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Abstract
In this paper, we obtain some results of the existence and uniqueness of
a generalized solution for a singular fractional initial boundary value problem in the
Caputo sense subject to Neumann and weighted integral conditions. We show that a
priori estimate or energy inequality methods can be successfully applied to obtaining
a priori estimates for the solution of initial fractional boundary problems as in the
classical case. The obtained results will contribute in the development of the
functional analysis method and enrich the existing nonextensive literature on the
nonlocal fractional mixed problems in the Caputo sense.
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1 Introduction
The one-dimensional fractional-order diffusion heat equation has become a real model
for all linear and nonlinear fractional and nonfractional partial differential equations of
parabolic type [5, 8, 10, 18, 19]. Although mathematical models in two and three dimen-
sions are of great significance for applications, the majority of recent papers are devoted
to the fractional-order diffusion equations in the one-dimensional case. Papers dealing
with the multidimensional fractional diffusion equations are still not numerous. For frac-
tional parabolic equations, we interpret physically the fractional derivative appearing in
the equation as the degree of memory in the diffusing material [9]. Many authors have
studied analytically and numerically various models of time-fractional differential equa-
tions; see, for example, [2–4, 7, 13, 20].

Many physical phenomena can be modeled in terms of local and nonlocal initial bound-
ary value problems where the classical time and space derivatives are present, but, unfor-
tunately, many others cannot be modeled by such problems. Different methods have been
used to solve fractional diffusion equations. We can cite, for example, the works [11, 17].

In this paper, we apply the traditional functional analysis method, the so-called energy
inequality method based mainly on some a priori bounds and on the density of the range
of the operator generated by the considered problem for a fractional singular equation
with Bessel operator and Caputo fractional derivative of order 0 < α < 1 (see [6]).

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2196-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2196-z&domain=pdf
mailto:mesloub@ksu.edu.sa


Mesloub and Bachar Advances in Difference Equations        (2019) 2019:254 Page 2 of 14

In the literature, there are very many papers using the functional analysis method for
the proof of the well-posedness of mixed problems (having local or nonlocal boundary
conditions) in the classical sense, such as [14, 15, 21], but in the fractional case, there are
only few papers using the previous method to prove their well-posedness. Therefore our
work can be considered as a contribution to the development of the functional analysis
method used to prove the well-posedness of mixed problems with fractional order. We
should like also to mention that the positivity of the fractional derivative operator helps us
to obtain a priori bounds for solutions of certain classes of fractional initial and boundary
value problems.

This paper is organized as follows: In Sect. 2, we set and pose the problem and give
different types of fractional derivatives used in the paper. In Sect. 3, we introduce some
function spaces, give some useful tools, and write the given problem in operator form.
In Sect. 4, by choosing an appropriate functional differential operator multiplier we es-
tablish an a priori estimate, from which we deduce the uniqueness of the solution and its
dependence on the given data of the posed problem. In Sect. 5, we prove the main result
concerning the solvability of the given problem. With some modifications in the classical
method (energy inequality method) used for classical equations, we could show that the
range of the operator generated by the studied problem is dense in the weighted Hilbert
space H = L2

x(0, 1) × L2
x(Q), where Q = (0, 1) × (0, T), T < ∞.

2 Problem setting
We consider the governing equation of Caputo’s time fractional order subject to initial
and boundary conditions of integral and Neumann types in the domain Q = (0, 1) × (0, T),
T < ∞. By ∂α

t θ we denote the Caputo time fractional derivative. This initial boundary
value problem is nonlocal in time derivative and in one of the boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Lθ = ∂α
t θ – 1

x
∂
∂x (xθx) + Y (x, t)θ = f (x, t), 0 < x < 1, 0 < t < T ,

l1θ = θ (x, 0) = ω(x), x ∈ (0, 1),
∫ 1

0 xθ (x, t) dx = 0, θx(1, t) = 0, t ∈ (0, T),

(2.1)

The functions Y (x, t) and f (x, t) are given functions, which will be specified later.
The time fractional derivative of order 0 < α < 1 is taken in the Caputo sense. It is defined

for a differentiable function by

∂α
t θ (x, t) =

1
Γ (1 – α)

d
dt

∫ t

0

θ (x, τ ) – θ (x, 0)
(t – τ )α

dτ , t > 0 (LCFD),

∂α
Tθ (x, t) =

1
Γ (1 – α)

d
dt

∫ T

t

θ (x, τ ) – θ (x, 0)
(t – τ )α

dτ , t > 0 (RFFD),
(2.2)

or, equivalently,

∂α
t θ (x, t) =

1
Γ (1 – α)

∫ t

0

θ ′(x, τ )
(t – τ )α

dτ , t > 0 (LCFD),

∂α
Tθ (x, t) =

1
Γ (1 – α)

∫ T

t

θ ′(x, τ )
(t – τ )α

dτ , t < T (RCFD),
(2.3)

where Γ is the gamma function.
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We also need to use the Riemann–Liouville integral of order 0 < α < 1 defined by

D–α
t V (t) =

1
Γ (α)

∫ t

0

V (τ )
(t – τ )1–α

dτ . (2.4)

For different properties of the Caputo fractional derivative, we refer the reader to [12, 16]
and the references therein.

3 Preliminaries
We need the following function spaces and tools. We denote by C2,1(Q) the set of functions
that, together with their partial derivatives of orders 2 and 1 in x and t, are continuous on
Q, by Cm(0, T) the space of m-fold differentiable functions, and by C∞

0 (0, T) the space of
infinitely differentiable functions having their support in (0, T). We use the usual L2(0, T)
space of measurable square-integrable functions on (0, T).

Lemma 3.1 ([1]) For any absolutely continuous function β(s) on the interval [0, T], we
have the inequality

β(s)∂α
s β(s) ≥ 1

2
∂α

s β2(s), 0 < α < 1. (3.1)

Lemma 3.2 ([1]) Let a nonnegative absolutely continuous function R(s) satisfy the in-
equality

∂α
t R(s) ≤ c1R(s) + c2(s), 0 < α < 1, (3.2)

for almost all s ∈ [0, T], where c1 is a positive constant, and c2(s) is an integrable nonnega-
tive function on [0, T]. Then

R(s) ≤R(0)Eα

(
c1sα

)
+ Γ (α)Eα,α

(
c1sα

)
D–α

t c2(s), (3.3)

where

Eα(x) =
∞∑

n=0

xn

Γ (αn + 1)
and Eα,μ(x) =

∞∑

n=0

xn

Γ (αn + μ)
(3.4)

are the Mittag–Leffler functions.

Young’s inequality with ε: For any ε > 0, we have the inequality

aY ≤ 1
p
|εa|p +

p – 1
p

∣
∣
∣
∣
Y
ε

∣
∣
∣
∣

p
p–1

, a, b ∈R, p > 1, (3.5)

which is the generalization of the Cauchy inequality with ε:

aY ≤ ε

2
a2 +

1
2ε

Y 2, ε > 0, (3.6)

where a and Y are nonnegative numbers.
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Poincaré-type inequalities [14]:

∥
∥Ix(ξθ )

∥
∥2

L2(0,b) ≤ b3

2
‖θ‖2

L2
x(0,b), (3.7)

∥
∥I2

x (ξθ )
∥
∥2

L2(0,b) ≤ b2

2
∥
∥Ix(ξθ )

∥
∥2

L2(0,b), (3.8)

where

Ix(U) =
∫ x

0
U(ξ , t) dξ , I2

x (U) =
∫ x

0

∫ ξ

0
U(η, t) dη dξ .

To establish the existence and uniqueness of the solution of problem (2.1), we write it in
an equivalent operator form.

The solution of problem (2.1) can be regarded as the solution of the operator equation

Mθ = F , (3.9)

where M = (L, l1), and the operator M acts from S to H with domain of definition

D(M) =

⎧
⎪⎪⎨

⎪⎪⎩

θ ∈ L2
x(Q) : θx, θxx, ∂α

t θ ∈ L2
x(Q),

∫ 1
0 xθ (x, t) dx = 0, t ∈ (0, T),

θx(1, t) = 0, t ∈ (0, T),

(3.10)

where S is a Banach space of functions θ endowed by the finite norm

‖θ‖2
S = sup

0≤t≤T

(
Dα–1∥∥Ix(ξθ )

∥
∥2

L2(0,1) + Dα–1‖θ‖2
L2

x(0,1)

)

+
∫ T

0
‖θx‖2

L2
x(0,1) dt, (3.11)

and H is the weighted Hilbert space L2
x(Q) × L2

x(0, 1) consisting of vector-valued functions
F = (f ,ω) with finite norm

‖F‖2
H = ‖ω‖2

L2
x(0,1) + ‖f ‖2

L2
x(Q). (3.12)

4 A priori estimate for the solution and its consequences
We establish an a priori bound for the solution of problem (2.1), from which we deduce
its uniqueness.

Theorem 4.1 Suppose that the function Y satisfies

(i) Y (x, t) ≥ C0, (ii) Yxx(x, t) ≤ C1, (x, t) ∈ Q, (4.1)

where C0 and C1 are positive constants, and f ∈ L2
x(Q). Then there exists a positive constant

μ such that the following a priori estimate holds:

sup
0≤t≤T

(
Dα–1∥∥Ix(ξθ )

∥
∥2

L2(0,1) + Dα–1‖θ‖2
L2

x(0,1)

)
+

∫ T

0
‖θx‖2

L2
x(0,1) dt
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≤ μ
(‖ω‖2

L2
x(0,1) + ‖f ‖2

L2
x(Q)

)
(4.2)

for all θ ∈ D(M), where μ = μ(δ,σ , d) is given by

μ = δ max

(
3
2

, 1 +
Tα

Γ (1 + α)

)

, (4.3)

and δ,σ , d are respectively given by (4.29), (4.24), and (4.22).

Proof Consider the identity

(

∂α
t θ –

1
x

∂

∂x

(

x
∂θ

∂x

)

+ Y (x, t)θ , xθ – xI2
x (ξθ )

)

L2(0,1)

=
(
f , xθ – xI2

x (ξθ )
)

L2(0,1). (4.4)

Under the boundary and initial conditions in (2.1), the terms of the left-hand side of (4.4)
give

–
(
∂α

t θ , xI2
x (ξθ )

)

L2(0,1)

= –
∫ 1

0
x∂α

t θ
(
I2

x (ξθ )
)

dx

= –
(

∂α
t

∫ x

0
ξθ dξ

)
(
I2

x (ξθ )
)|10 +

∫ 1

0

(
∂α

t Ix(ξθ )
)(
Ix(ξθ )

)
dx

=
∫ 1

0

(
∂α

t Ix(ξθ )
)(
Ix(ξθ )

)
dx, (4.5)

(
∂

∂x

(

x
∂θ

∂x

)

,I2
x (ξθ )

)

L2(0,1)
= –

∫ 1

0
x
∂θ

∂x
Ix(ξθ ) dx, (4.6)

–
(
Y (x, t)θ , xI2

x (ξθ )
)

L2(0,1)

=
∫ 1

0

∂Y (x, t)
∂x

(
Ix(ξθ )

)(
I2

x (ξθ )
)

dx +
∫ 1

0
Y (x, t)

(
Ix(ξθ )

)2 dx

=
∫ 1

0
Y (x, t)

(
Ix(ξθ )

)2 dx –
1
2

∫ 1

0

∂2Y (x, t)
∂x2

(
I2

x (ξθ )
)2 dx, (4.7)

(
∂α

t θ , xθ
)

L2(0,1) =
∫ 1

0
xθ∂α

t θ dx, (4.8)

–
(

∂

∂x

(

x
∂θ

∂x

)

, θ
)

L2(0,1)
=

∫ 1

0
xθ2

x dx, (4.9)

(
Y (x, t)θ , xθ

)

L2(0,1) =
∫ 1

0
xY (x, t)θ2 dx. (4.10)

Substitution of equalities (4.5)–(4.10) into (4.4) yields

∫ 1

0

(
∂α

t Ix(ξθ )
)(
Ix(ξθ )

)
dx +

∫ 1

0
xθ∂α

t θ dx

+
∫ 1

0
xY (x, t)θ2 dx +

∫ 1

0
Y ((x, t)

(
Ix(ξθ )

)2 dx +
∫ 1

0
xθ2

x dx
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=
1
2

∫ 1

0

∂2Y (x, t)
∂x2

(
I2

x (ξθ )
)2 dx +

∫ 1

0
x
∂θ

∂x
Ix(ξθ ) dx

+
(
Ix(ξ f ),Ix(ξθ )

)

L2(0,1) + (xθ , f )L2(0,1). (4.11)

To estimate the first and second terms on the left-hand side of (4.11), we use Lemma 3.1
to obtain

∫ 1

0

(
∂α

t Ix(ξθ )
)(
Ix(ξθ )

)
dx

≥ 1
2

∫ 1

0
∂α

t
(
Ix(ξθ )

)2 dx, (4.12)

∫ 1

0
xθ∂α

t θ dx ≥ 1
2

∫ 1

0
∂α

t
(
xθ2)dx. (4.13)

Conditions (4.1) and inequality (3.8) lead to

∫ 1

0

∂2Y (x, t)
∂x2

(
I2

x (ξθ )
)2 dx

≤ C1

∫ 1

0

(
I2

x (ξθ )
)2 dx ≤ C1

2

∫ 1

0

(
Ix(ξθ )

)2 dx, (4.14)

∫ 1

0
Y (x, t)

(
Ix(ξθ )

)2 dx ≥ C0

∫ 1

0

(
Ix(ξθ )

)2 dx, (4.15)

∫ 1

0
xY (x, t)θ2 dx ≥ C0

∫ 1

0
xθ2 dx. (4.16)

The terms on the right-hand side of (4.11) can be estimated in the following way:

(
Ix(ξ f ),Ix(ξθ )

)

L2(0,1)

≤ ε1

2

∫ 1

0

(
Ix(ξθ )

)2 dx +
1

4ε1

∫ 1

0
xf 2 dx, (4.17)

∫ 1

0
xθxIx(ξθ ) dx

≤ ε2

2

∫ 1

0

(
Ix(ξθ )

)2 dx +
1

4ε2

∫ 1

0
xθ2

x dx, (4.18)

(xθ , f )L2(0,1) ≤ 1
2

∫ 1

0
xθ2 dx +

1
2

∫ 1

0
xf 2 dx. (4.19)

Combination of (4.11)–(4.19) yields

∫ 1

0
∂α

t
(
Ix(ξθ )

)2 dx +
1
2

∫ 1

0
∂α

t
(
xθ2)dx +

∫ 1

0
xθ2

x dx

+ C0

∫ 1

0

(
Ix(ξθ )

)2 dx + C0

∫ 1

0
xθ2 dx

≤ C1

2

∫ 1

0

(
Ix(ξθ )

)2 dx +
ε1

2

∫ 1

0

(
Ix(ξθ )

)2 dx
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+
1

4ε1

∫ 1

0
xf 2 dx +

ε2

2

∫ 1

0

(
Ix(ξθ )

)2 dx +
1

4ε2

∫ 1

0
xθ2

x dx

+
ε3

2

∫ 1

0
xθ2 dx +

1
2ε3

∫ 1

0
xf 2 dx. (4.20)

By choosing ε1 = 2C0,ε2 = 1
2 , and ε3 = 3C0 (4.20) becomes

∫ 1

0
∂α

t
(
Ix(ξθ )

)2 dx +
∫ 1

0
∂α

t
(
xθ2)dx +

∫ 1

0
xθ2

x dx

≤ d
(∫ 1

0

(
Ix(ξθ )

)2 dx +
∫ 1

0
xθ2 dx +

∫ 1

0
xf 2 dx

)

, (4.21)

where

d =
max( C1

2 + 1
4 , C0

2 , 5C0
2 , 1

2 )
min( C0

2 , 1
2 )

. (4.22)

Replacing t by τ and integrating both sides of (4.21) with respect to τ from 0 to t, we obtain

Dα–1
∫ 1

0

(
Ix(ξθ )

)2 dx + Dα–1
∫ 1

0
xθ2 dx +

∫ t

0

∫ 1

0
xθ2

x dx dτ

≤ σ

(∫ t

0

∫ 1

0

(
Ix(ξθ )

)2 dx dτ +
∫ t

0

∫ 1

0
xθ2 dx dτ +

∫ t

0

∫ 1

0
xf 2 dx dτ

+
∫ 1

0

(
Ix(ξω)

)2 dx +
∫ 1

0
xω2 dx

)

, (4.23)

where

σ = max

{

d,
T1–α

(1 – α)Γ (1 – α)

}

. (4.24)

Dropping the last term on the left-hand side of (4.23), applying Lemma 3.2, and setting

R(t) =
∫ t

0

∫ 1

0

(
Ix(ξθ )

)2 dx dτ +
∫ t

0

∫ 1

0
xθ2 dx, R(0) = 0, (4.25)

∂α
t R(t) = Dα–1(Ix(ξθ )

)2 dx + Dα–1
∫ 1

0
xθ2 dx, (4.26)

we obtain
∫ t

0

∫ 1

0

(
Ix(ξθ )

)2 dx dτ +
∫ t

0

∫ 1

0
xθ2 dx

≤ Γ (α)Eα,α
(
dtα

) ·
(

D–α–1
t

∫ 1

0
xf 2 dx +

∫ 1

0
(Ixξω)2 dx

+
∫ 1

0
xω2 dx

)

. (4.27)

On the light of (4.27) and (3.7), inequality (4.23) becomes

Dα–1∥∥Ix(ξθ )
∥
∥2

L2(0,1) + Dα–1‖θ‖2
L2

x(0,1) +
∫ t

0
‖θx‖2

L2
x(0,1) dτ
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≤ δ

(

D–1–α
t ‖f ‖2

L2
x(0,1) +

∥
∥Ix(ξω)

∥
∥2

L2(0,1)

+ ‖ω‖2
L2

x(0,1) +
∫ t

0
‖f ‖2

L2
x(0,1) dτ

)

≤ δ

(

D–1–α
t ‖f ‖2

L2
x(0,1) + ‖ω‖2

L2
x(0,1) +

∫ t

0
‖f ‖2

L2
x(0,1) dτ

)

, (4.28)

where

δ = max
{
σΓ (α)Eα,α

(
dtα

)
,σ

}
. (4.29)

It is easy to see that

D–α–1
t ‖f ‖2

L2
x(0,1) ≤ Tβ

Γ (1 + β)

∫ T

0
‖f ‖2

L2
x(0,1) dτ . (4.30)

Inequalities (4.28) and (4.30) yield

Dα–1∥∥Ix(ξθ )
∥
∥2

L2(0,1) + Dα–1‖θ‖2
L2

x(0,1) +
∫ t

0
‖θx‖2

L2
x(0,1) dτ

≤ μ

(

‖ω‖2
L2

x(0,1) +
∫ T

0
‖f ‖2

L2
x(0,1) dτ

)

, (4.31)

where

μ = δ max

(
3
2

, 1 +
Tα

Γ (1 + α)

)

.

Now since the right-hand side of (4.31) does not depend on t, the a priori estimate (4.2)
follows by taking the upper bound for both sides with respect to t over [0, T]. Note that
the uniqueness and continuous dependence of the solution on the data of problem (2.1)
follows from the a priori bound (4.2). �

5 Existence of solution
The a priori estimate (4.2) shows that the unbounded operator M has an inverse M–1 :
R(M) → S . Since R(M) is a subset of H , we can construct its closure M so that estimate
(4.2) holds for this extension and R(M) coincides with the whole space H . Hence we have
the following:

Corollary 5.1 The operator M : S →H admits a closure (proof is similar to that in [14].
Estimate (4.2) can be then extended to

sup
0≤t≤T

(
Dα–1∥∥Ix(ξθ )

∥
∥2

L2(0,1) + Dα–1‖θ‖2
L2

x(0,1)

)
+

∫ T

0
‖θx‖2

L2
x(0,1) dt

≤ μ
(‖ω‖2

L2
x(0,1) + ‖f ‖2

L2
x(Q)

)
(5.1)

for all θ ∈ D(M).
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It follows from (5.1) that the strong solution of problem (2.1) is unique, that is, Mθ = H .
From estimate (5.1) we also deduce the following:

Corollary 5.2 R(M) is a closed subset in H , R(M) = R(M), and M–1 = M–1.

We are now ready to give the result on the existence of the solution of problem (2.1).

Theorem 5.3 Suppose that the conditions of Theorem 4.1 are satisfied. Then for all F =
(f ,ω) ∈ H , there exists a unique strong solution θ = M–1F = M–1F of problem (2.1).

Proof Estimate (5.1) asserts that if a strong solution of (2.1) exits, then it is unique and de-
pends continuously on the data. Corollary 5.2 says that to prove that problem (2.1) admits
a strong solution for any F = (f ,ω) ∈ H , it suffices to show that the closure of the range of
the operator M is dense in H . To establish the existence of the strong solution of problem
(2.1), we use a density argument, that is, we show that the range R(M) of the operator M,
is dense in the space H for every element θ in the Banach space S . For this, we consider
the following particular case of density. �

Theorem 5.4 Suppose that the conditions of Theorem 4.1 are satisfied. Suppose that for all
functions θ ∈D(M) such that l1θ = θ (x, 0) = 0 and for some function ψ ∈ L2(Q), we have

∫ T

0
(Lθ ,ψ)L2

x(0,1) dt = 0. (5.2)

Then ψ vanishes a.e. in Q.

Proof Identity (5.2) is equivalent to

∫ T

0

(

∂α
t θ –

1
x

∂

∂x

(

x
∂θ

∂x

)

+ Y (x, t)θ ,ψ
)

L2
x(0,1)

dt = 0. (5.3)

Assume that a function γ (x, t) satisfies the conditions boundary and initial conditions in
(2.1) and that γ , γx, and ∂

∂x (x
∫ t

0 γ (x, s) ds) ∈ L2(Qt). We then set

θ (x, t) =
∫ t

0
γ (x, s) ds. (5.4)

Equation (5.3) then becomes

∫ T

0

{

∂α
t

(∫ t

0
γ (x, s) ds

)

–
1
x

∂

∂x

(∫ t

0
xγx(x, s) ds

)

+ Y (x, t)
(∫ t

0
γ (x, s) ds

)

,ψ)L2
x(0,1)

}

dt

= 0. (5.5)

We now introduce the function

ψ(x, t) =
∫ t

0
γ (x, s) ds – I2

x

(

ξ

∫ t

0
γ (ξ , s) ds

)

. (5.6)
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Equation (5.5) then reduces to

∫ T

0

(

∂α
t

(∫ t

0
γ (x, s) ds

)

, x
∫ t

0
γ (x, s) ds – xI2

x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)
dt

+
∫ T

0

(
∂

∂x

(∫ t

0
xγx(x, s) ds

)

, –
∫ t

0
γ (x, s) ds + I2

x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)
dt

–
∫ T

0

(

Y (x, t)
(∫ t

0
γ (x, s) ds

)

, –x
∫ t

0
γ (x, s) ds + xI2

x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)
dt

= 0. (5.7)

Recall that the function γ satisfies boundary conditions in (2.1). Then computing the inner
products in (5.7), we have

–
(

∂α
t

(∫ t

0
γ (x, s) ds

)

, xI2
x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)

=
(

∂α
t

(

Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))

,Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)

≥ 1
2

∫ 1

0
∂α

t

(

Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))2

dx

=
1
2
∂α

t

∥
∥
∥
∥Ix

∫ t

0
ξγ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
, (5.8)

(
∂

∂x

(∫ t

0
xγx(x, s) ds

)

,I2
x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)

= –
(∫ t

0
xγx(x, s) ds,Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)
, (5.9)

–
(

Y (x, t)
(∫ t

0
γ (x, s) ds

)

, xI2
x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)

=
(

∂Y (x, t)
∂x

Ix

(

ξ

∫ t

0
γ (ξ , s) ds

)

,I2
x

(

ξ

∫ t

0
γ (ξ , s) ds

))

L2(0,1)

+
∫ 1

0
Y (x, t)

(

Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))2

dx

=
∫ 1

0
Y (x, t)

(

Ix

(

ξ

∫ t

0
γ (ξ , s) ds

))2

dx

–
∫ 1

0

∂2Y (x, t)
∂x2

(

I2
x

(

ξ

∫ t

0
γ (ξ , s) ds

))2

dx, (5.10)

–
(

∂

∂x

(∫ t

0
xγx(x, s) ds

)

,
∫ t

0
γ (x, s) ds

)

L2(0,1)

=
∥
∥
∥
∥

∫ t

0
γx(x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

, (5.11)

(

Y (x, t)
(∫ t

0
γ (x, s) ds

)

, x
∫ t

0
γ (x, s) ds

)

L2(0,1)
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=
∥
∥
∥
∥

√
Y (x, t)

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

. (5.12)

(

∂α
t

(∫ t

0
γ (x, s) ds

)

, x
∫ t

0
γ (x, s) ds

)

L2(0,1)

≥ 1
2

∫ 1

0
x∂α

t

(∫ t

0
γ (x, s) ds

)2

dx

=
1
2
∂α

t

∥
∥
∥
∥

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

. (5.13)

Using (5.8)–(5.13) and the Cauchy ε-inequality, replacing t by τ , and integrating with re-
spect to τ over (0, t), we see that

1
2

Dα–1
t

∥
∥
∥
∥Ix

∫ t

0
ξγ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
+

1
2

Dα–1
t

∥
∥
∥
∥

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

+
∫ t

0

∫ 1

0
Y (x, τ )

(

Ix

(

ξ

∫ τ

0
γ (ξ , s) ds

))2

dx dτ +
∫ t

0

∥
∥
∥
∥

∫ τ

0
γx(x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

+
∫ t

0

∥
∥
∥
∥

√
Y (x, τ )

∫ τ

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

≤ 1
ε

∫ t

0

∫ 1

0

(

Ix

(

ξ

∫ τ

0
γ (ξ , s) ds

))2

dx dτ +
ε

2

∫ t

0

∥
∥
∥
∥

∫ τ

0
γx(x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

+
∫ t

0

∫ 1

0

∂2Y (x, τ )
∂x2

(

I2
x

(

ξ

∫ τ

0
γ (ξ , s) ds

))2

dx dτ . (5.14)

Choosing ε = 1 and using inequalities (3.6) and (3.7) and conditions (4.1), we rewrite in-
equality (5.14) as

Dα–1
t

∥
∥
∥
∥Ix

∫ t

0
ξγ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
+ Dα–1

t

∥
∥
∥
∥

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

+ 2C0

∫ t

0

∥
∥
∥
∥Ix

∫ τ

0
ξγ (x, s) ds

∥
∥
∥
∥

2

L2(0,1)
dτ +

∫ t

0

∥
∥
∥
∥

∫ τ

0
γx(x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

+ 2C0

∫ t

0

∥
∥
∥
∥

∫ τ

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

≤
∫ t

0

∥
∥
∥
∥

∫ τ

0
ξγ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ + C1

∫ t

0
Ix

∥
∥
∥
∥

∫ τ

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ . (5.15)

Discarding the last three terms on the left-hand side of (5.15), we obtain

Dα–1
t

∥
∥
∥
∥Ix

∫ t

0
ξγ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
+ Dα–1

t

∥
∥
∥
∥

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

≤ V
(∫ t

0

∥
∥
∥
∥Ix

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
dτ +

∫ t

0

∥
∥
∥
∥

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

)

, (5.16)
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where

V = max(1, C1).

We can now apply Lemma 3.2 to (5.16) by taking

ϕ(t) =
∫ t

0

∥
∥
∥
∥Ix

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
dτ +

∫ t

0

∥
∥
∥
∥

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ ,

ϕ(0) = 0, (5.17)

and

∂α
t ϕ(t) = Dα–1

t

∥
∥
∥
∥Ix

∫ t

0
ξγ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
+ Dα–1

t

∥
∥
∥
∥

∫ t

0
γ (x, s) ds

∥
∥
∥
∥

2

L2
x(0,1)

. (5.18)

Then

∫ t

0

∥
∥
∥
∥Ix

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
dτ +

∫ t

0

∥
∥
∥
∥

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ

≤ ϕ(0)Eα

(
Vtα

)
+ Γ (α)Eα,α

(
Vtα

)
D–α

t (0) = 0. (5.19)

Inequality (5.19) implies that

∫ T

0

∥
∥
∥
∥Ix

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2(0,1)
dτ +

∫ T

0

∥
∥
∥
∥

∫ τ

0
γ (ξ , s) ds

∥
∥
∥
∥

2

L2
x(0,1)

dτ ≤ 0. (5.20)

Then from (5.20) it follows that the function ψ =
∫ t

0 γ (x, s) ds – I2
x (ξ

∫ t
0 γ (ξ , s) ds) is zero

a.e. in Q.
To complete the proof of Theorem 5.3, assume that for (Ψ ,ω1) ∈ R(M)⊥, we have

∫ T

0
(Lθ ,Ψ )L2

x(0,1) ds + (l1θ ,ω1)L2
x(0,1) = 0. (5.21)

Then we should show that Ψ = 0,ω1 = 0. If we put θ ∈ D(M) satisfying condition l1θ =
θ (x, 0) = 0 into (5.20), we get

∫ T

0
(Lθ ,Ψ )L2

x(0,1) ds = 0, θ ∈ D(M). (5.22)

By Theorem 5.4 equation (5.22) implies that Ψ vanishes a.e. in Q. Then (5.21) becomes

(l1θ ,ω1)L2
x(0,1) = 0, θ ∈ D(M). (5.23)

Since the range of the trace operator l1 is dense in L2
x(0, 1), from (5.22) we conclude that

ω1 = 0, and Theorem 5.3 is proved. �

We present the following example to illustrate our main results.
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Example In the considered problem (2.1), we set

Y (x, t) =
(
xn + 1

)(
tν + 1

)
, n ∈N,ν > 0, (5.24)

and

f (x, t) =
λ(x)t1–α

(1 – α)Γ (1 – α)
+

2ρ(x)t2–α

(1 – α)(2 – α)Γ (1 – α)
+

12
5

(
x–1 – 2

)
(t + 1)

– t2 +
(
xn + 1

)(
tν + 1

)[
λ(t + 1) + ρt2], (5.25)

where

λ(x) =
6x2 – 12x + 5

5
, ρ(x) =

2x2 – 4 ln x – 3
8

. (5.26)

The function Y satisfies assumptions (4.1) with C0 = 1 and C1 = n(n – 1)(Tν + 1). The
inclusion f ∈ L2

x(Q) holds, and we can easily verify that the function

θ (x, t) =
6x2 – 12x + 5

5
(t + 1) +

2x2 – 4 ln x – 3
8

t2 (5.27)

satisfies the fractional differential equation in (2.1) and the initial and boundary conditions
with the initial condition ω(x) = 6x2–12x+5

5 , which satisfies the compatibility conditions

ωx(1) = 0,
∫ 1

0
xω dx = 0. (5.28)

Moreover, θ ∈ L2
x(Q), and

∂α
t θ =

λ(x)
(1 – α)Γ (1 – α)

t1–α +
2ρ(x)

(1 – α)(2 – α)Γ (1 – α)
t2–α ∈ L2

x(Q). (5.29)

All conditions in Theorem 4.1 and Theorem 5.3 are satisfied, and the existence and
uniqueness of a solution of problem (2.1) follows.

6 Conclusion
The existence and uniqueness of a generalized solution for a singular fractional initial
boundary value problem in the Caputo sense subject to Neumann and weighted integral
conditions are established. It is found that the method of energy inequalities is successfully
applied to obtaining a priori estimates for the solution of the initial fractional boundary
value problem as in the classical case. The obtained results will contribute to the develop-
ment of the functional analysis method and enrich the existing nonextensive literature on
the nonlocal fractional mixed problems in the Caputo sense.
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