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Abstract
In this work, the control of brown planthopper, a major pest of rice, when a biological
control agent (Cyrtorhinus lividipennis) and a pathogen (Beauveria bassiana) are
utilized is investigated mathematically. An impulsive mathematical model accounted
for the population densities of susceptible brown planthoppers (brown planthoppers
that are susceptible to Beauveria bassiana), infected brown planthoppers (brown
planthoppers that are infected by Beauveria bassiana), and Cyrtorhinus lividipennis
(a natural enemy of brown planthopper) is developed. We analyze the model in terms
of its stability and permanence so that we obtain the conditions that differentiate
dynamic behaviors exhibited by the model. To illustrate our theoretical results,
computer simulations are also presented.
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1 Introduction
Rice is recognized as an important food crop for the population of the world [1]. To meet
with the increased demand of rice due to the increased world’s population, the production
of rice should be increased. Rice production has an important effect on the development
of several countries’ economics. Any crises that reduce the production of this commodity
can adversely affect these countries [2]. Approximately 25% of rice crop losses occur due
to its pests [3]. One of the major pests of rice is brown planthopper (BPH). The infestation
of BPH in a rice field can cause the damage known as hopperburn [4]. In Thailand, during
the dry season of the year 2010, the outbreak of BPH caused the loss of approximately $52
million as reported in [5].

To avoid the side effects of insecticide such as biodiversity reduction and the decrease
in population of natural enemies of BPH, biological control and pathogen are considered
as the alternative methods for controlling the outbreak of BPH in the paddy field [6, 7].

There are many natural enemies that have been used as the biological control agent
for controlling the outbreak of brown planthoppers such as Cyrtorhinus lividipennis and
Lycosa pseudoannulata [8–11]. In this study, we focus on Cyrtorhinus lividipennis. The
predatory activity of Cyrtorhinus lividipennis against BPH has been investigated widely
and the results indicated that the Cyrtorhinus lividipennis’s preying on BPH’s eggs was an
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important cause of the decrease in BPH population [8, 12]. When the outbreak of BPH
is severe and the use of Cyrtorhinus lividipennis alone might not be effective because the
reproduction of Cyrtorhinus lividipennis is not rapid enough to control the outbreak, addi-
tional use of the pathogen Beauveria bassiana might be the appropriate way for controlling
the outbreak of BPH.

Hence, we then investigate the effects of impulsive applications/releases of pathogen
Beauveria bassiana and Cyrtorhinus lividipennis on the population dynamics of brown
planthoppers in this paper. In the next section, we state a mathematical model that will
be used to investigate the dynamic behaviors of the model when the pathogen Beauveria
bassiana and Cyrtorhinus lividipennis are utilized.

2 Model development
Let x(t), y(t), and z(t) denote the population densities of susceptible brown planthop-
pers (brown planthoppers that are susceptible to Beauveria bassiana but not yet infected)
at time t, infected brown planthoppers (brown planthoppers that have been infected by
Beauveria bassiana) at time t, and Cyrtorhinus lividipennis (a natural enemy of brown
planthopper) at time t, respectively. The following impulsive system is proposed to inves-
tigate the population dynamics of brown planthoppers when Cyrtorhinus lividipennis and
the pathogen Beauveria bassiana are utilized:

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= mT ,

dx
dt

= a1x
(

1 –
x
k1

)

– a2xy –
a3xz

1 + k2x
– b1x ≡ F1, (1a)

dy
dt

= a2xy – b2y ≡ F2, (1b)

dz
dt

=
αa3xz
1 + k2x

– b3z ≡ F3, (1c)

with

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = mT ,

�x(t) = –δx(t), (1d)

�y(t) = δx(t), (1e)

�z(t) = γ , (1f)

where 0 ≤ α ≤ 1. All parametric values of (1a)–(1f) are assumed to be positive. Once the
rice plants in the field are not infested by BPH yet, the susceptible brown planthoppers
have many rice plants to feed on. When brown planthoppers spread in the field as hopper-
burn, the number of rice plants available for the susceptible brown planthoppers to feed
on is then decreased, and hence the logistic growth is assumed for the reproduction of
susceptible BPH. The infection rate of susceptible BPH by Beauveria bassiana is assumed
to vary directly to the encounters of the susceptible BPH and the infected BPH and hence
the term a2xy is utilized. Since the consumption capability of a Cyrtorhinus lividipennis
is limited, we then assume that the predation rate of susceptible BPH by Cyrtorhinus li-
vidipennis is represented by the term a3xz

1+k2x .
The impulsive period of application/release of the pathogen Beauveria bassiana and

Cyrtorhinus lividipennis in the field is denoted by T , m ∈ Z+, Z+ = {1, 2, 3, . . .}. �x(t) =
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x(t+) – x(t), �y(t) = y(t+) – y(t), and �z(t) = z(t+) – z(t). Once the pathogen Beauveria
bassiana is applied, some of the population of the susceptible brown planthoppers will be
infected. δ represents the fraction of the susceptible brown planthoppers that are infected
by the pathogen Beauveria bassiana and becomes the infected brown planthoppers at
time t = mT , 0 < δ < 1. However, there is no effect of the pathogen Beauveria bassiana
on the population of Cyrtorhinus lividipennis. In addition, Cyrtorhinus lividipennis preys
only on susceptible brown planthoppers, not on those infected by the pathogen Beauveria
bassiana. γ represents the increase in the population of Cyrtorhinus lividipennis due to
the release of Cyrtorhinus lividipennis at time t = mT .

3 Model analysis
In what follows, we let R+ denote [0, ∞). R3

+ denotes {Q ∈ R3 : Q = (x, y, z), x, y, z ∈ R+} and
F denotes (F1, F2, F3). We also assume that the solution of (1a)–(1f) is piecewise continu-
ous. To prove the main results, we first provide some lemmas which need the following
definitions [13].

Definition 1 Let W : R+ × R3
+ → R+ satisfy the locally Lipschitzian condition in Q pro-

vided that W is continuous for (t, Q) ∈ (mT , (m + 1)T] × R3
+ and lim(t,S)→(mT+,Q) W (t, S) =

W (mT+, Q) exists for each Q ∈ R3
+, m ∈ Z+. The upper right derivative of W (t, Q) with

respect to the impulsive equations (1a)–(1f) is then defined as

D+W (t, Q) = lim sup
h→0+

{
W (t + h, Q + hF(t, Q)) – W (t, Q)

h

}

for (t, Q) ∈ (mT , (m + 1)T] × R3
+.

Note that dx
dt = 0, dy

dt = 0, and dz
dt = 0 whenever x(t) = 0, y(t) = 0, and z(t) = 0, respectively,

for t �= mT , x(mT+) = (1 – δ)x(mT) and y(mT+) = y(mT) + δx(mT), 0 < δ < 1, z(mT+) =
z(mT) + γ . In addition, the smoothness properties of F also imply that the solution of the
impulsive differential equations (1a)–(1f) exists and is unique [14].

Lemma 1 The solution of the impulsive differential equations (1a)–(1f), Q(t) = (x(t), y(t),
z(t)), is nonnegative for all t ≥ 0 if Q(0+) ≥ 0. In addition, Q(t) is positive for all t ≥ 0 if
Q(0+) > 0.

Proof We will prove by contradiction. Suppose that there exists t̂ ∈ (0, T] such that x(t) ≥
0, y(t) ≥ 0, z(t) ≥ 0, x(t̂) = 0, ẋ(t̂) < 0, y(t̂) ≥ 0, and z(t̂) ≥ 0 for all t ∈ (0, t̂). From (1a),
ẋ(t̂) = 0 which is a contradiction. Moreover, we also obtain

x(t) = x
(
0+)

exp

(∫

0

t[

a1

(

1 –
x(τ )
k1

)

– a2y(τ ) –
a3z(τ )

1 + k2x(τ )
– b1

]

dτ

)

, t ∈ (0, T].

Therefore, x(t) ≥ 0 if x(0+) ≥ 0 and x(t) > 0 if x(0+) > 0 for t ∈ (0, T]. The proof for y(t)
and z(t) can be conducted in the same manner. �

Lemma 2 For sufficiently large t, the solution of the impulsive differential equations (1a)–
(1f), Q(t) = (x(t), y(t), z(t)), is bounded above.
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Proof We let M1 = a1k1
4 , W (t, Q) = x + y + z, and c = min{b1, b2, b3}. It is obvious that

∥
∥W (t, Q1) – W (t, Q2)

∥
∥ =

∥
∥(x1 + y1 + z1) – (x2 + y2 + z2)

∥
∥ ≤ L‖Q1 – Q2‖,

where Q1 = (x1, y1, z1), Q2 = (x2, y2, z2), and L = 1. Hence, W (t, Q) is locally Lipschitz in Q.
For t �= mT ,

D+W + cW =
dx
dt

+
dy
dt

+
dz
dt

+ cx + cy + cz

= a1x
(

1 –
x
k1

)

– a2xy –
a3xz

1 + k2x
– b1x + a2xy – b2y +

αa3xz
1 + k2x

– b3z

+ cx + cy + cz

≤ a1k1

4
+ (c – b1)x + (c – b2)y + (c – b3)z

≤ M1.

Hence D+W ≤ –cW + M1.
For t = mT ,

W
(
mT+)

= x
(
mT+)

+ y
(
mT+)

+ z
(
mT+)

= (1 – δ)x(mT) + y(mT) + δx(mT) + z(mT) + γ

= x(mT) + y(mT) + z(mT) + γ

= W (mT) + γ .

Hence, for t ∈ (mT , (m + 1)T], Lemma 2.2 of [13] implies that

W (t) ≤ W (0)e–ct +
∫ t

0
M1e–c(t–s) ds + γ

∑

0<tm<t

e–
∫ t

tm c dτ

≤ W (0)e–ct + M1

(
1
c

–
e–ct

c

)

+ γ

[
e–c(t–T) – e–c(t–tm+1)

1 – e–cT

]

≤ M1

c
≡ M as t → ∞.

That is, W (t) is uniformly ultimately bounded. Hence, when t is large enough, x(t), y(t),
and z(t) are bounded above, which implies that the solution Q(t) = (x(t), y(t), z(t)) of the
impulsive differential equations (1a)–(1f) is bounded above as well. �

Next, let us consider the system of (1a)–(1f) when there is no brown planthopper (x = 0
and y = 0):

dz
dt

= –b3z, t �= mT , (2)

z
(
mT+)

= z(mT) + γ , t = mT , (3)

z
(
0+)

= z0. (4)
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We can see that the function

z̃(t) =
γ e–b3(t–mT)

1 – e–b3T

is a positive solution of equations (2)–(4) for t ∈ (mT , (m + 1)T), m ∈ Z+, such that

z̃
(
0+)

=
γ

1 – e–b3T .

Therefore,

z(t) =
(

z0 –
γ

1 – e–b3T

)

e–b3t + z̃(t)

is the solution of equations (2)–(4) for t ∈ (mT , (m + 1)T), m ∈ Z+.

Lemma 3 Equations (2)–(4) have z̃(t) as a positive periodic solution. In addition, as t →
∞, z(t) → z̃(t) for every solution z(t) of equations (2)–(4).

Therefore, at the vanishing of brown planthoppers, system (1a)–(1f) has a periodic so-
lution

(
0, 0, z̃(t)

)
=

(

0, 0,
γ e–b3(t–mT)

1 – e–b3T

)

for t ∈ (mT , (m + 1)T] and z̃(mT+) = z̃(0+) = γ

1–e–b3T , m ∈ Z+.

Theorem 1 Suppose that

a1 > b1 (5)

and

T <
1

(a1 – b1)

[

ln

(
1

1 – δ

)

–
γ

b3

]

≡ Tmax, (6)

then (0, 0, z̃(t)), the solution of the impulsive differential equations (1a)–(1f), is locally
asymptotically stable.

Proof Consider a small perturbation of (0, 0, z̃(t)):

x1(t) = x(t),

y1(t) = y(t),

z1(t) = z(t) – z̃(t).

Therefore, we have

⎛

⎜
⎝

x1(t)
y1(t)
z1(t)

⎞

⎟
⎠ = Φ(t)

⎛

⎜
⎝

x1(0)
y1(0)
z1(0)

⎞

⎟
⎠ , 0 < t < T ,
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where Φ(t), which is the fundamental solution matrix, satisfies

dΦ(t)
dt

=

⎛

⎜
⎝

a1 – b1 – a3z̃(t) 0 0
0 –b2 0
∗ 0 –b3

⎞

⎟
⎠Φ(t)

with Φ(0) = I , the identity matrix. Hence,

Φ(t) =

⎛

⎜
⎝

exp
∫ t

0 (a1 – b1 – a3z̃(t)) ds 0 0
0 exp

∫ t
0 (–b2) ds 0

∗∗ 0 exp
∫ t

0 (–b3) ds

⎞

⎟
⎠ .

We can see that the terms (*) and (**) will not be used in further calculation, then there is
no need to obtain the exact expression for (*) and (**).

Linearization of (1d)–(1f) yields

⎛

⎜
⎝

x1(mT+)
y1(mT+)
z1(mT+)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 – δ 0 0
δ 1 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x1(mT)
y1(mT)
z1(mT)

⎞

⎟
⎠ .

The solution (0, 0, z̃(t)) of the impulsive differential equations (1a)–(1f) is locally asymp-
totically stable, according to Floquet theory, if |λ1|, |λ2|, |λ3| < 1 where λ1, λ2, λ3 are eigen-
values of

P =

⎛

⎜
⎝

1 – δ 0 0
δ 1 0
0 0 1

⎞

⎟
⎠Φ(T).

Here, the eigenvalues of P are

λ1 = (1 – δ) exp
∫ t

0

(
a1 – b1 – a3z̃(t)

)
ds = (1 – δ) exp

(

(a1 – b1)T +
γ

b3

)

,

λ2 = exp
∫ t

0
(–b2) ds = exp(–b2t),

λ3 = exp
∫ t

0
(–b3) ds = exp(–b3t).

Since 0 < δ < 1 and (5)–(6) hold, then all eigenvalues are positive and less than 1. Hence,
the solution (0, 0, z̃(t)) of the impulsive differential equations (1a)–(1f) is locally asymptot-
ically stable. �

4 System permanence
Definition 2 If there are constants m̄, M̄ > 0 and t0 > 0 for which every solution with
positive initial condition x(0+), y(0+), and z(0+),

m̄ ≤ x(t) ≤ M̄,

m̄ ≤ y(t) ≤ M̄,
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m̄ ≤ z(t) ≤ M̄,

for all t > t0, system (1a)–(1f) is said to be permanent.

Theorem 2 Suppose that

A > B (7)

and

T >
(

1
A – B

)

ln

(
1

1 – δ

)

≡ T∗, (8)

where A ≡ a1 – b1 and B ≡ ( a1
k1

+ a2 + a3)( a1k1
4c + γ ecT

ecT –1 ), c = min{b1, b2, b3}. The impulsive
differential equations (1a)–(1f) are permanent if (7) and (8) hold.

Proof Let Q(t) be a solution of the impulsive differential equations (1a)–(1f), Q(t) =
(x(t), y(t), z(t)), with x(0+), y(0+), z(0+) > 0. Then Lemma 2 guarantees that Q(t) is bounded
above when t is large enough. Hence, a constant M̄ > 0 exists for which, when t is suffi-
ciently large, we have x(t), y(t), z(t) ≤ M̄.

Consider (1c) and (1f), we know that

dz
dt

≥ –b3z, t �= mT , (9)

z
(
mT+)

= z(mT) + γ , t = mT , (10)

z
(
0+)

= z0. (11)

Consider the comparison system

dr
dt

= –b3r, t �= mT , (12)

r
(
mT+)

= r(mT) + γ , t = mT , (13)

r
(
0+)

= z0. (14)

We can see that, for t ∈ (mT , (m + 1)T), m ∈ Z+,

r̃(t) =
γ e–b3(t–mT)

1 – e–b3T

is a positive solution of the comparison system (12)–(14) such that

r̃
(
0+)

=
γ

1 – e–b3T .

Therefore, the solution of this comparison system (12)–(14) is

r(t) =
(

z0 –
γ

1 – e–b3T

)

e–b3t + r̃(t), t ∈ (
mT , (m + 1)T

)

and r(t) → r̃(t) as t → ∞.
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According to [14], we obtain z(t) ≥ r(t) by the comparison theorem and hence, when t
is large enough,

z(t) ≥ γ e–b3T

1 – e–b3T + ε1 ≡ m1 > 0. (15)

Next, we will show that there exists a constant m2 > 0 for which x(t) ≥ m2 when t is large
enough.

Step I. By contradiction, we will show for t ≥ t1 that there is t1 > 0 for which x(t) ≥ m3.
For all t ≥ 0, we suppose that x(t) < m3.

Consider (1a) and (1d). Since Lemma 2 implies that there is t1 > 0 in which we can select
M̄ = a1k1

4c + γ ecT

ecT –1 where c = min(b1, b2, b3) for which, for t ≥ t1, we have x(t), y(t), z(t) ≤ M̄,
then

dx
dt

= a1x
(

1 –
x
k1

)

– a2xy –
a3xz

1 + k2x
– b1x, t �= mT (16)

≥
(

a1

(

1 –
x
k1

)

– a2y – a3z – b1

)

x (17)

≥
[

a1 – b1 –
(

a1

k1
+ a2 + a3

)

M̄
]

x (18)

for t ≥ t1, with x(mT+) = (1 – δ)x(mT), t = mT .
Let N ∈ Z+ and NT ≥ T1. We integrate (18) over (mT , (m + 1)T], m ≥ N and obtain

x
(
(m + 1)T

) ≥ x(mT)(1 – δ) exp

(∫ (m+1)T

mT

[

a1 – b1 –
(

a1

k1
+ a2 + a3

)

M̄
]

dt
)

= x(mT)(1 – δ) exp

[

a1 – b1 –
(

a1

k1
+ a2 + a3

)

M̄
]

T

= x(mT)η,

where η ≡ (1 – δ) exp[a1 – b1 – ( a1
k1

+ a2 + a3)M̄]T .
Consider

lnη = ln(1 – δ) +
[

a1 – b1 –
(

a1

k1
+ a2 + a3

)

M̄
]

T (19)

= ln(1 – δ) +
[

a1 – b1 –
(

a1

k1
+ a2 + a3

)(
a1k1

4c
+

γ ecT

ecT – 1

)]

T . (20)

Since (7) and (8) hold, then lnη > 0, which implies that η > 1. Therefore, x((m + k)T) ≥
x(mT)ηk → ∞ as k → ∞, and hence x(t) is not bounded above when t is large enough,
and this is a contradiction. This means that there is t1 > 0 for which x(t1) ≥ m3.

Step II. For all t > t1, if x(t) ≥ m3, the proof is then complete, or else there must be t′ >
t1 for which x(t′) < m3. Next, we consider the following possible cases when we let t∗ =
inft>t1{t : x(t) < m3}.

Case 1. t∗ = k1T for some k1 ∈ Z+. This means that for t ∈ [t1, t∗], x(t) ≥ m3 and

m3 > x
(
t∗+)

= (1 – δ)x
(
t∗) ≥ m3(1 – δ).



Rattanakul Advances in Difference Equations        (2019) 2019:232 Page 9 of 13

Next, k2, k3 ∈ Z+ are chosen so that

k2T > T1,

(1 – δ)k2 exp(k2η1T)ηk3 > (1 – δ)k2 exp
(
(k2 + 1)η1T

)
ηk3 > 1,

where η1 = a1 – b1 – ( a1
k1

+ a2 + a3)M̄ < 0.
Now, we let T ′ = k2T + k3T and claim that t2 ∈ (t∗, t∗ + T ′] must exist for which

x(t2) > m3,

or else, for t∗ + k2T ≤ t ≤ t∗ + T ′, (18) holds and

x
(
t∗ + T ′) ≥ x

(
t∗ + k2T

)
ηn3 . (21)

For t ∈ [t∗, t∗ + k2T],

dx
dt

≥
[

a1 – b1 –
(

a1

k1
+ a2 + a3

)

M̄
]

x, t �= mT , (22)

x
(
t+)

= (1 – δ)x(t), t �= mT . (23)

By integrating (22) over [t∗, t∗ + k2T], we obtain

x
(
t∗ + k2T

) ≥ m3(1 – δ)k2 exp(k2η1T).

Therefore,

x
(
t∗ + T ′) ≥ m3(1 – δ)k2 exp(k2η1T)ηk3 > m3

and a contradiction occurs. Thus, t2 ∈ (t∗, t∗ + T ′] must exist for which x(t2) > m3.
Letting t̃ = inft>t∗{t : x(t) > m3}. Since x(t) is left continuous and x(t+) = (1 – δ)x(t) ≤ x(t)

when t = mT , we can conclude that x(t) ≤ m3 whenever t ∈ (t∗, t̃) and x(t̃) = m3.
Next, we assume for t ∈ (t∗, t̃) that t ∈ (t∗, (l – 1)T , t∗ + lT] where l ∈ Z+ and l ≤ k2 + k3.
Consider (21), we get

x(t) ≥ x
(
t∗+)

(1 – δ)l–1 exp
(
(l – 1)η1T

)
exp

(
η1

(
t –

(
t∗ + (l – 1)T

)))

≥ m3(1 – δ)l exp(lη1T)

≥ m3(1 – δ)k2+k3 exp
(
(k2 + k3)η1T

) ≡ m′
1.

Therefore, we can conclude that x(t) ≥ m′
1 whenever t ∈ (t∗, t̃) and x(t̃) ≥ m3. With sim-

ilar argument for t > t̃, when t is sufficiently large, we obtain x(t) ≥ m2 > 0.
Case 2. t∗ �= mT for all m ∈ Z+. For t ∈ (t1, t∗), we obtain x(t) ≥ m3 and x(t∗) = m3. Sup-

pose t∗ ∈ (k′
1T , (k′

1 + 1)T) for some k′
1 ∈ Z+.

Case 2.1. For all t ∈ (t∗, (k′
1 + 1)T), x(t) ≤ m3. We claim that t′

2 ∈ [(n′
1 + 1)T , (n′

1 + 1)T + T ′]
exists for which x(t′

2) > m3. Otherwise, similar to Case 1, we get

x
((

k′
1 + 1 + k2 + k3

)
T

) ≥ x
((

k′
1 + 1 + k2

)
T

)
ηn3 .
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For t ∈ (t∗, (k′
1 + 1)T), (22) holds on [t∗, (k′

1 + 1 + k2 + k3)T] and x(t) ≤ m3, so that we
obtain

x
((

k′
1 + 1 + k2

)
T

) ≥ m3(1 – δ)k2 exp
(
(k2 + 1)η1T

)
.

Therefore,

x
((

k′
1 + 1 + k2 + k3

)
T

) ≥ m3(1 – δ)k2 exp
(
(k2 + 1)η1T

)
ηn3 > m3,

and a contradiction occurs.
Next, letting t̄ = inft>t∗{t : x(t) > m3}. Therefore, for t ∈ (t∗, t̄),

x(t) ≤ m3

and

x(t̄) = m3.

Now we assume for t ∈ (t∗, t̄) that t ∈ (k′
1T + (l′ – 1)T , k′

1T + l′T] where l′ ∈ Z+ and l′ ≤
1 + k2 + k3. Thus, we obtain

x(t) ≥ m3(1 – δ)l′–1 exp
(
l′η1T

)

≥ m3(1 – δ)k2+k3 exp
(
(k2 + k3 + 1)η1T

) ≡ m1.

So, for t ∈ (t∗, t̄), x(t) ≥ m1. For t > t̄, since x(t̄) ≥ m3, the similar arguments can be
applied. We thus get x(t) ≥ m2 > 0 when t is sufficiently large.

Case 2.2. There is t ∈ (t∗, (k1 + 1)T) for which x(t) > m3. Therefore, we let t̂ = inft>t∗{t :
x(t) > m3}. Hence, for t ∈ (t∗, t̂), we get x(t) ≤ m3 and x(t̂) = m3.

Next, we integrate (22) on (t∗, t̂) where we note that (22) satisfies for t ∈ (t∗, t̂) and obtain

x(t) ≥ x
(
t∗) exp

(
η1

(
t – t∗)) ≥ m3 exp(η1T) > m1.

With the fact that x(t̂) ≥ m3, the above argument can be applied again for t > t̂. Thus,
we obtain x(t) ≥ m2 > 0 for all t ≥ t1.

Finally, we can also show that there exists a constant m4 > 0 for which y(t) ≥ m4 for
sufficiently large t in the same manner as we showed above that x(t) ≥ m2 for sufficiently
large t by using the fact that x(t) ≥ m2 for sufficiently large t, and hence the proof is omitted
here.

Therefore, we can choose m̄ = min{m1, m2, m4} so that x(t), y(t), z(t) ≥ m̄ > 0, and hence
the system is permanent provided that (7) and (8) hold and the proof is complete. �

5 Numerical simulations
Computer simulations are presented in this section to illustrate our theoretical results in
Sect. 3.

Here, two sets of parametric values of the model are chosen as examples to illustrate the
theoretical results in which the parameters a3 and k2 are obtained from the literature [15].
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Figure 1 A computer simulation of the impulsive differential equations (1a)–(1f). The solution trajectory
tends toward the oscillatory solution (0, 0, z̃(t)) as time progresses. Here, a1 = 0.21, a2 = 0.1, a3 = 0.247,
b1 = 0.2, b2 = 0.1, b3 = 0.1, k1 = 0.1, k2 = 0.017, α = 0.1, γ = 0.9, δ = 0.2, T = 14, x(0) = 5, y(0) = 5, and z(0) = 5 in
which all conditions in Theorem 1 are satisfied

A simulation result of the impulsive system of equations (1a)–(1f) with the parametric
values a1 = 0.21, a2 = 0.1, a3 = 0.247, b1 = 0.2, b2 = 0.1, b3 = 0.1, k1 = 0.1, k2 = 0.017, α = 0.1,
γ = 0.9, δ = 0.2, T = 14, x(0) = 5, y(0) = 5, and z(0) = 5, in which all the conditions in
Theorem 1 are satisfied, are presented in Fig. 1. In Fig. 1, the time courses of the population
densities of the susceptible BPH, infected BPH, and Cyrtorhinus lividipennis as well as
the projection of the solution trajectory onto the (x, z)-plane are presented. The solution
trajectory in this case tends to the oscillating solution (0, 0, z̃) for which both susceptible
and infected BPH vanish as predicted in Theorem 1.

On the other hand, Fig. 2 shows a simulation result of the impulsive system of equations
(1a)–(1f) with the parametric values a1 = 0.38, a2 = 0.1, a3 = 0.247, b1 = 0.25, b2 = 0.1,
b3 = 0.1, k1 = 0.3, k2 = 0.017, α = 0.5, γ = 0.9, δ = 0.2, T = 60, x(0) = 5, y(0) = 5, and z(0) = 5
in which all the conditions in Theorem 2 are satisfied. The time courses of the population
densities of the susceptible BPH, infected BPH, and Cyrtorhinus lividipennis as well as
the projection of the solution trajectory onto the (x, z)-plane are as shown in Fig. 2. The
solution of the system in this case is permanent as predicted in Theorem 2. We can see that
the population densities of both susceptible and infected BPH can be controlled within a
certain level, while its natural enemy Cyrtorhinus lividipennis also survives in the paddy
field.
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Figure 2 A computer simulation of the impulsive differential equations (1a)–(1f). The solution of the system is
permanent. Here, a1 = 0.38, a2 = 0.1, a3 = 0.247, b1 = 0.25, b2 = 0.1, b3 = 0.1, k1 = 0.3, k2 = 0.017, α = 0.5,
γ = 0.9, δ = 0.2, T = 60, x(0) = 5, y(0) = 5, and z(0) = 5 in which all conditions in Theorem 2 are satisfied

6 Conclusion
We investigate the dynamic behaviors of the populations of susceptible and infected BPH
when Cyrtorhinus lividipennis and the pathogen Beauveria bassiana are utilized to control
the population of BPH in the paddy field mathematically. Here, the pathogen Beauveria
bassiana does not have an effect on Cyrtorhinus lividipennis.

Brown plant hoppers (BPH) are rice’s insect pests. Therefore, the aim of this work is to
obtain the conditions on the system parameters for which the populations of both suscep-
tible and infected BPH tend to zero level as time passes. However, the cost for controlling
BPH to zero level might be too high and the control of BPH levels x(t) and y(t) to lie
within a certain range might be a better option in an economic point of view. Hence, we
also provide the conditions for which the system is permanent and the levels of BPH can
be controlled to lie within a certain range as well.

The examples of two sets of parameters are selected as examples to illustrate the the-
oretical results in which some parametric values are obtained from the literature [15].
Numerical simulations are as shown in Figs. 1 and 2. We can see that in Fig. 2, the popu-
lation of BPH could be controlled below certain ranges, and we can also observe that the
population of Cyrtorhinus lividipennis is approximately twice of the population of BPH.
This result corresponds to what has been observed in the rice field in Thailand [16] that
the population of BPH could be controlled to be lower than a certain level if the population
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of Cyrtorhinus lividipennis in the field is approximately twice of the population of BPH in
the rice field.

In addition, the conditions in Theorem 1 and 2 depend on the duration T between the
two consecutive applications of Beauveria bassiana and Cyrtorhinus lividipennis. Hence,
the appropriate duration T could play an important role in controlling the population
of BPH in the rice field. The current practices in Thailand that natural enemies of BPH
or pathogens will be applied in the field whenever the spread of BPH in the rice field is
detected would take some time before the population of BPH can be controlled. Hence,
the applications of Beauveria bassiana and Cyrtorhinus lividipennis in the rice field with
the appropriate duration T could lead to the more efficient control of BPH in the rice field.
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