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Abstract
In this work, we present a new two-waves’ version of the fifth-order Korteweg–de
Vries model. This model describes the propagation of moving two-waves under the
influence of dispersion, nonlinearity, and phase velocity factors. We seek possible
stationary wave solutions to this new model by means of Kudryashov-expansion
method and sine–cosine function method. Also, we provide a graphical analysis to
show the effect of phase velocity on the motion of the obtained solutions.
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1 Introduction
Stationary wave solutions for nonlinear equations play an important role in understanding
many mathematical models arising in physics and applied sciences. These solutions were
developed and categorized to fit many physical learned aspects (see [1]). For example, the
authors of [2–4] used rogue soliton-waves to study the coupled variable-coefficient fourth-
order nonlinear Schrödinger equations in an inhomogeneous optical fiber and coupled
Sasa–Satsuma equations. Hu et al. in [5] explored the mixed lump–kink and rogue wave–
kink solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid
mechanics. Further, many interesting soliton-type solutions for physical applications that
arise in plasma, surface waves of finite depth, and optical fiber were studied by researchers
in, e.g., [6–9].

In this work, we present a new interesting two-wave version of the generalized fifth-
order KdV equation which was discussed in [10, 11]. The standard fifth-order KdV equa-
tion has the form

wt + a1w2wx + a2wxwxx + a3wwxxx + wxxxxx = 0, (1.1)

where w = w(x, t) and a1, a2, a3 are some arbitrary constants. The fifth-order KdV equa-
tion (1.1) is a hybrid mathematical model with wide applications to surface and internal
waves in fluids [11], as well as to waves in other media [12–14]. Special cases of (1.1) are
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widely used in different branches of sciences such as fluid physics, plasma physics, and
quantum theory. For instance, when a1 = 3

10 a2
3, a2 = 2a3, a3 = 10, equation (1.1), called

Lax equation, was studied in [15]. Also, when a1 = 2
5 a2

3, a2 = a3, a3 = 5, this equation is
called Sawada–Kotera equation and was solved in [16]. In addition, the authors of [17]
obtained the solution to (1.1) for a1 = 1

5 a2
3, a2 = a3, a3 = 10, which is known as the Kaup–

Kupershmidt equation. Later on, under the assumption a1 = 2
9 a2

3, a2 = 2a3, a3 = 3, the Ito
equation was investigated in [18]. For the case a1 = 45, a2 = – 75

2 , a3 = –15, it is called
Kaup–Kupershmidt–Parker–Dye equation [19]. The solution to Caudrey–Dodd–Gibbon
equation was found in [20] provided that a1 = 180, a2 = 30, a3 = 30. Finally, for a1 = 45,
a2 = –15, a3 = –15, (1.1) is called Sawada–Kotera–Parker–Dye equation, which was ex-
plored in [21].

The purpose of listing the aforementioned classifications of (1.1) is to highlight the im-
portance and merit of studying new versions of the model, and also to explore its physical
features. Now, we proceed to present for the first time the two-waves’ version of (1.1) by
applying the operators

N =
∂

∂t
– αs

∂

∂x
,

L =
∂

∂t
– βs

∂

∂x
,

(1.2)

respectively, on the expressions a1w2wx + a2wxwxx + a3wwxxx and wxxxxx and extending
the term wt into the expression wtt – s2wxx. Therefore, the two-wave fifth-order KdV
(TWfKdV) is

wtt – s2wxx +
(

∂

∂t
+ αs

∂

∂x

){
a1u2ux + a2wxwxx + a3wwxxx

}

+
(

∂

∂t
– βs

∂

∂x

)
{wxxxxx} = 0, (1.3)

where α, β , and s are the nonlinearity, dispersion, and phase velocity, respectively, with
|α| ≤ 1, |β| ≤ 1, and s ≥ 0. If we set s = 0 in (1.3) and integrate once with respect to time t,
the TWfKdV equation is reduced to the fifth-order KdV equation (1.2) for the description
of a single-wave propagating in one direction only. To learn about constructing two-mode
equations, the reader is advised to read [22–31].

The two-wave equation (1.3) describes the spread of moving two-waves under the in-
fluence of dispersion, nonlinearity, and phase velocity factors. We aim to seek possible
solutions for (1.3) by implementing two techniques, the Kudryashov-expansion method
and sine–cosine function method. Also, we study the effect of phase velocity on the mo-
tion of the obtained solutions. Both techniques require converting (1.3) by means of the
new variable ζ = x – ct into the differential equation

(
c2 – s2)w′ – (c + αs)

(
a1w2w′ + a2w′w′′ + a3ww′′′) – (c + βs)

(
w(5)) = 0, (1.4)

where w = w(ζ ).
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2 Kudryashov solutions of TMfKdV
The Kudryashov-expansion technique [32–35] proposes the solution of (1.4) as a polyno-
mial of the variable Z, namely

w(Z) =
n∑

i=0

AiZi, Z = Z(ζ ), (2.1)

where variable Z satisfies the differential equation

Z′ = μZ(Z – 1). (2.2)

Solving (2.2) gives

Z(ζ ) =
1

1 + deμζ
, (2.3)

where d is a nonzero free constant. The index n is to be determined by applying the order-
balance procedure of the linear term w(5) against the nonlinear term w2w′, which gives
that n = 2. Therefore, we can write (2.1) as

w(ζ ) = A0 + A1Z + A2Z2. (2.4)

Differentiating both (2.2) and (2.4) implicitly leads to

Z′′ = μ2Z(Z – 1)(2Z – 1),

Z′′′ = μ3Z(Z – 1)
(
6Z2 – 6Z + 1

)
,

Z(4) = μ4Z(Z – 1)
(
24Z3 – 36Z2 + 14Z – 1

)
,

Z(5) = μ5Z(Z – 1)
(
120Z4 – 240Z3 + 150Z2 – 30Z + 1

)
,

(2.5)

and

w′(ζ ) = A1Z′ + 2A2ZZ′,

w′′(ζ ) = A1Z′′ + 2A2
(
ZZ′′ +

(
Z′)2),

w′′′(ζ ) = A1Z′′′ + 2A2
(
ZZ′′′ + 3Z′Z′′),

w(4)(ζ ) = A1Z(4) + 2A2
(
ZZ(4) + 4Z′Z′′′ + 3

(
Z′′)2),

w(5)(ζ ) = A1Z(5) + 2A2
(
ZZ(5) + 5Z′Z(4) + 10Z′′Z′′′).

(2.6)

Now, we insert (2.2) through (2.6) into (1.4) to get a finite polynomial in Z. By setting each
coefficient of Zi to zero, a nonlinear algebraic system with unknowns A0, A1, A2, μ, c is
obtained. We cannot solve the resulting system unless we consider some restrictions on
the coefficients a0, a1, a2 and the parameters α, β .

2.1 Kudryashov-Case I
The first solution for the TMfKdV (1.3) exists when the coefficients are assigned as

a1 =
6μ2a3

A1
, a2 =

60μ2 – A1a3

A1
, a3 = free;
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Figure 1 Shapes of the two-waves depicted in (2.8) by increasing the phase velocity: s = 1, 3, 5, respectively,
and the other assigned values are β = 0.1, d =μ = A1 = 1

Figure 2 2D plot of (2.8) when x = 1, s = 5 and the
other assigned values are β = 0.1, d =μ = A1 = 1

and the two-mode parameters have the relation

α = β .

Hence,

A2 = –A1,

A0 = 0,

A1 = free �= 0,

c =
1
2
(
μ4 ∓

√
4s2 + 4sβμ4 + μ8

)
.

(2.7)

Therefore, the first obtained solution is

u(x, t) =
A1deμ(x– 1

2 t(μ4∓
√

4s2+42βμ4+μ8))

(1 + deμ(x– t
2 (μ4∓

√
4s2+4sβμ4+μ8)))2

. (2.8)

Figure 1 presents 3D plots of the two-waves depicted in (2.8) upon increasing the phase
velocity s. Figure 2 is a 2D plot of (2.8) when coordinate x is fixed. It can be seen that these
two waves can be regarded as left–right waves (having opposite directions).

2.2 Kudryashov-Case II
When we take the coefficients

a1 =
(183 – 7

√
849)μ4

8A2
0

, a2 =
(443 – 7

√
849)μ2

8A0
, a3 =

–13μ2

A0
,
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Figure 3 The two-waves depicted in (2.10) with
β = 0.1, s = d =μ = A0 = 1

and the two-wave parameters satisfy α = β , then the second solution for (1.3) is reached.
Accordingly,

A0 = free �= 0,

A1 = 0,

A2 = –
3

26
(41 +

√
849)A0,

c =
1

16
(
–7(15 +

√
849)μ4

∓
√

256s2 – 224(15 +
√

849)sβμ4 + 294(179 + 5
√

849)μ8
)
.

(2.9)

Thus, the second obtained solution is

u(x, t) = A0 –
3(41 +

√
849)A0

26(1 + deμ(x– t
16 (–7(15+

√
849)μ4∓

√
256s2–224(15+

√
849)sβμ4+294(179+5

√
849)μ8)))2

.

(2.10)

Figure 3 presents the 3D plot of the two-waves depicted in (2.10).

2.3 Kudryashov-Case III
It is worth mentioning that when the two-waves’ parameters satisfy α = β = ±1, the third
solution for TWfKdV (1.3) (with no restrictions on the coefficients a1, a2, a3) is obtained.
So,

A0 = free,

A1 = free �= 0,

A2 = 0,

c = ±s,

(2.11)

which gives that the third obtained solution is

u(x, t) = A0 +
A1

1 + deμ(x±st) . (2.12)



Ali et al. Advances in Difference Equations        (2019) 2019:263 Page 6 of 9

Figure 4 Shapes of the two-waves depicted in (2.12) by increasing the phase velocity: s = 5, 10, 15,
respectively, and the other assigned values are d =μ = A0 = A1 = 1

Figure 4 presents 3D plots of the two-waves depicted in (2.12) upon increasing the inter-
action phase velocity s.

3 Sine–cosine solution of TMfKdV
The goal of this section is to find periodic solutions of TWfKdV by means of sine–cosine
function method (see [36–38]). This scheme propose the solution of (1.4) in the form

w(ζ ) = A sinp(μζ ), (3.1)

or

w(ζ ) = A cosp(μζ ). (3.2)

To determine the values of A, p, μ and c, we substitute (3.1) or (3.2) in (1.4), and then
collect the coefficients of same powers of sini or cosi and set each to zero. In fact, we have
an algebraic system with α = β , namely

{
sinp–5, cosp–5}: – Ap

(
24 – 50p + 35p2 – 10p3 + p4)(c + sβ)μ5,

{
sinp–3, cosp–3}: 2Ap

(
4 – 10p + 10p2 – 5p3 + p4)(c + sβ)μ5,

{
sinp–1, cosp–1}: – Apμ

(
–c2 + cp4μ4 + s

(
s + p4βμ4)),

{
sin2p–3, cos2p–3}: – A2(–1 + p)p

(
a3(–2 + p) + a2p

)
(c + sα)μ3,

{
sin2p–1, cos2p–1}: A2(a2 + a3)p3(c + sα)μ3,

{
sin3p–1, cos3p–1}: – A3a1p(c + sα)μ.

(3.3)

Solving (3.3) requires p = –2, and the TWfKdV’s coefficients are

a1 = –
6a3μ

2

A
,

a2 = –
Aa3 + 60μ2

A
.

(3.4)

So, we deduce that the wave speed c is

c = 8μ4 ∓
√

s2 + 16sβμ4 + 64μ8. (3.5)
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Figure 5 Shapes of the two-waves depicted in (3.6) by increasing the phase velocity: s = 1, 5, 10, respectively,
and the other assigned values are A =μ = β = 1

Therefore, two periodic-type solutions are

w(x, t) = A csc2(μ(
x –

(
8μ4 ∓ √

s2 + 16sβμ4 + 64μ8
)
t
))

,

w(x, t) = A sec2(μ(
x –

(
8μ4 ∓ √

s2 + 16sβμ4 + 64μ8
)
t
))

.
(3.6)

Figure 5 presents plots of the two-waves obtained in (3.6) upon increasing the phase ve-
locity s.

4 Conclusion
A new two-wave version of the generalized fifth-order KdV problem is established. This
new model possesses two directional waves with interacting phase velocity. We obtained
different solutions of this new model under particular choices of the coefficients a1, a2, a3,
and the constraint condition α = β = d with |d| < 1. Also, we studied the impact of increas-
ing the phase velocity on the shape of spreading its two-waves. The following findings are
recorded:

• For a1 = 6μ2a3
A1

, a2 = 60μ2–A1a3
A1

, a3 = free, and α = β , the TWfKdV is a soliton-type.

• For a1 = (183–7
√

849)μ4

8A2
0

, a2 = (443–7
√

849)μ2

8A0
, a3 = –13μ2

A0
, and α = β , the TWfKdV is a

kink-type.
• For arbitrary a1, a2, a3 and α = β = ±1, the TWfKdV is a kink-type.
• For a1 = – 6a3μ2

A , a2 = – Aa3+60μ2

A and α = β , the TWfKdV is a singular periodic-type.
We may say that these two-waves could be useful in many physical and engineering ap-
plications, for example, they can be used as barrier waves to strengthen the transmission
of different signals’ data. Also, if a large amount of data is difficult to pass on to a single
router, it can be distributed on two routers.
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