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Abstract
A filter regularization method is developed to solve a time-fractional inverse
advection–dispersion problem, which is based on the modified ‘kernel’ idea. Proofs of
convergence are given under both priori and posteriori regularization parameter
choice rules. Numerical examples are presented to illustrate the effectiveness of the
proposed algorithm.
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1 Introduction
In the last few decades, many problems in finance [1, 2], physics [3–6], control theory
[7], hydrology [8, 9] and viscoelasticity [10] were modeled mathematically by fractional
partial differential equations. The biggest important advantage of using fractional partial
differential equations in mathematical modeling is their non-local property in the sense
that the next state of the system depends not only upon its current state but also upon all
of its proceeding states. The fractional-order models are more adequate than the integral-
order models to describe the memory and hereditary properties of different substances
[11–17].

In practical physical applications, Brownian motion, the diffusion with an additional
velocity field and diffusion under the influence of a constant external force field are both
modeled by the advection–dispersion equation [18]. However, the advection–dispersion
equation is not suitable for anomalous diffusion, i.e., the fractional generalization may be
different for the advection case and the transport in an external force field [19]. A straight-
forward extension of the continuous time random walk (CTRW) model leads to a frac-
tional advection–dispersion equation. The time-fractional advection–dispersion equa-
tion is obtained by replacing the time-derivative in the advection–dispersion equation by
a generalized derivative of order α with 0 < α ≤ 1 and can be used to simulate contaminant
transport in porous media [20]. Direct problems for time-fractional advection–dispersion
equations have been studied extensively in recent years [21–24]. By contrast, little has been
done on the inverse problems for time-fractional advection–dispersion equations.
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In this paper, the inverse problem of time-fractional advection–dispersion equation is
given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0Dα
t u(x, t) + bux(x, t) = auxx(x, t), x > 0, t > 0,

u(x, 0) = 0, x ≥ 0,

u(x, t)|x→∞ bounded, t ≥ 0,

u(1, t) = g(t), t ≥ 0,

(1.1)

where u is the solute concentration, the constants a (a > 0) and b (b ≥ 0) represent the dis-
persion coefficient and the average fluid velocity, respectively. The time-fractional deriva-
tive 0Dα

t u(x, t) is the Caputo fractional derivative of order α (0 < α ≤ 1) defined by [11]

0Dα
t u(x, t) =

⎧
⎨

⎩

1
Γ (1–α)

∫ t
0

∂u(x,s)
∂s

ds
(t–s)α , 0 < α < 1,

∂u(x,t)
∂t , α = 1.

The problem is to detect the temperature for 0 ≤ x < 1 by means of the current temper-
ature measurement at x = 1. It is well known that this problem is ill-posed, since the small
errors in the input data may cause large errors in the output solution.

Recently, time-fractional inverse diffusion problems have been considered by some au-
thors; see [25–29]. Although there are many papers on time-fractional inverse diffusion
problems, we only find a few results on inverse problems for time-fractional advection–
dispersion equations. Zheng and Wei [30, 31] applied the spectral regularization method
and the modified equation method to a time-fractional inverse advection–dispersion
problem, respectively. Following the work of [30, 31], Zhao et al. [32] used an optimal fil-
tering method to deal with a time-fractional inverse advection–dispersion problem. How-
ever, the theoretical studies in the literature [30–32] were only based on a priori regular-
ization parameter choice rule. The main aim of this present work is to present a filter reg-
ularization method and prove the convergence estimates under both priori and posteriori
regularization parameter choice rules. The advantages of the proposed approach over the
other existing results available in the literature [30–32] are demonstrated in Remark 3.5,
Remark 3.6, Remark 3.8 and Remark 4.6 in detail.

The idea of filter regularization method by modified ‘kernel’ is very simple and natural,
since the ill-posedness of time-fractional inverse advection–dispersion problem is caused
by the high frequency components of the ‘kernel’, the ‘kernel’ function can be modified. As
long as the modified ‘kernel’ function satisfies som certain properties, a new regularization
method can be established. In addition, the modified ‘kernel’ idea has been used to deal
with several ill-posed problems [33–36].

This paper consists of six sections. Section 2 states the ill-posedness of the problem and
presents a filter regularization method. In Sects. 3 and 4, the error estimates are proved
under both prior and posterior regularization parameter choice rules. Numerical experi-
ments are performed in Sect. 5. A brief conclusion is given in Sect. 6.

2 Ill-posedness of the problem and a filter regularization method
In order to apply the Fourier transform, all the functions are extended to the whole line
–∞ < t < ∞ by defining them to be zero for t < 0. Here, and in the following sections, ‖ · ‖
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denotes the L2-norm, i.e.,

‖f ‖ =
(∫ ∞

–∞

∣
∣f (t)

∣
∣2 dt

) 1
2

.

The Fourier transform of the function f (t) is written as

f̂ (ξ ) =
1√
2π

∫ ∞

–∞
f (t)e–iξ t dt,

and ‖ · ‖p denotes the Hp-norm, i.e.,

‖f ‖Hp =
(∫ ∞

–∞

(
1 + ξ 2)p∣∣̂f (ξ )

∣
∣2 dξ

) 1
2

.

Taking the Fourier transform to (1.1) with respect to t, one can easily get the solution of
problem (1.1) in the frequency domain

û(x, ξ ) = e(1–x)k(ξ )̂g(ξ ), (2.1)

or equivalently

u(x, t) =
1√
2π

∫ ∞

–∞
eiξ te(1–x)k(ξ )̂g(ξ ) dξ , (2.2)

where

k(ξ ) =
1

2a
(√

b2 + 4a(iξ )α – b
)

= A + iB,

(iξ )α =

⎧
⎨

⎩

|ξ |α(cos απ
2 + i sin απ

2 ), ξ ≥ 0,

|ξ |α(cos απ
2 – i sin απ

2 ), ξ < 0.

(2.3)

It is easy to see that the real part of k(ξ ) is

A = �(
k(ξ )

)
=

1
2a

(
√

r2(ξ ) + 4a|ξ |α cos απ
2 + b2

2
– b

)

,

and the imaginary part of k(ξ ) is

B = 	(
k(ξ )

)
= sign(ξ ) · 1

2a

√

r2(ξ ) – 4a|ξ |α cos απ
2 – b2

2

with

r(ξ ) =
∣
∣b2 + 4a(iξ )α

∣
∣

1
2 =

(

b4 + 16a2|ξ |2α + 8ab2|ξ |α cos
απ

2

) 1
4

.

Note that k(ξ ) has a positive real part and therefore the factor e(1–x)A increases exponen-
tially for 0 ≤ x < 1 as |ξ | → ∞. The measured data function gδ(t) ∈ L2(R) usually contains
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an error, and it satisfies

∥
∥gδ(t) – g(t)

∥
∥ ≤ δ, (2.4)

where δ > 0 is a noise level. This mean a small error for the measured data gδ(t) will be am-
plified infinitely by the factor e(1–x)A and destroy the solution of problem (1.1). Therefore,
the time-fractional inverse advection–dispersion problem is severely ill-posed and some
regularization methods are needed. Thus, a filter regularization method to solve problem
(1.1) is presented in this paper.

To regularize the problem, our aim is to replace the term e(1–x)A by another term. For
this purpose, a regularized solution in frequency space is defined as follows:

ûβ ,δ(x, ξ ) =
e(1–x)k(ξ )

1 + β|ek(ξ )| ĝδ(ξ ), (2.5)

or equivalently

uβ ,δ(x, t) =
1√
2π

∫ ∞

–∞
eiξ t e(1–x)k(ξ )

1 + β|ek(ξ )| ĝδ(ξ ) dξ . (2.6)

In the following section, the error estimates between the regularized solution uβ ,δ(x, t)
and the exact solution u(x, t) will be proved under both prior and posterior regularization
parameter choice rules.

3 Prior choice rule and error estimate
In this section, the L2-estimate and Hp-estimate are discussed under a prior regularization
parameter choice rule, respectively. Before obtaining the main theorems, some auxiliary
lemmas firstly are given.

Lemma 3.1 ([31]) If x ∈ [0, 1), and k(ξ ) is given by (2.3), then the following inequality holds:

∣
∣k(ξ )

∣
∣ ≤ |ξ | α

2√
a

.

Lemma 3.2 ([37]) Let 0 < x < a, 0 < μ < 1, then

sup
η≥0

eηx

1 + μeηa ≤ μ– x
a .

3.1 L2-Estimate
Theorem 3.3 Suppose that u(x, ·) is the exact solution of problem (1.1) and uβ ,δ(x, ·) is the
filter regularized solution of problem (1.1). Let the assumption (2.4) and the prior condition
‖u(0, ·)‖ ≤ E hold. If the regularization parameter β is selected by

β =
δ

E
, (3.1)

then we have the following error estimate:

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ 2δxE1–x, 0 < x < 1. (3.2)
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Proof Due to Parseval’s formula and the triangle inequality, we have

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ =

∥
∥̂uβ ,δ(x, ·) – û(x, ·)∥∥

=
∥
∥
∥
∥e(1–x)k(ξ )̂g(ξ ) –

e(1–x)k(ξ )

1 + β|ek(ξ )| ĝδ(ξ )
∥
∥
∥
∥

≤
∥
∥
∥
∥e(1–x)k(ξ )̂g(ξ ) –

e(1–x)k(ξ )

1 + β|ek(ξ )| ĝ(ξ )
∥
∥
∥
∥

+
∥
∥
∥
∥

e(1–x)k(ξ )

1 + β|ek(ξ )| ĝ(ξ ) –
e(1–x)k(ξ )

1 + β|ek(ξ )| ĝδ(ξ )
∥
∥
∥
∥

=
∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )|e(1–x)k(ξ )̂g(ξ )

∥
∥
∥
∥

+
∥
∥
∥
∥

e(1–x)k(ξ )

1 + β|ek(ξ )|
(
ĝ(ξ ) – ĝδ(ξ )

)
∥
∥
∥
∥

≤ sup
ξ∈R

∣
∣
∣
∣

β|ek(ξ )|
1 + β|ek(ξ )|e–xk(ξ )

∣
∣
∣
∣E

+ sup
ξ∈R

∣
∣
∣
∣

e(1–x)k(ξ )

1 + β|ek(ξ )|
∣
∣
∣
∣

∥
∥̂g(ξ ) – ĝδ(ξ )

∥
∥

≤ E sup
A≥0

βe(1–x)A

1 + βeA + δ sup
A≥0

e(1–x)A

1 + βeA . (3.3)

Let

C(ξ ) = sup
A≥0

βe(1–x)A

1 + βeA , D(ξ ) = sup
A≥0

e(1–x)A

1 + βeA .

According to Lemma 3.2, it is obvious that

C(ξ ) = sup
A≥0

βe(1–x)A

1 + βeA ≤ ββx–1 = βx, (3.4)

D(ξ ) = sup
A≥0

e(1–x)A

1 + βeA ≤ βx–1. (3.5)

Combining the formulas (3.3)–(3.5), it follows that

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ Eβx + δβx–1, (3.6)

using Eq. (3.1), the error estimate (3.2) is obtained. �

Remark 3.4 From (3.2), it is clear that a Hölder-type estimate in the interval 0 < x < 1 is
obtained. However, the error estimate at x = 0 cannot be obtained. In order to obtain the
error estimate at x = 0, a stronger prior bound is introduced as follows:

∥
∥u(0, ·)∥∥Hp ≤ E. (3.7)

Remark 3.5 The error estimate (3.2) is the same order as that of Theorem 1 in [30] and
Theorem 2.1 in [32].
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Remark 3.6 In [31], the authors regularize the time-fractional inverse advection–
dispersion problem and derive the error estimate

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤ ε1 +

C2 · E
(ln E

δ
)4

.

Thus, the convergence rate in this work is better than the one in [31].

3.2 Hp-Estimate
Theorem 3.7 Suppose that u(0, ·) is the exact solution of problem (1.1) and uβ ,δ(0, ·) is the
filter regularized solution of problem (1.1). Let the assumption (2.3) and the prior condition
‖u(0, ·)‖Hp ≤ E hold. If the regularization parameter β is selected by

β =
(

δ

E

) 1
2

, (3.8)

then we have the following error estimate:

∥
∥uβ ,δ(0, ·) – u(0, ·)∥∥ ≤ δ

1
2 E

1
2 + E max

{(
1
2

ln
E
δ

)–p

,
(

δ

E

) 1
2 – α

4
√

a
}

. (3.9)

Proof Using the analogous technique of Theorem 3.3, it is evident that

∥
∥uβ ,δ(0, ·) – u(0, ·)∥∥ =

∥
∥̂uβ ,δ(0, ·) – û(0, ·)∥∥

≤ ∥
∥̂uβ ,δ(0, ·) – ûβ (0, ·)∥∥ +

∥
∥̂uβ (0, ·) – û(0, ·)∥∥. (3.10)

For the first term on the right-hand side of (3.10), the following inequality holds:

∥
∥̂uβ ,δ(0, ·) – ûβ (0, ·)∥∥ ≤ δ sup

A≥0

eA

1 + βeA ≤ δβ–1. (3.11)

For the second term on the right-hand side of (3.10), and note that ‖u(0, ·)‖Hp ≤ E, we have

∥
∥̂uβ (0, ·) – û(0, ·)∥∥ =

∥
∥
∥
∥ek(ξ )̂g(ξ ) –

ek(ξ )

1 + β|ek(ξ )| ĝ(ξ )
∥
∥
∥
∥

=
∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )|

(
1 + |ξ |2)– p

2
(
1 + |ξ |2)

p
2 ek(ξ )̂g(ξ )

∥
∥
∥
∥

≤ E sup
ξ∈R

β|ek(ξ )|
1 + β|ek(ξ )|

(
1 + |ξ |2)– p

2 , (3.12)

where E is the prior bound.
Now setting the function f (ξ ) := β|ek(ξ )|

1+β|ek(ξ )| (1 + |ξ |2)– p
2 , and using Lemma 3.1, it is easy to

see that:
(i) f (ξ ) ≤ (1 + |ξ |2)– p

2 ≤ |ξ |–p ≤ (ln 1
β

)–p, for |ξ | ≥ ln 1
β

,

(ii) f (ξ ) ≤ β|ek(ξ )| ≤ βe
|ξ |

α
2√
a ≤ β

1– α
2
√

a , for |ξ | < ln 1
β

.
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Then the following inequality can be obtained:

∥
∥̂uβ (0, ·) – û(0, ·)∥∥ ≤ E max

{(

ln
1
β

)–p

,β1– α
2
√

a

}

. (3.13)

Taking into account (3.8), (3.10), (3.11), (3.12) and (3.13), the error estimate (3.9) is ob-
tained. �

Remark 3.8 In [30–32], the convergence estimates have been obtained under a prior reg-
ularization parameter choice rule. However, in practical computations, such choices do
not work well for all cases. Therefore, it is better to provide a posterior regularization
parameter choice rule. In the next section, this topic is considered.

4 Posterior choice rule and error estimate
This section presents a posterior regularization parameter choice by Morozov’s discrep-
ancy principle. Choose the regularization parameter β as the solution of the equation

∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥ = τδ, (4.1)

where τ > 1 is a constant and β denotes the regularization parameter. To establish exis-
tence and uniqueness of solution for Eq. (4.1), the following lemmas are needed.

Lemma 4.1 Let ρ(β) := ‖ 1
1+β|ek(ξ )| ĝ

δ(ξ ) – ĝδ(ξ )‖, if 0 < τδ < ‖̂gδ(ξ )‖, then
(a) ρ(β) is a continuous function;
(b) limβ→0 ρ(β) = 0;
(c) limβ→+∞ ρ(β) = ‖̂gδ‖;
(d) ρ(β) is a strictly increasing function.

The proof is very easy and we omit it here.

Remark 4.2 From Lemma 4.1, it is known that there exists a unique solution β satisfying
Eq. (4.1).

Lemma 4.3 If β is the solution of Eq. (4.1), then the following inequality holds:

∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥ ≤ (τ + 1)δ. (4.2)

Proof Due to the triangle inequality and Eq. (4.1), we have

∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

≤
∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥ +

∥
∥̂gδ(ξ ) – ĝ(ξ )

∥
∥

≤ (τ + 1)δ. (4.3)

The lemma is proved. �
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Lemma 4.4 If β is the solution of Eq. (4.1), the following inequality also holds:

β–1 ≤ E
(τ – 1)δ

. (4.4)

Proof Due to the triangle inequality and Eq. (4.1), we have

τδ =
∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )| ĝδ(ξ )

∥
∥
∥
∥

≤
∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )|

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥ +

∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )| ĝ(ξ )

∥
∥
∥
∥

≤ δ +
∥
∥
∥
∥

β|ek(ξ )|
1 + β|ek(ξ )| ĝ(ξ )

∥
∥
∥
∥

≤ δ + βE. (4.5)

Then (4.4) can be obtained. The lemma is proved. �

Now, the main theorem is given as follows.

Theorem 4.5 Suppose that the prior condition ‖u(0, ·)‖ ≤ E and the assumption (2.4) hold,
and there exists τ > 1 such that 0 < τδ < ‖̂gδ‖. The regularization parameter β > 0 is chosen
by Morozov’s discrepancy principle (4.1). Then the following convergence estimate holds:

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥ ≤

(
τ

τ – 1

)1–x

(τ + 1)xδxE1–x. (4.6)

Proof Due to the Parseval formula and Lemma 4.3, we have

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥2

=
∥
∥̂uβ ,δ(x, ·) – û(x, ·)∥∥2

=
∥
∥
∥
∥

e(1–x)k(ξ )

1 + β|ek(ξ )| ĝδ(ξ ) – e(1–x)k(ξ )̂g(ξ )
∥
∥
∥
∥

2

=
∥
∥
∥
∥e(1–x)k(ξ )

(
1

1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )
)∥

∥
∥
∥

2

=
∫ ∞

–∞

∣
∣
∣
∣e

(1–x)k(ξ )
(

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

)∣
∣
∣
∣

2

dξ

=
∫ ∞

–∞

∣
∣e(1–x)k(ξ )∣∣2

∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

=
∫ ∞

–∞

∣
∣e(1–x)k(ξ )∣∣2

∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2(1–x)

·
∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2x

dξ

≤
(∫ ∞

–∞

(
∣
∣e(1–x)k(ξ )∣∣2

∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2(1–x)) 1
1–x

dξ

)1–x
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·
(∫ ∞

–∞

(∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2x) 1
x

dξ

)x

≤
(∫ ∞

–∞

∣
∣e2k(ξ )∣∣

∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

)1–x

·
(∫ ∞

–∞

∣
∣
∣
∣

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

)x

=
∥
∥
∥
∥

∣
∣ek(ξ )∣∣

(
1

1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )
)∥

∥
∥
∥

2(1–x)

·
∥
∥
∥
∥

1
1 + β|ek(ξ )| ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

2x

≤
∥
∥
∥
∥

( |ek(ξ )|
1 + β|ek(ξ )|

(
ĝδ(ξ ) – ĝ(ξ )

)
+

( |ek(ξ )|
1 + β|ek(ξ )| –

∣
∣ek(ξ )∣∣

)

ĝ(ξ )
)∥

∥
∥
∥

2(1–x)

· ((τ + 1)δ
)2x

≤
(∥

∥
∥
∥

|ek(ξ )|
1 + β|ek(ξ )|

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥ +

∥
∥
∥
∥

( |ek(ξ )|
1 + β|ek(ξ )| –

∣
∣ek(ξ )∣∣

)

ĝ(ξ )
∥
∥
∥
∥

)2(1–x)

· ((τ + 1)δ
)2x

≤
(

δ sup
ξ∈R

eA

1 + βeA + E
)2(1–x)

· ((τ + 1)δ
)2x

≤ (
δβ–1 + E

)2(1–x) · ((τ + 1)δ
)2x. (4.7)

Using Lemma 4.4, it follows that

∥
∥uβ ,δ(x, ·) – u(x, ·)∥∥2 ≤ (

δβ–1 + E
)2(1–x) · ((τ + 1)δ

)2x

≤
(

δ
E

(τ – 1)δ
+ E

)2(1–x)

· ((τ + 1)δ
)2x

=
(

τ

τ – 1

)2(1–x)

(τ + 1)2xδ2xE2(1–x). (4.8)

Therefore, the conclusion of the theorem can be obtained directly from (4.8). �

Remark 4.6 Obviously, If α = 1, the problem (1.1) naturally corresponds to the standard
inverse advection–dispersion problem [38]. If α = 1 and b = 0, the problem (1.1) corre-
sponds to the classical inverse heat conduction problem [39]. If b = 0, the problem (1.1)
corresponds to the time-fractional inverse diffusion problem [40]. Thus, the results in the
paper are valid for these special problems.

5 Numerical examples
In this section, three numerical examples are presented to illustrate the behavior of the
proposed method. In our numerical experiment, we set a = 1 and b = 1 in (1.1).

The numerical examples are constructed in the following way. First, the initial data
u(0, t) = f (t) of time-fractional advection–dispersion problem is presented at x = 0, and
the function u(1, t) = g(t) is computed by solving a direct problem, which is a well-posed
problem. Second, a randomly distributed perturbation to the data function obtaining vec-
tor gδ(t) is added, i.e.,

gδ = g + ε randn
(
size(g)

)
. (5.1)
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Here, the function “randn(·)” generates arrays of random numbers whose elements
are normally distributed with mean 0, variance σ 2 = 1 and standard deviation σ = 1,
“randn(size(g))” returns array of random entries that is the same size as g , the magni-
tude ε indicates a relative noise level. Here, the total noise δ can be measured in the sense
of the root mean square error according to

δ :=
∥
∥gδ – g

∥
∥

l2 =

√
√
√
√ 1

n

n∑

i=1

(
gδ

i – gi
)2. (5.2)

Third, the regularized solution is obtained by solving the inverse problem. Finally, the
regularized solution is compared with the exact solution.

In the experiments under the prior regularization parameter choice rule, the regular-
ization parameter β is chosen by (3.1), and in the experiments under the posterior regu-
larization parameter choice rule, the regularization parameter β is chosen by (4.1) with
τ = 1.1.

Example 5.1 Consider a smooth function

f (t) = 4 sin(2π t). (5.3)

Example 5.2 Consider a piecewise smooth function

f (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 0.25,

4t – 1, 0.25 < t ≤ 0.5,

3 – 4t, 0.5 < t ≤ 0.75,

0, 0.75 < t ≤ 1.

(5.4)

Example 5.3 Consider the following discontinuous function:

f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t ≤ 1
3 ,

1, 1
3 < t ≤ 2

3 ,

0, 2
3 < t ≤ 1.

(5.5)

Figures 1, 3 and 5 show the comparison between prior and posterior methods for dif-
ferent α for Examples 5.1, 5.2, 5.3, respectively. Figures 2, 4 and 6 show the comparison
between prior and posterior methods for different ε for Examples 5.1, 5.2, 5.3, respec-
tively.

Figs. 1–6 show that the smaller the parameter ε is, the better the computed approx-
imation is, and the smaller the parameter α is, the better the computed approximation
is. Moreover, Figs. 1–6 also show that both prior and posterior parameter choice rules
work well, but the result under a prior rule is better than the results under a poste-
rior rule. Finally, these tests illustrate that the proposed method is not only effective for
the smooth example, but it also works well for the continuous and discontinuous exam-
ples.
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Figure 1 The comparison of the exact solution and its approximation solution for ε = 0.01 at x = 0.8 with
Example 5.1, (a) α = 0.1, (b) α = 0.7

Figure 2 The comparison of the exact solution and its approximation solution for α = 0.3 at x = 0.1 with
Example 5.1, (a) ε = 0.01, (b) ε = 0.001

Figure 3 The comparison of the exact solution and its approximation solution for ε = 0.001 at x = 0.8 with
Example 5.2, (a) α = 0.1, (b) α = 0.7

6 Conclusion
In this paper, an inverse problem of time-fractional advection–dispersion equations has
been studied. A filter regularization method is suggested to deal with this problem, and
its convergence is also discussed under both a prior regularization parameter choice rule
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Figure 4 The comparison of the exact solution and its approximation solution for α = 0.3 at x = 0.1 with
Example 5.2, (a) ε = 0.001, (b) ε = 0.0001

Figure 5 The comparison of the exact solution and its approximation solution for ε = 0.001 at x = 0.8 with
Example 5.3, (a) α = 0.1, (b) α = 0.7

Figure 6 The comparison of the exact solution and its approximation solution for α = 0.3 at x = 0.1 with
Example 5.3, (a) ε = 0.001, (b) ε = 0.0001

and Morozov’s discrepancy principle. The numerical examples verify the efficiency and
accuracy of the proposed computational method.

There are several potential extensions of the present method. On the one hand, the pro-
posed method can be adapted to two-dimensional and three-dimensional inverse prob-
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lems. On the other hand, the proposed method can be extended to the case with time-
dependent coefficient. Towards this end, more vigorous investigations are needed in the
future.
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