold {F = 0} from the point / located on
the right-hand side of the nontrivial manifold {G = 0} where G < 0 to the point K on the
curve {F = G = 0} located in front of the nontrivial manifold {H = 0} with intermediate
transition parallel to the y-axis in the direction that y decreases. At the point K, H > 0 and
hence the solution trajectory then moves along the curve {F = G = 0} from the point K
in the direction that z increases to the equilibrium point S5 with intermediate transition
since G > 0 here. Therefore, the solution trajectory in this case tends toward the stable
equilibrium point Ss as time passes.

By starting at other initial point that closes to each equilibrium point, the local stabil-
ity for each equilibrium point can be determined in a similar manner and the proof is

complete. g
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Theorem 4 If the inequalities

0< X3 <Xy <X < X5, (39)

0<y2<y3 (40)

hold, the solution of the system of Eqs. (4)—(6) tends toward a stable equilibrium point S,
as time passes and the equilibrium points, Sy and S, are unstable provided ¢ and § are

sufficiently small.

Proof Since the inequalities (39) and (40) hold, the positions and shapes of the manifolds
are as shown in Fig. 4. In this case, there are three equilibrium points, Sy, S; and Sy, in the
first octant.

Starting from a generic point I = (xo, ¥o, 20), with F(xo, 0, 20) > 0 in Fig. 4. The solution
trajectory then moves from the point I to the point J on the nontrivial manifold {F = 0}
with the fast transition parallel to the x-axis in the direction that x increases. The solution
trajectory then moves along the nontrivial manifold {F = 0} from the point J located on
the left-hand side of the nontrivial manifold {G = 0} where G > 0 to the point K where the
stability of the manifold is lost. The solution trajectory then jumps to the point L on the
other stable branch {F = 0} with the fast transition parallelled to the x-axis in the direction
that x decreases because F < 0 here. The solution trajectory then moves along the curve
{F = H = 0} from the point L in the direction that y increases with intermediate transition
to the equilibrium point S, since G > 0 here. Therefore, the solution trajectory in this case

tends toward the stable equilibrium point S as time passes.

Z1

Figure 4 Shapes and relative positions of the manifolds where the parametric values of system of Egs. (4)-(6)
satisfy the conditions in Theorem 4
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By starting at other initial point that closes to each equilibrium point, the local stabil-
ity for each equilibrium point can be determined in a similar manner and the proof is
complete. d

Theorem 5 Ifthe inequalities

0<x3 <Xy <X5<X1, (41)

0<y <3, (42)

hold, the solution of the system of Eqs. (4)—(6) tends toward a stable equilibrium point S,
as time passes and the equilibrium points, Sy, S1 and S, are unstable provided ¢ and § are

sufficiently small.

Proof Since the inequalities (41) and (42) hold, the positions and shapes of the manifolds
are as shown in Fig. 5. In this case, there are four equilibrium points, Sy, S1, S and Sy, in
the first octant.

Starting from a generic point I = (xo,y0,20), wWith F(xo,%0,20) # 0 in Fig. 5. The posi-
tion of the point I is located in front of the nontrivial manifold {F = 0} for which F <0
here. The solution trajectory then moves from the point I to the point J on the nontriv-
ial manifold {F = 0} with the fast transition parallel to the x-axis in the direction that x
decreases. The solution trajectory then moves along the nontrivial manifold {F = 0} from
the point J located on the left-hand side of the nontrivial manifold {G = 0} where G > 0
to the point K on the curve {F = H = 0} with intermediate transition parallel to the y-

axis in the direction that y increases. The solution trajectory then moves along the curve

F=0 7 > ‘ G=0 >
.t
F=H=0
Sy
N
N
N So J1 Y2 Y3
F-H-0 ||\ o s
N
™~
N
N
N
X3 S~
X ~
; S<XK M
x
L
4,
Xy, % ""_T/
I
F=H=0

Figure 5 Shapes and relative positions of the manifolds where the parametric values of system of Egs. (4)-(6)
satisfy the conditions in Theorem 5
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Figure 6 A computer simulation of the system of Egs. (4)-(6) with ¢; = 0.9 day™', ¢; = 0.95 day ™',
c3=0239day”', c; =091 day', cs =049 day ', k; =67, ky = 0.02, k3 = 0.9, hy = 0.024, h, = 0.063,
1 =0.00001 day ™', e; =0.95 day™', e3 =055 day™', 1 = 0.01 day ™', ¥, = 0.085 day ™', € = 0.0042 and
& =0.822 where x(0) = 67, y(0) = 0.95 and z(0) = 0.03, for which all conditions in Theorem 1 are satisfied. The
solution trajectory tends towards a limit cycle as theoretically predicted

{F = H = 0} from the point K in the direction that y increases to the point L and then
the point M where the stability of the manifold is lost. The solution trajectory then jumps
to the point N on the other stable branch {F = H = 0} with the fast transition parallelled
to the x-axis in the direction that x decreases because F < 0 here. The solution trajec-
tory then moves along the curve {F = H = 0} from the point N in the direction that y in-
creases with intermediate transition to the equilibrium point S, since G > 0 here. There-

fore, the solution trajectory in this case tends toward the stable equilibrium point S, as

time passes.

By starting at other initial point that closes to each equilibrium point, the local stabil-

ity for each equilibrium point can be determined in a similar manner and the proof is

complete.
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Figure 7 A computer simulation of the system of Egs. (4)-(6) with ¢; = 0.9 day™', ¢ = 0.95 day ™',
c3=0239day”', c; =05day”', cs =0.10day ™', k1 = 67.0, k = 0.81, k3 = 0.9, hy = 0.024, h, = 0.063,
e1 =00001 day™', e, =042 day™', e3 =04 day™', y; =0.01 day ™', , =003 day”', € = 0.05 and § = 0.9 where
x(0) =67, y(0) = 0.95 and z(0) = 1, for which all conditions in Theorem 2 are satisfied. The solution trajectory
tends towards a stable equilibrium point as theoretically predicted

4 Computer simulations

To illustrate our theoretical results, numerical simulations of the system of Eqs. (4)—(6)
are carried out and presented in Figs. 6—12. The parametric values of ¢;, Cs, /1; and h;
are obtained from the literature [13, 14, 21] while other parametric values are chosen to
satisfy Theorems 1-5.

Figure 6 shows a simulation result of the system of Eqs. (4)—(6) with the parametric
values ¢; = 0.9 day ™, ¢, = 0.95 day ™, ¢3 = 0.239 day ™", ¢, = 0.91 day ™", ¢5 = 0.49 day™*,
ki = 67, ky = 0.02, ks = 0.9, hy = 0.024, hy = 0.063, e; = 0.00001 day™, e, = 0.95 day*,
e3 =0.55day™!, 1 = 0.01 day ™, y, = 0.085 day™*, € = 0.0042 and & = 0.822 where x(0) = 67,
¥(0) = 0.95 and z(0) = 0.03 in which all the conditions in Theorem 1 are satisfied. The
solution trajectory projected onto the (x,y)-plane, (x,z)-plane, (y,z)-plane and the time
courses of the population densities of BPH, Cyrtorhinus Lividipennis and Lycosa Pseu-
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Figure 8 A computer simulation of the system of Eqs. (4)-(6) with ¢; = 0.9 day ™', ¢; = 0.95 day ™',
c3=0239day”', c; =08 day ', cs = 0445 day ', ki = 68, k = 0.02, k3 = 0.54, hy = 0.024, h, = 0.063,
e1=00001 day™', e, =095 day™', e3 =098 day™', y; =0.01 day ™', ¥, = 0.062 day ™', € = 0.004 and § = 0.9
where x(0) =67, y(0) = 0.95 and z(0) = 0.01, for which all conditions in Theorem 3 are satisfied. The solution
trajectory tends towards a stable equilibrium point as theoretically predicted

doannulata populationare are also shown in Fig. 6. We can see that the solution trajectory
tends to a limit cycle as predicted in Theorem 1.

Figure 7 shows a simulation result of the system of Eqs. (4)—(6) with the parametric
values ¢; = 0.9 day™, ¢, = 0.95 day™?, ¢3 = 0.239 day™, ¢, = 0.5 day™", ¢5 = 0.10 day™,
ki = 67.0, ky = 0.81, k3 = 0.9, hy = 0.024, h; = 0.063, e; = 0.0001 day™", e, = 0.42 day*,
e3 = 0.4 day™!, y; = 0.01 day™’, 3, = 0.03 day ™', € = 0.05 and 8 = 0.9 where x(0) = 67,
¥(0) = 0.95 and z(0) = 1 in which all the conditions in Theorem 2 are satisfied. The solution
trajectory projected onto the (x,)-plane, (x,z)-plane, (y,z)-plane and the time courses
of the population densities of BPH, Cyrtorhinus Lividipennis and Lycosa Pseudoannulata
populationare are also shown in Fig. 7. We can see that the solution tends to a stable equi-

librium as time passes as predicted in Theorem 2.
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Figure 9 A computer simulation of the system of Egs. (4)-(6) with ¢; = 0.2 day’], ¢ =0.95 day’w,
c3=0239day”", ¢4 =085day ™', cs =0.1 day ™', ky =67, k, = 0.5, k3 = 0.7, hy = 0.024, h, = 0.063,
e; =0.001 day’], e, =0.06 day’1 ,e3=04 day’w, 1 =0.001 day’1, ¥, =003 day’1 ,€=0.1and § =0.9 where
x(0)=0.1,y(0) = 0.1 and z(0) = 0.1, for which all conditions in Theorem 4 are satisfied. The solution trajectory
tends towards a stable equilibrium point as theoretically predicted

Figure 8 shows a simulation result of the system of Eqs. (4)—(6) with the parametric
values ¢; = 0.9 day ™, ¢, = 0.95 day ™, ¢3 = 0.239 day ™", ¢, = 0.8 day™?, ¢5 = 0.445 day™*,
ki = 68, ky = 0.02, k3 = 0.54, 1, = 0.024, 1, = 0.063, e; = 0.0001 day™, e, = 0.95 day™*,
e3 = 0.98 day™, y; = 0.01 day ™, 5 = 0.062 day ™", € = 0.004 and 8§ = 0.9 where x(0) = 67,
¥(0) = 0.95 and z(0) = 0.01, in which all the conditions in Theorem 3 are satisfied. The
solution trajectory projected onto the (x,y)-plane, (x,z)-plane, (y,z)-plane and the time
courses of the population densities of BPH, Cyrtorhinus Lividipennis and Lycosa Pseu-
doannulata populationare are also shown in Fig. 8. We can see that the solution tends to
a stable equilibrium as time passes as predicted in Theorem 3.

Figure 9 shows a simulation result of the system of Egs. (4)—(6) with the parametric val-
ues ¢y = 0.2 day_l, ¢ =0.95 day_l, c3=0.239 day_l, ¢y =0.85 day_l, ¢;=0.1 day_l, ki =67,
ky = 0.5, k3 = 0.7, by = 0.024, 1y = 0.063, e = 0.001 day™, e, = 0.06 day ™, e3 = 0.4 day ™,
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Figure 10 A computer simulation of the system of Eqs. (4)-(6) with ¢; = 0.2 day™', ¢ = 0.95 day ™,
c3=0239day”', c; =0.6day”', cs =0.01 day”', k1 =67.0, ky = 0.51, ks = 0.02, hy = 0.024, h, = 0.063,
e1=0001 day™',e; =08day ', e3=09day ™', 1 =001 day”', y, =0.1 day', € = 0.05 and § = 0.9 where
x(0) =67, y(0) =0.1 and z(0) = 0.1, for which all conditions in Theorem 5 are satisfied. The solution trajectory
tends towards a stable equilibrium point as theoretically predicted

y; = 0.001 day’l, yo = 0.03 day’l, € = 0.1 and § = 0.9 where x(0) = 0.1, ¥(0) = 0.1 and
z(0) = 0.1 in which all the conditions in Theorem 4 are satisfied. The solution trajectory
projected onto the (x, ¥)-plane, (x, z)-plane, (y, z)-plane and the time courses of the popula-
tion densities of BPH, Cyrtorhinus Lividipennis and Lycosa Pseudoannulata populationare
are also shown in Fig. 9. We can see that the solution tends to a stable equilibrium as time
passes as predicted in Theorem 4.

Figure 10 shows a simulation result of the system of Egs. (4)—(6) with the parametric
values ¢; = 0.2 day™, ¢, = 0.95 day™?, ¢3 = 0.239 day™, ¢, = 0.6 day™", ¢5 = 0.01 day™,
ki = 67.0, ky = 0.51, k3 = 0.02, h; = 0.024, h1y = 0.063, e; = 0.001 day™, e, = 0.8 day ™",
e3 = 0.9 day™, y; = 0.01 day™, y, = 0.1 day ™}, € = 0.05 and & = 0.9 where x(0) = 67,
9(0) = 0.1 and z(0) = 0.1 in which all the conditions in Theorem 5 are satisfied. The solution
trajectory projected onto the (x,y)-plane, (x,z)-plane, (y,z)-plane and the time courses
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Figure 11 A computer simulation of the system of Eqs. (4)—(6) with ¢; = 0.85 day ™', ¢, = 0.95 day ™,
c3=0239day”", ¢4 =084 day ™!, cs =0.5day ™', ky =67.5, ky = 0.02, k3 = 0.9, h; =0.024, h = 0.063,
e1=00001 day ™', e; =095 day ™', e3 =056 day”', y =0.02 day ™', ¥, = 0.085 day ', € =0.004 and § = 0.8
where x(0) = 0.52, y(0) = 0.8733 and z(0) = 0.0987. The solution trajectory exhibits a chaotic behavior

of the population densities of BPH, Cyrtorhinus Lividipennis and Lycosa Pseudoannulata
populationare are also shown in Fig. 10. We can see that the solution tends to a stable
equilibrium as time passes as predicted in Theorem 5.

Moreover, we also found that the system of Egs. (4)—(6) can exhibit a chaotic behav-
ior when the parametric values are ¢; = 0.85 day™’, ¢, = 0.95 day™", ¢3 = 0.239 day*,
¢4 = 0.84 day™, ¢5 = 0.5 day™?, ky = 67.5, ky = 0.02, k3 = 0.9, h; = 0.024, Ky = 0.063,
e = 0.0001 day™, e, = 0.95 day™, e3 = 0.56 day™*, y; = 0.02 day™’, y, = 0.085 day*,
€ = 0.004 and 8§ = 0.8 where x(0) = 0.52, y(0) = 0.8733 and z(0) = 0.0987. The computer
simulation is as shown in Fig. 11. The solution trajectory projected onto the (x,y)-plane,
(%, 2)-plane, (y,z)-plane and the time courses of the population densities of BPH, Cyrtorhi-
nus Lividipennis and Lycosa Pseudoannulata populationare. In addition, Fig. 12 shows that
even though the initial values are very slightly different, the solution trajectories will stay
close for a period of time, before starting to follow noticeably different paths as time passes.
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Figure 12 Computer simulations of the system of Eqs. (4)-(6) with ¢; = 0.85 day ™', ¢; = 0.95 day ™,
c3=0239day”", ¢4 =084 day”', cs =0.5day ™', k1 =67.5, ky = 0.02, k3 = 0.9, h; =0.024, h, = 0.063,
e1=00001 day ', e; =095 day ™', e3 =056 day”', y; =0.02 day ™', ¥, = 0.085 day ', € =0.004 and § = 0.8
where x(0) = 0.52 and x(0) = 0.521, y(0) = 0.8733 and z(0) = 0.0987. The solution trajectories will stay close for
only a short time, before starting to follow noticeably different paths as time passes

5 Conclusion

The developed model for the population dynamics of BPH, Cyrtorhinus Lividipennis and
Lycosa Pseudoannulata is analysed theoretically by the geometric singular perturbation
technique. The five possible cases leading to different dynamic behaviors are investigated.
The conditions for each case to occur are stated in Theorems 1-5. Computer simulations
are carried out showing that the results correspond to the theoretical predictions in the
five cases.

In addition, we also investigate that our model can demonstrate a chaotic behavior which
has been observed in the paddy field when the outbreak of BPH occurs as reported in [22]
and hence, our model might be used to investigate the control of BPH by the release of
its natural enemies, Cyrtorhinus Lividipennis and Lycosa Pseudoannulata or the use of
insecticide and pathogen in the paddy field. Time delays in the development of BPH, Cyr-
torhinus Lividipennis and Lycosa Pseudoannulata reported in the literature will be incor-

porated in our model in our future work so that our model will be more realistic.
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