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Abstract
In this paper, we investigate the effect of insecticide on the population dynamics of
brown planthoppers (a major insect pest of rice) and Cyrtorhinus lividipennis (one of
the natural enemies of brown planthoppers) by developing an impulsive
mathematical model, and we analyze the model theoretically and numerically. The
conditions on the parameters of the model for which the stability and permanence of
the system can be ensured are derived. Computer simulations are also presented to
confirm our theoretical results. The results show that with an appropriate amount and
period between two consecutive applications of insecticide, the population of brown
planthoppers could be maintained below a certain level, while Cyrtorhinus lividipennis
could also survive.
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1 Introduction
The brown planthopper (BPH) is recognized as one of the major insect pests of rice. The
well-known damage caused by the infestation of brown planthoppers is hopperburn in
which the rice crop are wilting and drying completely [1]. The outbreak of BPH in Thailand
during the dry season of the year 2010 caused approximately $52 million losses as reported
by the Office of Agricultural Economics, the Ministry of Agriculture and Cooperatives of
Thailand [2].

Biological control and insecticide have been used to control the outbreak of brown plan-
thoppers in a paddy field. However, when insecticide is utilized not only brown plan-
thoppers are eliminated but also its natural enemies in the paddy field such as Cyrtorhi-
nus lividipennis [3, 4]. Even though insecticides have been widely used for controlling
the pest, BPH has developed resistance to some major insecticides such as carbamates,
organophosphates, neonicotinoids, phenylpyrazoles and pyrethroids [5, 6]. As it is quick
and cost-effective against insects, chemical control is a popular choice in pest manage-
ment. However, excessive and irrational use of chemical pesticides could lead to negative
effects on the environment such as biodiversity’s reduction and the decrease in population
of natural enemies. Alternatively, biological control is a safe and an effective method. Cyr-
torhinus Lividipennis is a major natural enemy of BPH. It preys mainly on eggs and nymphs
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of BPH [7, 8]. The predatory activity of Cyrtorhinus lividipennis against BPH has been in-
vestigated by many researchers and the study indicated that the Cyrtorhinus lividipennis’s
preying on BPH’s eggs was an important cause of the decrease in the BPH population [7,
9]. However, when the outbreak of BPH is severe, the use of Cyrtorhinus lividipennis alone
might not be the most effective choice because the reproduction of Cyrtorhinus lividipen-
nis is not rapid enough to control the outbreak.

In this paper, we investigate the effects of impulsive applications of insecticide on the
population dynamics of brown planthoppers and Cyrtorhinus lividipennis.

2 An impulsive system
Let B(t) represent the population density of brown planthoppers at time t and C(t) repre-
sent the population density of Cyrtorhinus lividipennis at time t. The following impulsive
system is proposed to investigate the population dynamics of brown planthoppers and
Cyrtorhinus lividipennis when insecticide is utilized:

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= kT ,

dB
dt

= a1B
(

1 –
B
h1

)

–
b1BC

1 + h2B
– d1B (1a)

dC
dt

= a2C
(

1 –
C
h3

)

+
r1b1BC
1 + h2B

– d2C (1b)

with

}

t = kT .
B
(
t+)

= (1 – α)B(t) (1c)

C
(
t+)

= (1 – β)C(t) (1d)

Here, a1, a2, b1, r1, h1, h2, h3, d1 and d2 are assumed to be positive, T accounts for the
period between two consecutive applications of insecticide, k ∈ Z+, Z+ = {1, 2, 3, . . .}, α

accounts for the negative effect of the insecticide on the population of brown planthop-
pers, 0 < α < 1, and β accounts for the negative effect of insecticide on the population of
Cyrtorhinus lividipennis, 0 < β < 1.

Equation (1a) describes the rate of change of the population of brown planthoppers.
On the right-hand side, the first term represents the reproduction of brown planthoppers
which is assumed to follow the logistic growth function, the second term represents the
decrease in the population of brown planthoppers due to the predation by Cyrtorhinus
lividipennis when the functional response is assumed to follow the Holling type II func-
tional response and the last term represents the natural death rate of brown planthoppers.

Equation (1b) describes the rate of change of the population of Cyrtorhinus lividipennis.
On the right-hand side, the first term represents the reproduction of Cyrtorhinus lividipen-
nis which is assumed to follow the logistic growth function. Here, we assume that Cyr-
torhinus lividipennis could feed on other insect pest in the paddy field apart from brown
planthoppers and the population of Cyrtorhinus lividipennis could be high even as brown
planthoppers are absent as reported in [10]. The second term represents the increase in
the population of Cyrtorhinus lividipennis due to the predation on brown planthoppers
and the last term represents the natural death rate of Cyrtorhinus lividipennis.
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3 Theoretical results
Definition 1 Let the map defined by the right hand side of (1a)–(1d) be denoted by f =
(f1, f2) and let G : R+ ×R2

+ → R+, where R+ = [0,∞), R2
+ = {X ∈ R2 : X = (B, C), B ≥ 0, C ≥ 0}.

(a) G is said to belong to class G0 if G is continuous in (kT , (k + 1)T] × R2
+ → R+ and for

each X ∈ R2
+, k ∈ Z+,

lim
(t,Y )→(kT+,X)

G(t, Y ) = G
(
kT+, X

)

exists and G is locally Lipschitzian in X .
(b) Suppose G ∈ G0. For (t, X) ∈ (kT , (k + 1)T] × R2

+, the upper right derivative of
G(t, X) with respect to (1a)–(1d) is defined by

D+G(t, X) = lim sup
h→0+

1
h
[
G

(
t + h, X + hf (t, X)

)
– G(t, X)

]
.

The solution of (1a)–(1d), X(t) = (B(t), C(t)), is assumed to be a piecewise continuous
function in what follows. This implies that X(t) : R+ → R2

+, X(t) is continuous on (kT , (k +
1)T], k ∈ Z+ and limt→kT+ X(t) = X(kT+) exists. Therefore, the smoothness properties of f
ensure the existence and uniqueness of solution to (1a)–(1d).

Consider (1a) and (1b) when t �= kT . We can see that if B(t) = 0, dB
dt = 0 and if C(t) = 0,

dC
dt = 0. In addition, B(kT+) = (1 – α)B(kT), 0 < α < 1, C(kT+) = (1 – β)C(kT), 0 < β < 1.

Hence, the following lemma is obtained.

Lemma 1 Let X(t) = (B(t), C(t)) be a solution of (1a)–(1d). Then X(t) ≥ 0 for all t ≥ 0
provided that X(0+) ≥ 0.

Lemma 2 Let X(t) = (B(t), C(t)) be a solution of (1a)–(1d). Then B(t) ≤ M∗ and C(t) ≤ M∗

for some constant M∗ > 0 provided that

d2 >
r1b1

h2
(2)

when t is sufficiently large.

Proof
Let g(t) = B(t) + C(t), M1 = a1h1

4 , M2 = a2h3
4 , M3 = r1b1

h2
and c∗ = min{d1, d2 – M3}.

For t �= kT , we can see that

D+g + c∗g

=
dB
dt

+
dC
dt

+ c∗B + c∗C

= a1B
(

1 –
B
h1

)

–
b1BC

1 + h2B
– d1B + a2C

(

1 –
C
h3

)

+
r1b1BC
1 + h2B

– d2C + c∗B + c∗C

≤ (
c∗ – d1

)
B +

(
c∗ – d2 + M3

)
C + M1 + M2

≤ M1 + M2 ≡ M0.

Hence, D+g ≤ –c∗g + M0.
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For t = kT ,

g
(
kT+)

= B
(
kT+)

+ C
(
kT+)

= (1 – α)B(kT) + (1 – β)C(kT)

= B(kT) + C(kT) – αB(kT) – βC(kT)

≤ g(kT).

For t ∈ (kT , (k + 1)T], Lemma 2.2 of [11] implies that

g(t) ≤ g(0)e–c∗t +
∫ t

0
M0e–c∗(t–x) dx

≤ g(0)e–c∗t + M0

(
1
c∗ –

e–c∗t

c∗

)

<
M0

c∗ ≡ M∗ as t → ∞.

Since g(t) = B(t) + C(t) and g(t) < M∗, this means that B(t) ≤ M∗ and C(t) ≤ M∗ when t is
large enough and M∗ > 0. �

Next, let us investigate the reduced system of (1a)–(1d) when the brown planthopper is
absent (B = 0):

dC
dt

= sC – rC2, t �= kT , (3)

C
(
kT+)

= (1 – β)C(kT), t = kT , (4)

C
(
0+)

= C0, (5)

where r ≡ a2
h3

> 0 and s ≡ a2 – d2. Suppose that s > 0 that is

a2 > d2. (6)

We can see that the solution of (3) is

C(t) =
s

r + c1se–st ,

where c1 is an arbitrary constant.
Since C(t) is an increasing function for s > 0 and (4), the system (3)–(5) has a periodic

solution

C̃(t) =
s(1 – β – e–sT )

βre–s(t–kT) + r(1 – β – e–sT )
), t ∈ (

kT , (k + 1)T
]
, (7)

with C̃(0+) = s(1–β–e–sT )
r(1–e–sT ) > 0 and (6) holding.

Therefore,

C(t) =
C0s(1 – β – e–sT )C̃(t)est

[s(1 – β – e–sT ) – C0r(1 – e–sT )]C̃(t) + C0s(1 – β – e–sT )est
, t ∈ (

kT , (k + 1)T
]
,

is the positive solution of (3)–(5).
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Lemma 3 The system (3)–(5) has a positive periodic solution C̃(t), and C(t) → C̃(t) as
t → ∞ for every solution C(t) of (3)–(5).

Therefore,

(
0, C̃(t)

)
=

(

0,
s(1 – β – e–sT )

βre–s(t–kT) + r(1 – β – e–sT )

)

is a periodic solution of the system (1a)–(1d) at the absence of brown planthoppers for
t ∈ (kT , (k + 1)T] and C̃(kT+) = C̃(0+) = s(1–β–e–sT )

r(1–e–sT ) , k ∈ Z+.

Theorem 1 Suppose that

T2 < T < T1, (8)

a1 > d1 +
b1s
r

, (9)

and

ln

(
1

1 – α

)

>
b1

r
ln

(
1

1 – β

)

. (10)

Then the solution (0, C̃(t)) of (1a)–(1d) is locally asymptotically stable where T1 =
1

(a1–d1– b1s
r )

[ln( 1
1–α

) – b1
r ln( 1

1–β
)] and T2 = 1

s ln( 1
1–β

).

Proof Let us consider a small perturbation

B(t) = v1(t),

C(t) = C̃(t) + v2(t),

from the point (0, C̃(t)). Then

(
v1(t)
v2(t)

)

= Φ(t)

(
v1(0)
v2(0)

)

, 0 < t < T ,

where Φ(t) satisfies

dΦ(t)
dt

=

(
a1 – d1 – b1C̃(t) 0

∗ s – 2rC̃(t)

)

Φ(t)

and Φ(0) = I , the identity matrix. Hence, the fundamental solution matrix is

Φ(t) =

(
exp

∫ t
0 (a1 – d1 – b1C̃(x)) dx 0

∗∗ exp
∫ t

0 (s – 2rC̃(x)) dx

)

.

Note that the terms (*) and (**) are not involved in the further calculations and hence it is
not necessary to find (*) and (**).
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Linearization of (1c)–(1d) yields

(
v1(kT+)
v2(kT+)

)

=

(
1 – α 0

0 1 – β

)(
v1(kT)
v2(kT)

)

.

Consider

A =

(
1 – α 0

0 1 – β

)

Φ(T).

The eigenvalues of A are

λ1 = (1 – α) exp
∫ T

0

(
a1 – d1 – b1C̃(x)

)
dx

= (1 – α) exp

(

(a1 – d1)T –
b1

r
(
ln(1 – β) + sT

)
)

,

λ2 = (1 – β) exp
∫ T

0

(
s – 2rC̃(x)

)
dx = (1 – β) exp

(
–sT – 2 ln(1 – β)

)
.

Since 0 < α < 1, 0 < β < 1, (8)–(10) hold, and then

1
s

ln

(
1

1 – β

)

< T <
1

(a1 – d1 – b1s
r )

[

ln

(
1

1 – α

)

–
b1

r
ln

(
1

1 – β

)]

.

Hence,

|λ1| = (1 – α) exp
∫ T

0

(
a1 – d1 – b1C̃(x)

)
dx < 1

and

|λ2| = (1 – β) exp
(
–sT – 2 ln(1 – β)

)
< 1.

All conditions of Floquet theory are now satisfied and, hence, we can conclude that the
solution (0, C̃(t)) of (1a)–(1d) is locally stable, which completes the proof. �

System Permanence

Definition 2 If there exist constants n, m > 0 and a finite time t0 such that, for all solution
with all initial values B(0+) > 0 and C(0+) > 0,

n ≤ B(t) ≤ m,

n ≤ C(t) ≤ m,

for all t > t0, the system (1a)–(1d) is said to be permanent where we note that t0 may depend
on the initial values whereas n, m are independent of the initial values.
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Theorem 2 The system (1a)–(1d) is permanent if

T > T∗ (11)

and

r > s + M3 (12)

provided (2), (6), (9) and (10) hold where

T∗ ≡ 1
(a1 – d1 – b1(s+M3)

r )

[

ln

(
1

1 – α

)

–
b1

r
ln

(
1

1 – β

)]

.

Proof Let X(t) = (B(t), C(t)) be a solution of the system (1a)–(1d) with B(0+) > 0 and
C(0+) > 0. For sufficiently large t, Lemma 2 implies that a constant m > 0 exists so that
B(t) ≤ m and C(t) ≤ m.

Since r1b1BC
1+k2B ≥ 0, (1b) implies that

dC
dt

≥ sy – ry2, t �= kT ,

C
(
kT+)

= (1 – β)C(kT), t = kT ,

and for sufficiently large t, we have

C(t) > C̃(t) – ε

for some ε > 0.
Hence, for sufficiently large t, we obtain

C(t) >
s(1 – β – e–sT )

r(1 – e–sT )
– ε ≡ n1.

Next, we have to show that there exists a constant n2 > 0 such that B(t) > n2. For some
n3 > 0, let

M̂1 = a1

(

1 –
n3

h1

)

– d1.

Step 1. In order to prove by contradiction that there exists t1 such that B(t1) ≥ n3, we
assume that B(t) < n3 for all positive t.

Equations (1b) and (1d) imply that

dC
dt

= a2C
(

1 –
C
h3

)

+
r1b1BC
1 + h2B

– d2C, t �= kT

≤ a2C
(

1 –
C
h3

)

+ M3C – d2C

= (s + M3)C – rC2,
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C
(
t+)

= (1 – β)C(t), t = kT .

Consider the comparison system

dZ
dt

= (s + M3)Z – rZ2, t �= kT , (13)

Z
(
t+)

= (1 – β)Z(t), t = kT , (14)

and

Z
(
0+)

= C
(
0+)

. (15)

Hence,

1
Z̃(t)

=
βre–(s+M3)(t–kT)

(s + M3)(1 – β – e–(s+M3)T )
+

r
(s + M3)

, t ∈ (
kT , (k + 1)T

]
, (16)

is a periodic solution of (13)–(15) with 1
Z(0+) = βr

(s+M3)(1–β–e–(s+M3)T )
+ r

(s+M3) > 0. The positive
solution of (13)–(15) is

1
Z(t)

=
(

1
Z(0+)

–
βr

(s + M3)(1 – β – e–(s+M3)T )
–

r
(s + M3)

)

e–(s+M3)t +
1

Z̃(t)
, (17)

t ∈ (kT , (k + 1)T] and as t → ∞

1
Z(t)

→ 1
Z̃(t)

=
βre–(s+M3)(t–kT)

(s + M3)(1 – β – e–(s+M3)T )
+

r
(s + M3)

.

Hence, we can conclude that C(t) ≤ Z(t) by the comparison theorem [12].
Now, we consider (1a)

dB
dt

= a1B
(

1 –
B
h1

)

–
b1BC

1 + h2B
– d1B

≥
(

a1

(

1 –
n3

h1

)

– b1C – d1

)

B

= (M̂1 – b1C)B.

Since C(t) ≤ Z(t), there is a T1 > 0 such that

C(t) ≤ Z(t) < Z̃(t) + ε1, t �= kT , t ≥ T1,

for a sufficiently small ε1 > 0.
Therefore,

dB
dt

>
(
M̂1 – b1

(
Z̃(t) + ε1

))
B, t �= kT , t ≥ T1, (18)

and

B
(
t+)

= (1 – α)B(t), t = kT , t ≥ T1. (19)
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Letting K ∈ Z+ and KT ≥ T1, and integrating over (kT , (k + 1)T], k ≥ K , we get

B
(
(k + 1)T

) ≥ B(kT)(1 – α) exp

(∫ (k+1)T

kT

(
M̂1 – b1

(
Z̃(t) + ε1

))
dt

)

= B(kT)(1 – α) exp

((

M̂1 – b1ε1 –
b1(s + M3)

r

)

T +
b1

r
ln

(
1

1 – β

))

= B(kT)γ ,

where γ ≡ (1 – α) exp((M̂1 – b1ε1 – b1(s+M3)
r )T + b1

r ln( 1
1–β

)).
Consider

lnγ = ln(1 – α) +
(

M̂1 – b1ε1 –
b1(s + M3)

r

)

T +
b1

r
ln

(
1

1 – β

)

.

For sufficiently small ε1 > 0,

lnγ ≈
(

M̂1 –
b1(s + M3)

r

)

T +
b1

r
ln

(
1

1 – β

)

– ln

(
1

1 – α

)

.

Since M̂1 < a1 – d1 and (9) hold, we can choose a small n3 > 0 such that lnγ > 0 and, hence,

γ ≡ (1 – α) exp

((

M̂1 – b1ε1 –
b1(s + M3)

r

)

T +
b1

r
ln

(
1

1 – β

))

> 1. (20)

Then B((k + i)T) ≥ B(kT)γ i → ∞ as i → ∞. It is in contradiction to the boundedness of
B(t). Hence, there is t1 > 0 such that B(t1) ≥ n3.

Step 2. If B(t) ≥ n3 for all t > t1, then the proof is complete. Otherwise, B(t) < n3 for some
t > t1. Let t∗ = inft>t1{B(t) < n3}.

Case 1: t∗ = k1T for some k1 ∈ Z+. That is, for t ∈ (t1, t∗], B(t) ≥ n3 and the continuity of
B(t) implies that B(t∗) = n3.

Since there are m > 0 and n1 > 0 such that, for sufficiently large t, B(t) < m and n1 < C(t) <
m, m′ > 0 and n′

1 > 0 are chosen so that

B(t) < m′ and n′
1 < C(t) < m′

and

M̂1 < b1m′ (21)

such that
∣
∣
∣
∣

1
C(t∗+)

–
βr

(s + M3)(1 – β – e–(s+M3)T )
–

r
(s + M3)

∣
∣
∣
∣ – β <

1
n′ . (22)

Then choose k2, k3 ∈ Z+ such that

k2T >
1

(s + M3)
ln

( 1
n′ + β

ε1

)

(23)
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and

(1 – α)k2 exp
(
(k2 + 1)γ1T

)
γ k3 > 1, (24)

where

γ1 ≡ M̂1 – b1m′ < 0.

Let T ′ = k2T + k3T . We claim that there is t2 ∈ (t∗, t∗ + T ′] such that B(t2) > n3. Otherwise,
considering (17) with 1

Z(t∗+) = 1
C(t∗+) , we have

1
Z(t)

=
(

1
Z(t∗+)

–
βr

(s + M3)(1 – β – e–(s+M3)T )
–

r
(s + M3)

)

e–(s+M3)(t–t∗) +
1

Z̃(t)

for t ∈ (kT , (k + 1)T] and k1 ≤ k ≤ k1 + k2 + k3.
For k2T ≤ t – t∗ ≤ T ′, we have

∣
∣
∣
∣

1
Z(t)

–
1

Z̃(t)

∣
∣
∣
∣ =

∣
∣
∣
∣

1
Z(t∗+)

–
βr

(s + M3)(1 – β – e–(s+M3)T )
–

r
(s + M3)

∣
∣
∣
∣e

–(s+M3)(t–t∗)

=
∣
∣
∣
∣

1
C(t∗+)

–
βr

(s + M3)(1 – β – e–(s+M3)T )
–

r
(s + M3)

∣
∣
∣
∣e

–(s+M3)(t–t∗)

<
(

1
n′ + β

)

e–(s+M3)(t–t∗)

<
(

1
n′ + β

)

e–(s+M3)k2T

< ε1.

Since (12), we have

∣
∣Z(t) – Z̃(t)

∣
∣ <

|Z(t) – Z̃(t)|
|Z(t)Z̃(t)| =

∣
∣
∣
∣

1
Z(t)

–
1

Z̃(t)

∣
∣
∣
∣ < ε1.

Then

C(t) ≤ Z(t) < Z̃(t) + ε1.

Similar to Step 1, we have

B
(
t∗ + T ′) = B(k1T + k2T + k3T)

≥ B
(
t∗ + k2T

)
γ k3 .

From (1a), we have

dB
dt

= a1B
(

1 –
B
h1

)

–
b1BC

1 + h2B
– d1B, t �= kT

≥ (
M̂1 – b1m′)B = γ1B, (25)
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B
(
t+)

= (1 – α)B(t), t = kT ,

and then integrating over [t∗, t∗ + k2T], we obtain

B
(
t∗ + k2T

) ≥ B
(
t∗)(1 – α)k2 exp

(∫ k1T+k2T

k1T
γ1 dt

)

≥ n3(1 – α)k2 exp(k2γ1T)

≥ n3(1 – α)k2 exp
(
(k2 + 1)γ1T

)

and hence

B
(
t∗ + T ′) ≥ B

(
t∗ + k2T

)
γ k3

≥ n3(1 – α)k2 exp
(
(k2 + 1)γ1T

)
γ k3

> n3.

Hence, the definition of n3 is contradicted. Therefore, there exists t2 ∈ (t∗, t∗ + T ′] such
that B(t2) > n3.

Now, let t̃ = inft>t∗{B(t) > n3}. Then B(t) < n3 for t ∈ (t∗, t̃), and the continuity of B(t)
implies that B(t̃) = n3. Next, we choose q ∈ Z+ such that q ≤ k2 + k3 and t∗ + qT ≥ t̃, and
suppose t ∈ (t∗ + (q – 1)T , t∗ + qT]. From (25), we have

B(t) ≥ B
(
t∗+)

(1 – α)q–1 exp
(
(q – 1)γ1T

)
exp

(
γ1

(
t –

(
t∗ + (q – 1)T

)))

= B
(
t∗)(1 – α)q exp

(
(q – 1)γ1T

)
exp

(
γ1

(
t –

(
t∗ + (q – 1)T

)))

= n3(1 – α)q exp
(
γ1

(
t – t∗))

≥ n3(1 – α)k2+k3 exp(γ1qT)

≥ n3(1 – α)k2+k3 exp
(
(k2 + k3)γ1T

)
.

We used γ1 < 0 and q ≤ k2 + k3.
Letting

n̄2 = n3(1 – α)k2+k3 exp
(
(k2 + k3)γ1T

)
,

we can see that B(t) ≥ n̄2 for t ∈ (t∗, t̃). By using t̃ instead of t∗ and continuing in the same
way, we then obtain B(t) ≥ n̄2 for all t large enough.

Case 2: t∗ �= kT for all k ∈ Z+. This implies that B(t) ≥ n3 for t ∈ [t1, t∗) and B(t∗) = n3.
For some k′

1 ∈ Z+, suppose that t∗ ∈ (k′
1T , (k′

1 + 1)T).
Case 2.1: B(t) ≤ n3 for all t ∈ (t∗, (k′

1 + 1)T]. We claim that there is t′
2 ∈ [(k′

1 + 1)T , (k′
1 +

1)T + T ′] such that x(t′
2) > n3. Otherwise, considering (17) with 1

Z((k′
1+1)T+) = 1

C((k′
1+1)T+) . For

t ∈ (kT , (k + 1)T], k′
1 + 1 ≤ k ≤ k′

1 + 1 + k2 + k3, we obtain

1
Z(t)

=
(

1
Z((k′

1 + 1)T+)
–

βr
(s + M3)(1 – β – e–(s+M3)T )

–
r

(s + M3)

)

× e–(s+M3)(t–(k′
1+1)T) +

1
Z̃(t)

.
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For k2T ≤ t – t∗, as in Case 1, we obtain

∣
∣Z(t) – Z̃(t)

∣
∣ < ε1.

Then

C(t) ≤ Z(t) < Z̃(t) + ε1.

Since k2T ≤ (k′
1 + 1 + k2)T – t∗, we have

B
((

k′
1 + 1 + k2

)
T

) ≥ B
(
t∗)(1 – α)k2 exp

(
γ1

((
k′

1 + 1 + k2
)
T – t∗))

≥ n3(1 – α)k2 exp
(
γ1

((
k′

1 + 1 + k2
)
T – k′

1T
))

≥ n3(1 – α)k2 exp
(
(k2 + 1)γ1T

)
.

Then

B
((

k′
1 + 1 + k2 + k3

)
T

) ≥ B
((

k′
1 + 1 + k2

)
T

)
γ k3

≥ n3(1 – α)k2 exp
(
(k2 + 1)γ1T

)
γ k3

> n3.

The definition of n3 is contradicted and, hence, we can conclude that there is t′
2 ∈ [(k′

1 +
1)T , (k′

1 + 1)T + T ′] such that B(t′
2) > n3.

Now, let t̄ = inft>t∗{B(t) > n3}. Then B(t) ≤ n3 for t ∈ [t∗, t̄), and B(t̄) = n3. We choose
q′ ∈ Z+ such that q′ ≤ k2 + k3 + 1 and suppose t ∈ (k′

1T + (q′ – 1)T , k′
1T + q′T]. From (25),

we have

B(t) ≥ B
((

k′
1T +

(
q′ – 1

)
T

)+)
exp

(
γ1

(
t –

(
k′

1T +
(
q′ – 1

)
T

)))

= B
(
k′

1T +
(
q′ – 1

)
T

)
(1 – α) exp

(
γ1

(
t –

(
k′

1T +
(
q′ – 1

)
T

)))

≥ B
(
t∗)(1 – α)q′–1 exp

(
γ1

(
t – t∗))

≥ n3(1 – α)q′–1 exp
(
γ1

(
t – t∗)).

We used γ1 < 0 and t – t∗ ≤ q′T . Hence,

B(t) ≥ n3(1 – α)k2+k3 exp
(
(k2 + k3 + 1)γ1T

)
.

Letting

n2 = n3(1 – α)k2+k3 exp
(
(k2 + k3 + 1)γ1T

)
,

then, for t ∈ (t∗, t̄), we obtain B(t) ≥ n2. By using t̄ instead of t∗ and continue with the same
way, we shall obtain B(t) ≥ n2 for all t large enough.
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Case 2.2: There is a t′′ ∈ (t∗, (k′
1 + 1)T] such that B(t′′) > n3. Let t = inft>t∗{B(t) > n3}.

Hence, B(t) < n3 for t ∈ [t∗, t), and B(t) = n3. For t ∈ [t∗, t), (25) holds, we have

B(t) ≥ B
(
t∗) exp

(∫ t

t∗
γ1 dt

)

= n3 exp
(
γ1

(
t – t∗))

≥ n3 exp(γ1T)

> n2

since t < k′
1T + T < t∗ + T .

Since B(t) ≥ n3, we can continue in the same way for t > t. Since n2 < n̄2 < n3, we have
B(t) ≥ n2 for t ≥ t1. The proof is complete. �

Existence of the positive periodic solution
Let us investigate the possibility of positive periodic solution to the system (1a)–(1d)

near (0, C̃(t)) by interchanging the state variables and consider the following system in-
stead:

dB
dt

= a2B
(

1 –
B
h3

)

+
r1b1BC
1 + h2C

– d2B, t �= kT , (26)

dC
dt

= a1C
(

1 –
C
h1

)

–
b1BC

1 + h2C
– d1C, t �= kT , (27)

with

�B(t) = –βB(t), t = kT , (28)

�C(t) = –αC(t), t = kT . (29)

Let

f1(B, C) = a2B
(

1–
B
h3

)

+
r1b1BC
1 + h2C

–d2B, f2(B, C) = a1C
(

1–
C
h1

)

–
b1BC

1 + h2C
–d1C.

According to Lakmeche and Arini [13],

Θ1(B, C) = (1 – β)B, Θ2(B, C) = (1 – α)C, ς (t) =
(
C̃(t), 0

)T ,

X0 =
(
C̃(τ0), 0

)T , τ0 = T1,

and

∂Φ1(τ0, X0)
∂τ

=
∂C̃(τ0, X0)

∂t
=

βr exp(–sτ0)C̃2(τ0, X0)
1 – β – exp(–sτ0)

> 0,

∂Φ1(τ0, X0)
∂B

= exp

(∫ τ0

0

∂f1(ς (u))
∂B

du
)

>
1

1 – β
> 0,

∂Φ1(τ0, X0)
∂C
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=
∫ τ0

0
exp

(∫ τ0

υ

∂f1(ς (u))
∂B

du
)

∂f1(ς (υ))
∂C

exp

(∫ υ

0

∂f2(ς (u))
∂C

du
)

dυ

=
∫ τ0

0
exp

(∫ τ0

υ

(
s – 2rC̃(u)

)
du

)
(
r1b1C̃(υ)

)

× exp

(∫ υ

0

(
a1 – d1 – b1C̃(u)

)
du

)

dυ,

∂Φ2(τ0, X0)
∂C

= exp

(∫ τ0

0

∂f2(ς (u))
∂C

du
)

= exp

(∫ τ0

0

(
a1 – d1 – b1C̃(u)

)
du

)

,

∂2Φ2(τ0, X0)
∂B∂C

=
∫ τ0

0
exp

(∫ τ0

υ

∂f2(ς (u))
∂C

du
)

∂2f2(ς (υ))
∂B∂C

exp

(∫ υ

0

∂f2(ς (u))
∂C

du
)

dυ

=
–b1τ0

1 – α
< 0,

∂2Φ2(τ0, X0)
∂C2

=
∫ τ0

0
exp

(∫ τ0

υ

∂f2(ς (u))
∂C

du
)

∂2f2(ς (υ))
∂C2 exp

(∫ υ

0

∂f2(ς (u))
∂C

du
)

dυ

+
∫ τ0

0

[

exp

(∫ τ0

υ

∂f2(ς (u))
∂C

du
)

∂2f2(ς (υ))
∂B∂C

]

×
[∫ υ

0
exp

(∫ υ

θ

∂f1(ς (u))
∂B

du
)

∂f1(ς (θ ))
∂C

exp

(∫ θ

0

∂f2(ς (u))
∂C

du
)

dθ

]

dυ

=
∫ τ0

0

(

–
2a1

h1
+ 2h1

)

exp

(∫ τ0

0

(
a1 – d1 – b1C̃(u)

)
du

)

dυ

– b1

∫ τ0

0

[

exp

(∫ τ0

υ

(
a1 – d1 – b1C̃(u)

)
du

)]

×
[∫ υ

0
exp

(∫ υ

θ

(
s – 2rC̃(u)

)
du

)
(
r1b1C̃(θ )

)

× exp

(∫ θ

0

(
a1 – d1 – b1C̃(u)

)
du

)

dθ

]

dυ,

∂2Φ2(τ0, X0)
∂C∂τ

=
∂f2(ς (τ0))

∂C
exp

(∫ τ0

0

∂f2(ς (u))
∂C

du
)

=
(
a1 – d1 – b1C̃(τ0)

)
exp

(∫ τ0

0

(
a1 – d1 – b1C̃(u)

)
du

)

=
1

1 – α

(

a1 – d1 –
b1s(1 – β – exp(–sτ0))

βr exp(–sτ0) + r(1 – β – exp(–sτ0))

)

.

Now, we can compute

d′
0 = 1 –

(
∂Θ2

∂C
∂Φ2

∂C

)

(τ0,X0)
= 1 – (1 – α) exp

(∫ τ0

0

(
a1 – d1 – b1C̃(u)

)
du

)

,
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where τ0 is the root of d′
0 = 0. Note that d′

0 > 0 if T < T1 and d′
0 < 0 if T > T1.

a′
0 = 1 –

(
∂Θ1

∂B
∂Φ1

∂B

)

(τ0,X0)
= 1 – (1 – β) exp

(∫ τ0

0

(
s – 2rC̃(u)

)
du

)

.

Note that a′
0 > 0 if T > T1 > T2,

b′
0 = –

(
∂Θ1

∂B
∂Φ1

∂C
+

∂Θ1

∂C
∂Φ2

∂C

)

(τ0,X0)

= –
∂Θ1

∂B
∂Φ1(τ0, X0)

∂C

= –(1 – β)
∫ τ0

0
exp

(∫ τ0

υ

(
s – 2rC̃(u)

)
du

)
(
r1b1C̃(υ)

)

× exp

(∫ υ

0

(
a1 – d1 – b1C̃(u)

)
du

)

dυ < 0,

P∗ = –a1 + d1 + b1s
(

1 – β – exp(–sτ0)
β exp(–sτ0) + (1 – β – exp(–sτ0))

)

×
(

1
r

+
τ0(1 – β)βs(1 – β – exp(–sτ0))

(1 + β + β exp(sτ0))(β exp(–sτ0) + 1 – β – exp(–sτ0))

)

,

Q∗ = 2(1 – α)
b′

0
a′

0

∂2Φ2

∂B∂C
– (1 – α)

∂2Φ2

∂C2 .

Note that P∗ < 0 and Q∗ > 0 if

h1
2 < a1 (30)

and

s2 + s – 1 < 0. (31)

Thus, P∗Q∗ < 0, and by Lakmeche and Arini [13], the following result is obtained.

Theorem 3 The system (25)–(28) has a positive periodic solution which is supercritical
provided (2), (6), (9), (10), (12), (30), (31) hold, and T > T1 > T2.

4 Numerical simulations
Figure 1 shows a simulation result of the system of Eqs. (1a)–(1d) with the parametric
values a1 = 0.5, a2 = 0.8, b1 = 0.5, r1 = 0.9, d1 = 0.01, d2 = 0.1, h1 = 2, h2 = 5, h3 = 0.3, α =
0.5,β = 0.5, T = 1, B(0) = 5, and C(0) = 10 in which all the conditions in Theorem 1 are
satisfied. The solution trajectory tends to a limit cycle as predicted in Theorem 1.

Figure 2 shows a simulation result of the system of equations (1a)–(1d) with the para-
metric values a1 = 0.5, a2 = 0.7, b1 = 0.5, r1 = 0.9, d1 = 0.01, d2 = 0.1, h1 = 3, h2 = 5, h3 = 0.2,
α = 0.2, β = 0.2, T = 10, B(0) = 5, and C(0) = 5 in which all the conditions in Theorem 2
are satisfied. The solution of the system shows permanence as predicted in Theorem 2.

Figure 3 shows a simulation result of the system of equations (1a)–(1d) with the paramet-
ric values a1 = 0.5, a2 = 0.4, b1 = 0.5, r1 = 0.9, d1 = 0.01, d2 = 0.2, h1 = 0.3, h2 = 2, h3 = 0.5,
α = 0.5, β = 0.5, T = 5, B(0) = 5, and C(0) = 5 in which all the conditions in Theorem 3 are
satisfied. The solution of the system is positive periodic as predicted in Theorem 3.
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Figure 1 A computer simulation of Eqs. (1a)–(1d). The solution trajectory tends toward the oscillatory
solution (0, C̃(t)) as time progresses. Here, a1 = 0.5,a2 = 0.8,b1 = 0.5, r1 = 0.9,
d1 = 0.01,d2 = 0.1,h1 = 2,h2 = 5,h3 = 0.3, α = 0.5,β = 0.5, T = 1, B(0) = 5, and C(0) = 10. Here, all conditions in
Theorem 1 are satisfied. (a) The solution trajectory projected on the (B,C)-plane. (b) The time series of the
population density of brown planthoppers (B) tending to a vanishing level. (c) The time series of the
population density of Cyrtorhinus lividipennis (C) exhibiting positive oscillation

Figure 2 A computer simulation of Eqs. (1a)–(1d). The solution of the system is permanent. Here,
a1 = 0.5,a2 = 0.7,b1 = 0.5, r1 = 0.9, d1 = 0.01, d2 = 0.1, h1 = 3, h2 = 5, h3 = 0.2, α = 0.2, β = 0.2, T = 10, B(0) = 5,
and C(0) = 5. Here, all conditions in Theorem 2 are satisfied. (a) The solution trajectory projected on the
(B,C)-plane. (b) The bounded time series of the population density of brown planthoppers (B). (c) The
bounded time series of the population density of Cyrtorhinus lividipennis (C)

Figure 3 A computer simulation of Eqs. (1a)–(1d). The solution of the system is positive periodic. Here,
a1 = 0.5,a2 = 0.4,b1 = 0.5, r1 = 0.9,d1 = 0.01,d2 = 0.2,h1 = 0.3,h2 = 2, h3 = 0.5, α = 0.5, β = 0.5, T = 5, B(0) = 5,
and C(0) = 5. Here, all conditions in Theorem 3 are satisfied. (a) The solution trajectory projected on
(B,C)-plane. (b) The time series of the population density of brown planthoppers (B) and (c) The time series of
population density of Cyrtorhinus lividipennis (C)
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5 Conclusion
We investigate the dynamics behaviors of the populations of BPH and Cyrtorhinus li-
vidipennis when insecticide is utilized to control the population of BPH in the paddy field
through an impulsive mathematical model. Once insecticide is applied, both BPH and Cyr-
torhinus lividipennis populations decrease rapidly. The appropriate duration T between
two consecutive applications of insecticide might lead to effective control (the population
of BPH reaches the vanishing level or maintains a level lower than the desired level) of
BPH while Cyrtorhinus lividipennis still survive in the paddy field.
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