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Abstract
This paper is concerned with the problem of bifurcation for a ring fractional Hopfield
neural network with leakage time delay and communication time delay. The stability
and the Hopf bifurcations of such a network without and with time delays are
investigated by analyzing the associated characteristic equations. Specifically, some
criteria for the occurrence of Hopf bifurcations at the trivial steady state are
established. It is shown that the dynamical property of the network is not only
crucially dependent on the communication time delay, but also significantly
influenced by the leakage time delay. Furthermore, the effects of the order on the
Hopf bifurcation are numerically demonstrated. Finally, four numerical examples are
provided to illustrate the feasibility of the theoretical results.
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1 Introduction
The studies for various Hopfield neural networks (HNNs) have been continuously active
over the past three decades because of their successful applications in numerous areas,
for instance, optimizations, signal processing, image processing, solving nonlinear alge-
braic equations, pattern recognitions, associative memories [1–5]. Since the applications
of HNNs rely heavily on network dynamics, many efforts have been undertaken to investi-
gate their dynamical properties and a lot of valuable results have been reported, including
stability [6], oscillation [7], bifurcation [8–10], chaos [11], and synchronization [12, 13]
and the references.

One major and often encountered difficulty in the analysis of neural network dynamics
is the ubiquity of time delays that can result in instability, oscillation, periodic solution,
anti-periodic solution, almost periodic solution, quasi-periodic solution, and even give
rise to multistability and chaotic motion. Among them, the time delays resulting from
the communication and response of neurons are regarded as a critical player due to the fi-
nite switching speed of amplifiers and the non-instantaneous signal transmission between
neurons [14]. Over the years, the study of dynamics of HNNs or population with such time
delays has received considerable interest of many researchers [2–5, 7, 11, 15]. Addition-
ally, it has been observed that a typical time delay called leakage delay also has important
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consequences on dynamics of neural networks [16–21]. In particular, the leakage delay in
a negative feedback terms can drive a stable system to be unstable [22]. It is therefore also
of great significance to clarify the dynamics of HNNs subject to leakage delays.

In 2009, Hu and Huang [23] investigated a ring of HNN with four neurons and delays,
which is described as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = –r1x1(t) + g1(x1(t)) + f1(x4(t – τ2)) + f1(x2(t – τ2)),

ẋ2(t) = –r2x2(t) + g2(x2(t)) + f2(x1(t – τ1)) + f2(x3(t – τ1)),

ẋ3(t) = –r3x3(t) + g3(x3(t)) + f3(x2(t – τ2)) + f3(x4(t – τ2)),

ẋ4(t) = –r4x4(t) + g4(x4(t)) + f4(x3(t – τ1)) + f4(x1(t – τ1)),

where ẋ = dx/dt; xi(t) represents the state of the ith neuron at time t; ri ≥ 0 is the inter-
nal decay rate; fi is the connection function between neurons; gi represents the nonlinear
feedback function; τj ≥ 0 is the communication time delay; and i = 1, 2, 3, 4, j = 1, 2. By us-
ing the associated characteristic equation, the stability and Hopf bifurcations of the HNN
are studied, as well as the stability and direction on the Hopf bifurcation are determined
by employing the normal form method and the center manifold reduction. For more ring
networks research results, one can read the references [8, 24–26] and the references cited
therein.

Fractional calculus, a classical mathematical notion that has a history of over 300 years,
is a generalization of the ordinary differentiation and integration to arbitrary non-integer
order, having been demonstrated to play important roles in physics, biology and engineer-
ing [27–35]. In fact, the importance of fractional calculus is reflected in three main points:
first, the orders of derivatives and integrals in fractional calculus are real numbers; second,
fractional-order derivative acts as an effective measure for the description of memory and
hereditary properties of various materials and processes; and third, the fractional-order
derivative makes a real object models more accurately than the integer order. Based on
these advantages, fractional calculus has been proposed to model, design, and control
various neural networks in recent years. For instance, several works concerning fractional
neural networks have appeared recently: undamped oscillations generated by Hopf bifur-
cations in fractional-order recurrent neural networks with Caputo derivative were studied
in [36, 37]; for a fractional BAM neural network with leakage delay, conditions for the Hopf
bifurcation were discussed in [38], and so on.

Oscillations are ubiquitous in dynamic neuronal networks and play critical roles in fun-
damental processes such as controlling dynamics of neurons at subthreshold potentials,
regulating rhythmic neuronal ensembles within local networks, and determining global
oscillations measured by electroencephalography [12]. It is well known that Hopf bifur-
cations, which include supercritical and subcritical Hopf bifurcations, can help us to effi-
ciently design biochemical oscillators. In this regard, it is important to note that most of
the results on Hopf bifurcation theory of integer-order neural networks cannot be simply
generalized to those for the cases of fractional neural networks because of the substan-
tial differences between integer-order system and fractional-order system. To the best of
our knowledge, up to today only a few results on the Hopf bifurcation of fractional-order
system have been reported, and thus, it is still an open problem to study Hopf bifurca-
tions of fractional-order dynamical systems [39]. This finding motivates the search for the



Li et al. Advances in Difference Equations        (2019) 2019:179 Page 3 of 22

properties of bifurcated oscillations of a ring of fractional-order neural network with four
neurons further.

Based on the above motivations, the present work is devoted to the study of stability and
Hopf bifurcation for a delayed ring of fractional-order neural network with four neurons
and leakage delays. The main contributions can be summarized in three aspects:

(1) A new delayed four-neuron fractional-order ring network with leakage delays is
proposed.

(2) Two important dynamical properties—stability and oscillation—of the four neurons
fractional-order ring networks without and with explicit leakage delays are
investigated.

(3) The effects of the order on the Hopf bifurcation are discussed.
The rest of this paper is organized as follows. In Sect. 2, several definitions and lemma

of fractional-order calculus are recalled. In Sect. 3, the discussed models are proposed. In
Sect. 4, by analyzing the associated characteristic equation, the local stability of the trivial
steady state for the delayed fractional-order HNN is examined. Moreover, the existence
of the Hopf bifurcation of the delayed fractional-order HNN without and with leakage
time delays is established. In Sect. 5, illustrative examples are provided to demonstrate
the theoretical results. Some conclusions are given in the last section.

2 Preliminaries
In this section, we introduce some definitions and lemmas of fractional derivatives, which
serve as a basis for the proofs of the main result of Sect. 4.

Generally, there exist mainly three widely used fractional operators, namely the Grün-
wald–Letnikov definition, the Riemann–Liouville definition, and the Caputo definition.
Since the Caputo derivative only requires the initial conditions, which are based on
integer-order derivative and represents well-understood features of physical situation, it is
more applicable to real world problems. With this notion in mind, we shall use the Caputo
fractional-order derivative to model and analyze the stability of the proposed fractional-
order algorithms in this paper.

Definition 2.1 ([28]) The fractional integral of order φ for a function g(t) is defined as
follows:

Iφg(t) =
1

Γ (φ)

∫ t

t0

(t – s)φ–1g(s) ds,

here, t ≥ t0, φ > 0, and Γ (·) is the gamma function satisfying Γ (s) =
∫ ∞

0 ts–1e–t dt.

Definition 2.2 ([28]) Caputo fractional derivative of order φ for a function g(t) ∈ Cn([t0,
∞), R) is defined in the following form:

Dφg(t) =
1

Γ (n – φ)

∫ t

t0

g(n)(s)
(t – s)φ–n+1 ds,

here, t ≥ t0, and n – 1 ≤ φ < n, n ∈ N+.
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Moreover, if 0 < φ < 1, then

Dφg(t) =
1

Γ (1 – φ)

∫ t

t0

g ′(s)
(t – s)φ

ds.

Lemma 2.1 ([29]) For the following autonomous system

Dφy = Jy, y(0) = y0,

in which 0 < φ < 1, y ∈ Rn, A ∈ Rn×n is asymptotically stable if and only if | arg(λi)| > φπ/2
(i = 1, 2, . . . , n), then each component of the states decays towards 0 like t–φ . Furthermore,
this system is stable if and only if | arg(λi)| ≥ φπ/2 and those critical eigenvalues that satisfy
| arg(λi)| = φπ/2 have geometric multiplicity one.

3 Model description
This paper considers the following ring fractional HNN with four neurons and time delays
in leakage terms:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφ1 x1(t) = –r1x1(t – σ ) + ag1(x1(t)) + b1f1(x4(t – τ2)) + c1f1(x2(t – τ2)),

Dφ2 x2(t) = –r2x2(t – σ ) + ag2(x2(t)) + b2f2(x1(t – τ1)) + c2f2(x3(t – τ1)),

Dφ3 x3(t) = –r3x3(t – σ ) + ag3(x3(t)) + b3f3(x2(t – τ2)) + c3f3(x4(t – τ2)),

Dφ4 x4(t) = –r4x4(t – σ ) + ag4(x4(t)) + b4f4(x3(t – τ1)) + c4f4(x1(t – τ1)),

(3.1)

where φi ∈ (0, 1] (i = 1, 2, 3, 4) is fractional order; xi(t) (i = 1, 2, 3, 4) represents state vari-
ables; ri ≥ 0 (i = 1, 2, 3, 4) specifies the internal decay rate; a, bi, ci (i = 1, 2, 3, 4) denote the
connection weights; fi(·) is the connection function between neurons; gi(·) (i = 1, 2, 3, 4)
represents the nonlinear feedback function; σ is the leakage delay; τ1 and τ2 are the com-
munication time delays.

Remark 3.1 In fact, if φi = 1 (i = 1, 2, 3, 4), the fractional-order system (3.1) changes into
the following integer-order system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = –r1x1(t – σ ) + ag1(x1(t)) + b1f1(x4(t – τ2)) + c1f1(x2(t – τ2)),

ẋ2(t) = –r2x2(t – σ ) + ag2(x2(t)) + b2f2(x1(t – τ1)) + c2f2(x3(t – τ1)),

ẋ3(t) = –r3x3(t – σ ) + ag3(x3(t)) + b3f3(x2(t – τ2)) + c3f3(x4(t – τ2)),

ẋ4(t) = –r4x4(t – σ ) + ag4(x4(t)) + b4f4(x3(t – τ1)) + c4f4(x1(t – τ1)).

In this work, for the sake of simplicity, we discuss the fractional-order system (3.1) when
σ = τ1 = τ2 = τ , φ = φ1 = φ2 = φ3 = φ4, and so system (3.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –r1x1(t – τ ) + ag1(x1(t)) + b1f1(x4(t – τ )) + c1f1(x2(t – τ )),

Dφx2(t) = –r2x2(t – τ ) + ag2(x2(t)) + b2f2(x1(t – τ )) + c2f2(x3(t – τ )),

Dφx3(t) = –r3x3(t – τ ) + ag3(x3(t)) + b3f3(x2(t – τ )) + c3f3(x4(t – τ )),

Dφx4(t) = –r4x4(t – τ ) + ag4(x4(t)) + b4f4(x3(t – τ )) + c4f4(x1(t – τ )).

(3.2)
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Moreover, when system (3.2) does not involve leakage time delay, then system (3.2) can
be described by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –r1x1(t) + ag1(x1(t)) + b1f1(x4(t – τ )) + c1f1(x2(t – τ )),

Dφx2(t) = –r2x2(t) + ag2(x2(t)) + b2f2(x1(t – τ )) + c2f2(x3(t – τ )),

Dφx3(t) = –r3x3(t) + ag3(x3(t)) + b3f3(x2(t – τ )) + c3f3(x4(t – τ )),

Dφx4(t) = –r4x4(t) + ag4(x4(t)) + b4f4(x3(t – τ )) + c4f4(x1(t – τ )).

(3.3)

Accordingly, the primary objective of this paper is to study the stability and the Hopf
bifurcations of networks (3.2) and (3.3) by taking time delay as the bifurcation parameter
through the approach of stability analysis [27]. Moreover, the effects of the order on the
creation of bifurcation for the two proposed models are also numerically discussed.

Throughout of this paper, some basic assumptions are presented first.
(C1) fi, gi ∈ C(R, R), fi(0) = gi(0) = 0, xfi(x) > 0, xgi(x) > 0 (i = 1, 2, 3, 4) for x �= 0.

4 Stability and bifurcation analysis
4.1 Existence of bifurcation without leakage delays
In this subsection, by applying the previous analytic technique, we shall investigate the
stability and bifurcation of system (3.3) by taking communication time delay as the bifur-
cation parameter. Accordingly, it is easy to show that the origin is an equilibrium point of
system (3.3) under assumption (C1). The linearization of (3.3) at the origin is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –r1x1(t) + ax1(t) + m1x4(t – τ ) + n1x2(t – τ ),

Dφx2(t) = –r2x2(t) + ax2(t) + m2x1(t – τ ) + n2x3(t – τ ),

Dφx3(t) = –r3x3(t) + ax3(t) + m3x2(t – τ ) + n3x4(t – τ ),

Dφx4(t) = –r4x4(t) + ax4(t) + m4x3(t – τ ) + n4x1(t – τ ),

(4.1)

whose characteristic equation is

det

⎛

⎜
⎜
⎜
⎝

sφ + k1 –n1esτ 0 –m1e–sτ

–m2e–sτ sφ + k2 n2e–sτ 0
0 m3e–sτ sφ + k3 –n3e–sτ

–n4e–sτ 0 –m4e–sτ sφ + k4

⎞

⎟
⎟
⎟
⎠

= 0, (4.2)

where ki = ri – ag ′
i(0), mi = bif ′

i (0), ni = cif ′
i (0) (i = 1, 2, 3, 4).

By (4.2), we have

P1(s) + P2(s)e–2sτ + P3(s)e–4sτ = 0, (4.3)

where

P1(s) = s4φ + (k1 + k2 + k3 + k4)s3φ + (k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4)s2φ

+ (k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4)sφ + k1k2k3k4,
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P2(s) = –(m1n4 + m2n1 + m3n2)s2φ + (m3n2k4 + m4n3k2 + m1n4k2 + m4n3k1

+ m2n1k4 + m1n4k3 + m2n1k3 + m3n2k1)sφ – (m4n3k1k2 + m2n1k3k4

+ m1n4k2k3 + m3n2k1k4),

P3(s) = m1m3n2n4 + m2m4n1n3 – m1m2m3m4 – n1n2n3n4.

Let P1(s) = A1 + iB1, P2(s) = A2 + iB2, P3(s) = A3, and from Eq. (4.3), we have

(A1 + iB1)e2sτ + (A2 + iB2) + A3e–2sτ = 0. (4.4)

Let s = iw = w(cos π
2 + i sin π

2 ) (ω > 0) be a root of Eq. (4.4). Substituting s into Eq. (4.4) and
separating the real and imaginary parts yields the following equations:

⎧
⎨

⎩

(A1 + A3) cos 2wτ + B1 sin 2wτ = –A2,

B1 cos 2wτ + (A1 – A3) sin 2wτ = –B2,
(4.5)

which lead to

⎧
⎨

⎩

cos 2wτ = – A2(A1–A3)+B1B2
A2

1+B2
1–A2

3
= F (w),

sin 2wτ = – B2(A1+A3)–A2B1
A2

1+B2
1–A2

3
= G(w).

(4.6)

It is easy to see that

F2(w) + G2(w) = 1. (4.7)

From (4.6), one can obtain

τ (l) =
1

2w
[
arccosF (w) + 2lπ

]
, l = 0, 1, 2, . . . . (4.8)

Define the bifurcation point

τ ∗
0 = min

{
τ (l)}, l = 0, 1, 2, . . . . (4.9)

To theoretically gain the sufficient conditions for the Hopf bifurcation, we assume that
the following assumptions hold:

(C2) Eq. (4.7) has no positive real root;
(C3) Eq. (4.7) has at least a positive real root.
Denote

Ξ1 = Π1, Ξ2 =

∣
∣
∣
∣
∣

Π1 1
Π3 Π2

∣
∣
∣
∣
∣
, Ξ3 =

∣
∣
∣
∣
∣
∣
∣

Π1 1 0
Π3 Π2 Π1

0 Π4 Π3

∣
∣
∣
∣
∣
∣
∣

, Ξ4 = Π4�3,

where

Π1 = k1 + k2 + k3 + k4,
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Π2 = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4 – (m1n4 + m2n1 + m3n2),

Π3 = (k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4) + (m3n2k4 + m4n3k2 + m1n4k2

+ m4n3k1 + m2n1k4 + m1n4k3 + m2n1k3 + m3n2k1),

Π4 = k1k2k3k4 – (m4n3k1k2 + m2n1k3k4 + m1n4k2k3 + m3n2k1k4)

+ m1m3n2n4 + m2m4n1n3 – m1m2m3m4 – n1n2n3n4.

Now, we will reconsider the stability of system (3.3) when τ = 0. According to the Routh–
Hurwitz criterion, we have the following lemma.

Lemma 4.1 If τ = 0 and Ξ1 > 0, Ξ2 > 0, Ξ3 > 0, Ξ4 > 0, then system (3.3) is asymptotically
stable.

Proof When τ = 0, by (4.3), we get

λ4 + Π1λ
3 + Π2λ

2Π3λ + Π4 = 0. (4.10)

If the conditions of Ξ1 > 0, Ξ2 > 0, Ξ3 > 0, Ξ4 > 0 hold, then the roots λi of Eq. (4.4) satisfy
| arg(λi)| > φπ/2. Thus, according to Lemma 2.1, system (3.3) is asymptotically stable when
τ = 0. �

To throw up our main results, we further give the following assumption:
(C4) Υ1Ω1+Υ2Ω2

Ω2
1 +Ω2

2
�= 0,

where

Υ1 = 2w0
[
PR

2 sin 2w0τ0 – PI
2 cos 2w0τ0 + 2

(
PR

3 sin 4w0τ0 – PI
3 cos 4wτ0

)]
,

Υ2 = 2w0
[
PR

2 cos 2w0τ0 + PI
2 sin 2w0τ0 + 2

(
PR

3 cos 4ω0τ0 + PI
3 sin 4ω0τ0

)]
,

Ω1 = P′R
1 +

(
P′R

2 – 2τ0PR
2
)

cos 2w0τ0 +
(
P′I

2 – 2τ0PI
2
)

sin 2w0τ0 – 4τ0PR
3 cos 4ω0τ0,

Ω2 = P′I
1 –

(
P′R

2 – 2τ0PR
2
)

sin 2w0τ0 +
(
P′I

2 – 2τ0PI
2
)

cos 2w0τ0 + 4τ0PR
3 sin 4w0τ0.

Lemma 4.2 Let s(τ ) = ν(τ ) + iw(τ ) be a root of Eq. (4.3) near τ = τj satisfying ν(τj) = 0,
w(τj) = w0, then the following transversality condition holds:

Re

[
ds
dτ

]∣
∣
∣
∣
(w=w0,τ=τ0)

�= 0.

Proof By using the implicit function theorem and differentiating (4.3) with respect to τ ,
we have

P′
1(s)

ds
dτ

+ P′
2(s)e–2sτ ds

dτ
+ P2(s)e–2sτ

(

–2τ
ds
dτ

– 2s
)

+ P′
3(s)e–4sτ ds

dτ
+ P3(s)e–4sτ

(

–4τ
ds
dτ

– 4s
)

= 0,

where P′
i(s) is the derivative of Pi(s).
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Noting that P′
3(s) = 0, therefore we have

ds
dτ

=
Υ (s)
Ω(s)

, (4.11)

where

Υ (s) = 2s
[
P2(s)e–2sτ + 2P3(s)e–4sτ ],

Ω(s) = P′
1(s) +

[
P′

2(s) – 2τP2(s)
]
e–2sτ – 4τP3(s)e–4sτ .

Let P′R
i , P′I

i be the real and imaginary parts of Pi(s) (i = 1, 2, 3), respectively. We further
suppose that Υ1, Υ2 are the real and imaginary parts of Υ (s), respectively, and Ω1, Ω2 are
the real and imaginary parts of Ω(s), respectively, then

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=τ∗

0 ,w=w∗
0)

=
Υ1Ω1 + Υ2Ω2

Ω2
1 + Ω2

2
. (4.12)

And from (C3) we conclude that the transversality condition is satisfied. This completes
the proof of Lemma 4.2. �

From the above analysis, we can obtain the following results.

Theorem 4.1 If system (3.3) satisfies:
(1) Under assumptions (C1)–(C4), then the zero equilibrium point is globally

asymptotically stable for τ ∈ [0, +∞).
(2) Under assumptions (C1), (C3), and (C4), then

(i) the zero equilibrium point is locally asymptotically stable for τ ∈ [0, τ0);
(ii) system (3.3) undergoes a Hopf bifurcation at the origin when τ = τ0. That is, a

family of periodic solutions can bifurcate from the zero equilibrium point at
τ = τ0.

Theorem 4.1 shows that there is an explicit communication time delay value τ = τ0,
which can determine the stability of system (3.3) and can induce oscillatory dynamics
even when the deterministic counterpart of system (3.3) exhibits no oscillations.

4.2 Bifurcation analysis involving leakage delays
In this subsection, we first study the stability of system (3.2) by taking the leakage time
delay as the bifurcation parameter. Then we further look for the sufficient conditions of
Hopf bifurcation for the proposed system.

It is obvious that the origin is an equilibrium point of system (3.2) under assumption
(C1). The linear equation of system (3.2) at the origin is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –r1x1(t – τ ) + μ1x1(t) + m1x4(t – τ ) + n1x2(t – τ ),

Dφx2(t) = –r2x2(t – τ ) + μ2x2(t) + m2x1(t – τ ) + n2x3(t – τ ),

Dφx3(t) = –r3x3(t – τ ) + μ3x3(t) + m3x2(t – τ ) + n3x4(t – τ ),

Dφx4(t) = –r4x4(t – τ ) + μ4x4(t) + m4x3(t – τ ) + n4x1(t – τ ),

(4.13)



Li et al. Advances in Difference Equations        (2019) 2019:179 Page 9 of 22

and the associated characteristic equation of system (4.13) is

det

⎛

⎜
⎜
⎜
⎝

sφ – μ + r1e–sτ –n1e–sτ 0 –m1e–sτ

–m2e–sτ sφ – μ + r2e–sτ –n2e–sτ 0
0 –m3e–sτ sφ – μ + r3e–sτ –n3e–sτ

–n4e–sτ 0 –m4e–sτ sφ – μ + r4e–sτ

⎞

⎟
⎟
⎟
⎠

= 0, (4.14)

which equals to the following equation:

(
sφ – μ

)4 + Q1
(
sφ – μ

)3e–sτ + Q2
(
sφ – μ

)2e–2sτ

+ Q3
(
sφ – μ

)
e–3sτ + Q4e–4sτ = 0, (4.15)

in which

Q1 = r1 + r2 + r3 + r4,

Q2 = –n3m4 + r2r4 – m3n2 + r1r4 + r1r3 + r2r3 – m2n1 + r3r4 – m1n4 + r1r2,

Q3 = –m3n2r4 + r1r3r4 + r2r3r4 – r2n3m4 + r1r2r3 – m2n1r4 – r1n3m4 + r1r2r4

– n4m1r3 – m3n2r1,

Q4 = r1r2r3r4 – m1m2m3m4 – n1n2n3n4 – m2n1r3r4 – m3n2r1r4 + r1r2r4 – n4m1r3

– m3n2r1 – m1n4r2r3 + m1m3n2n4 – m3m4r1r2 + m2m4n1n3.

Multiplying e4sτ on both sides of Eq. (4.15), we get

[(
sφ – u

)
esτ ]4 + Q1

[(
sφ – u

)
esτ ]3 + Q2

[(
sφ – u

)
esτ ]2 + Q3

(
sφ – u

)
esτ + Q4 = 0. (4.16)

Suppose that h + ik = (sφ – u)esτ in Eq. (4.16), it follows that

(h + ik)4 + Q1(h + ik)3 + Q2(h + ik)2 + Q3(h + ik) + Q4 = 0. (4.17)

Since Qi are constants, for all the roots (h + ik) of Eq. (4.17), the details can be seen in [38].
s = iω = ω(cos π

2 + i sin π
2 ) (ω > 0) is a purely imaginary root of Eq. (4.17) if and only if

⎧
⎨

⎩

(ωφ cos φπ

2 – u) cosωτ – ωφ sin φπ

2 sinωτ = h,

(ωφ cos φπ

2 – u) sinωτ – ωφ sin φπ

2 cosωτ = k.
(4.18)

If ω2φ – 2uωφ cos φπ

2 + u2 �= 0, then by Eq. (4.18) we have that

⎧
⎪⎨

⎪⎩

cosωτ = ωφ (h cos φπ
2 +k sin φπ

2 )–hu
ω2φ–2uωφ cos φπ

2 +u2 ,

sinωτ = ωφ (k cos φπ
2 –h sin φπ

2 )–ku
ω2φ–2uωφ cos φπ

2 +u2 .
(4.19)

Because sin2 ωτ + cos2 ωτ = 1, Eq. (4.19) implies that

ω2φ = h2 + k2. (4.20)
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By a direct computation, one can have

ω = 2φ
√

h2 + k2. (4.21)

According to cosωτ = ωφ (h cos φπ
2 +k sin φπ

2 )–hu
ω2φ–2uωφ cos φπ

2 +u2 , we obtain that

τ (l) =
1
ω

[

arccos

(
ωφ(h cos φπ

2 + k sin φπ

2 ) – hu
ω2φ – 2uωφ cos φπ

2 + u2

)

+ 2lπ
]

, l = 0, 1, 2, . . . . (4.22)

To establish the main results for system (3.2), it is necessary to make the following as-
sumptions.

(C5) Eq. (4.21) has at least one positive real root.
For system (3.2), we define the bifurcation point as follows:

τ0 = min
{
τ (l)}, l = 0, 1, 2, . . . ,

where τ (l) is defined by (4.22).
To produce our main results, furthermore, we assume that the following condition

holds:
(C6) Φ1Ψ1+Φ2Ψ2

Ψ 2
1 +Ψ 2

2
�= 0,

where

Φ1 = ω0
[
mR

2 sinω0τ
∗
0 – mI

2 cosω0τ
∗
0 + 2

(
mR

3 sin 2ω0τ
∗
0 – mI

3 cos 2ω0τ
∗
0
)]

+ 3
(
mR

4 sin 3ω0τ
∗
0 – mI

4 cos 3ω0τ
∗
0
)
] + 4mR

5 sin 4ω0τ
∗
0 ],

Φ2 = ω0
[
mR

2 cosω0τ
∗
0 + mI

2 sinω0τ
∗
0 + 2

(
mR

3 cos 2ω0τ
∗
0 + mI

3 sin 2ω0τ
∗
0
)]

+ 3
(
mR

4 cos 3ω0τ
∗
0 + mI

4 sin 3ω0τ
∗
0
)
] + 4mR

5 cos 4ω0τ
∗
0 ],

Ψ1 = m′R
1 +

(
m′R

2 – τ ∗
0 mR

2
)

cosω0τ
∗
0 +

(
m′I

2 – τ ∗
0 mI

2
)

sinω0τ
∗
0

+
(
m′R

3 – 2τ ∗
0 mR

3
)

cos 2ω0τ
∗
0 +

(
m′I

3 – 2τ ∗
0 mI

3
)

sin 2ω0τ
∗
0

+
(
m′R

4 – 3τ ∗
0 mR

4
)

cos 3ω0τ
∗
0 +

(
m′I

4 – 3τ ∗
0 mI

4
)

sin 3ω0τ
∗
0

– 4τ ∗
0 mR

5 cos 4ω0τ
∗
0 ,

Ψ2 = m′I
1 –

(
m′R

2 – τ ∗
0 mR

2
)

sinω0τ
∗
0 +

(
m′I

2 – τ ∗
0 mI

2
)

cosω0τ
∗
0

–
(
m′R

3 – 2τ ∗
0 mR

3
)

sin 2ω0τ0 +
(
m′I

3 – 2τ ∗
0 mI

3
)

cos 2ω0τ
∗
0

–
(
m′R

4 – 3τ ∗
0 mR

4
)

sin 3ω0τ
∗
0 +

(
m′I

4 – 3τ ∗
0 mI

4
)

cos 3ω0τ
∗
0

+ 4τ ∗
0 mR

5 sin 4ω0τ
∗
0 .

Lemma 4.3 Let s(τ ) = μ(τ ) + iω(τ ) be a root of system (3.2) near τ = τj satisfying μ(τj) = 0,
ω(τj) = ω0, then the following transversality condition holds:

Re

[
ds
dτ

]∣
∣
∣
∣
(ω=ω0,τ=τ∗

0 )
�= 0.
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Proof Equation (4.15) can be transformed into

m1(s) + m2(s)e–sτ + m3(s)e–2sτ + m4(s)e–3sτ + m5(s)e–4sτ = 0, (4.23)

where m1(s) = (sα –μ)4, m2(s) = Q1(sα –μ)3, m3(s) = Q2(sα –μ)2, m4(s) = Q3(sα –μ), m5(s) =
Q4.

Based on the implicit function theorem and differentiating (4.23) with respect to τ , it
reads

m′
1(s)

ds
dτ

+ m′
2(s)e–sτ ds

dτ
+ m2(s)e–sτ

(

–τ
ds
dτ

– s
)

+ m′
3(s)e–2sτ ds

dτ
+ m3(s)e–2sτ

(

–2τ
ds
dτ

– 2s
)

+ m′
4(s)e–3sτ ds

dτ
+ m4(s)e–3sτ

(

–3τ
ds
dτ

– 3s
)

+ m′
5(s)e–4sτ ds

dτ
+ m5(s)e–4sτ

(

–4τ
ds
dτ

– 4s
)

= 0, (4.24)

where m′
i(s) are the derivatives of mi(s).

Based on Eq. (4.23) and m′
5(s) = 0, one can have

ds
dτ

=
Φ(s)
Ψ (s)

, (4.25)

where

Φ(s) = s
[
m2(s)e–sτ + 2m3(s)e–2sτ + 3m4(s)e–3sτ + 4m5(s))e–4sτ ],

Ψ (s) = m′
1(s) +

[
m′

2(s) – τm2(s)
]
e–sτ +

[
m′

3(s) – 2τm3(s)
]
e–2sτ

+
[
m′

4(s) – 3τm4(s)
]
e–3sτ – 4τm5(s)e–4sτ .

Let m′R
i , m′I

i be the real and imaginary parts of mi(s) (i = 1, 2, 3), respectively; Φ1, Φ2 be
the real and imaginary parts of Φ(s), respectively; and Ψ1, Ψ2 be the real and imaginary
parts of Ψ (s), respectively, then it can be derived from (4.25) that

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=ω=ω0,τ∗

0 )
=

Φ1Ψ1 + Φ2Ψ2

Ψ 2
1 + Ψ 2

2
. (4.26)

From (C6), we can conclude that the transversality condition is met. �

Assume that (C1), (C5)–(C6), Lemma 2.1, and Lemma 4.3 hold, we can obtain the fol-
lowing theorem.

Theorem 4.2 For system (3.2), the following results hold:
(1) If (C1) and (C5) are satisfied, then the zero equilibrium point is globally

asymptotically stable for τ ∈ [0, +∞).
(2) If (C1), (C5)–(C6) hold, then

(i) the zero equilibrium point is locally asymptotically stable for τ ∈ [0, τ ∗
0 );
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Figure 1 Time responses of system (5.1) with φ = 0.92, τ = 0.47 < τ0 = 0.5421

Figure 2 Phase diagrams of system (5.1) with φ = 0.92, τ = 0.47 < τ0 = 0.5421

(ii) system (3.2) undergoes a Hopf bifurcation at the origin when τ = τ ∗
0 , i.e., it has

one branch of periodic solutions bifurcating from the zero equilibrium point near
τ = τ ∗

0 .

This theorem demonstrates that the stability and the Hopf bifurcation of the neural
network are not only crucially dependent on the communication delays, but also heav-
ily influenced by the leakage delay. It is therefore essential for considering the effects of
communication and leakage delays in designing or controlling neural networks.
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Figure 3 Time responses of system (5.1) with φ = 0.92, τ = 0.6 > τ0 = 0.5421

Figure 4 Phase diagrams of system (5.1) with φ = 0.92, τ = 0.6 > τ0 = 0.5421

5 Illustrative examples

In this section, we give several examples to show the feasibility and effectiveness of the re-
sults obtained in this paper. All of the simulation results are based on Adama–Bashforth–
Moulton predictor-corrector scheme [40] with step-length h = 0.01.
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Figure 5 Time responses of system (5.2) with φ = 0.92, τ = 0.36 < τ ∗
0 = 0.3976

Figure 6 Phase diagrams of system (5.2) with φ = 0.92, τ = 0.36 < τ ∗
0 = 0.3976

5.1 Example 1
Consider the following system without leakage delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –0.2x1(t) – 0.2 tanh(x1(t)) + 0.3 tanh(x4(t – τ )) + 0.4 tanh(x2(t – τ )),

Dφx2(t) = 0.4x2(t) – 0.2 tanh(x2(t)) + 1.2 tanh(x1(t – τ )) – 0.8 tanh(x3(t – τ )),

Dφx3(t) = 0.6x3(t) – 0.2 tanh(x3(t)) + 0.4 tanh(x2(t – τ )) + 0.6 tanh(x4(t – τ )),

Dφx4(t) = 0.8x4(t) – 0.2 tanh(x4(t)) – 1.6 tanh(x3(t – τ )) – 1.5 tanh(x1(t – τ )).

(5.1)
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Figure 7 Time responses of system (5.2) with φ = 0.92, τ = 0.42 > τ ∗
0 = 0.3976

Figure 8 Phase diagrams of system (5.2) with φ = 0.92, τ = 0.42 > τ ∗
0 = 0.3976

In this case, let φ = 0.92, and the initial values are selected as (x1(0), x2(0), y1(0), y2(0)) =
(–0.2, 0.1, –0.2, –0.1). By computing, we get ω0 = 1.1675, and then τ0 = 0.5421. Obviously,
system (5.1) at the zero equilibrium point is locally asymptotically stable when τ = 0.47 <
τ0, as shown in Figs. 1–2. Furthermore, Figs. 3–4 display that the zero equilibrium point
of system (5.1) is unstable, and Hopf bifurcation occurs when τ = 0.6 > τ0.
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Figure 9 Effects of φ on τ0 in system (5.1) and τ ∗
0 in system (5.2)

Figure 10 State response of system (5.3) with φ = 0.96, τ = 0.38 < τ0 = 0.4486

5.2 Example 2
For making a comparison with Example 1, let φ = 0.92, and now we consider the following
system with leakage delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = –0.2x1(t – τ ) – 0.2 tanh(x1(t)) + 0.3 tanh(x4(t – τ )) + 0.4 tanh(x2(t – τ )),
Dφx2(t) = 0.4x2(t – τ ) – 0.2 tanh(x2(t)) + 1.2 tanh(x1(t – τ )) – 0.8 tanh(x3(t – τ )),
Dφx3(t) = 0.6x3(t – τ ) – 0.2 tanh(x3(t)) + 0.4 tanh(x2(t – τ )) + 0.6 tanh(x4(t – τ )),
Dφx4(t) = 0.8x4(t – τ ) – 0.2 tanh(x4(t)) – 1.6 tanh(x3(t – τ )) – 1.5 tanh(x1(t – τ )).

(5.2)
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Figure 11 Phase portrait of system (5.3) with φ = 0.96, τ = 0.38 < τ0 = 0.4486

Figure 12 State response of system (5.3) with φ = 0.96, τ = 0.46 > τ0 = 0.4486

By a simple calculation, we have ω0 = 1.5554, τ ∗
0 = 0.3976. Therefore, the zero equilib-

rium point of system (5.2) is locally asymptotically stable when τ = 0.36 < τ0, as described
in Figs. 5–6. Furthermore, the zero equilibrium point of system (5.2) is unstable, and Hopf
bifurcation occurs when τ = 0.42 > τ ∗

0 , as depicted in Figs. 7–8.
To better reflect the impact of leakage delay on the bifurcation point for system (5.2), the

corresponding bifurcation point τ0, τ ∗
0 can be determined as the order φ varies. It can be

seen from Fig. 9 that the values of τ0 are larger than the case of τ ∗
0 for the same order φ. This

implies that Hopf bifurcation easily occurs in advance for system (5.2) involving leakage
delay compared with system (5.1) for some fixed order φ.
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Figure 13 Phase portrait of system (5.3) with φ = 0.96, τ = 0.46 > τ0 = 0.4486

Figure 14 State response of system (5.4) with φ = 0.96, τ = 0.22 < τ0 = 0.2427

5.3 Example 3
Consider the following system without leakage delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = x1(t) – 0.8 tanh(x1(t)) + 1.8 tanh(x4(t – τ )) + 1.5 tanh(x2(t – τ )),
Dφx2(t) = 1.2x2(t) – 0.8 tanh(x2(t)) – 1.5 tanh(x1(t – τ )) – 1.6 tanh(x3(t – τ )),
Dφx3(t) = 0.9x3(t) – 0.8 tanh(x3(t)) + 0.5 tanh(x2(t – τ )) + 1.2 tanh(x4(t – τ )),
Dφx4(t) = 1.5x4(t) – 0.8 tanh(x4(t)) – 1.2 tanh(x3(t – τ )) – 1.8 tanh(x1(t – τ )).

(5.3)
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Figure 15 Phase portrait of system (5.4) with φ = 0.96, τ = 0.22 < τ0 = 0.2427

Figure 16 State response of system (5.4) with φ = 0.96, τ = 0.28 > τ0 = 0.2427

Taking the order and initial values as φ = 0.96 and (x1(0), x2(0), x3(0), x4(0)) = (–0.05,
0.05, 0.05, –0.05), respectively, we can have ω0 = 1.8697, and then τ0 = 0.4486. Thus, the
zero equilibrium point of system (3.2) is global asymptotically stable when τ = 0.38 < τ0

(see Figs. 10–11), and when τ = 0.46 > τ0, system (5.3) at the zero equilibrium point is
unstable (see Figs. 12–13).

If leakage delay is considered in system (5.3), we will give the following example to
demonstrate its impact.
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Figure 17 Phase portrait of system (5.4) with φ = 0.96, τ = 0.28 > τ0 = 0.2427

Figure 18 Effects of φ on τ0 in system (5.3) and τ ∗
0 of system (5.4)

5.4 Example 4
Consider the following system with leakage delays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dφx1(t) = x1(t – τ ) – 0.8 tanh(x1(t)) + 1.8 tanh(x4(t – τ )) + 1.5 tanh(x2(t – τ )),

Dφx2(t) = 1.2x2(t – τ ) – 0.8 tanh(x2(t)) – 1.5 tanh(x1(t – τ )) – 1.6 tanh(x3(t – τ )),

Dφx3(t) = 0.9x3(t – τ ) – 0.8 tanh(x3(t)) + 0.5 tanh(x2(t – τ )) + 1.2 tanh(x4(t – τ )),

Dφx4(t) = 1.5x4(t – τ ) – 0.8 tanh(x4(t)) – 1.2 tanh(x3(t – τ )) – 1.8 tanh(x1(t – τ )).
(5.4)
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The same order and initial values are chosen as those in system (5.3). We now get ω0 =
2.9997 and τ ∗

0 = 0.2477. Therefore, when τ = 0.22 < τ ∗
0 , system (5.4) at the zero equilibrium

point is global asymptotically stable (see Figs. 14–15); when τ = 0.28 > τ ∗
0 , system (5.4) at

the zero equilibrium point is unstable (see Figs. 16–17). Moreover, if the order φ varies,
the corresponding ω0, τ ∗

0 can be obtained. It can be seen from Fig. 18 that the onset of
Hopf bifurcation of system (5.4) is gradually postponed as the order increases.

6 Conclusion
In this paper, the issue of bifurcation for a ring of fractional neural networks with four
neurons and time delay in leakage terms has been studied. By utilizing time delay as the
bifurcation parameter, some criteria to ensure that existence of the Hopf bifurcation for
the fractional four neurons networks were established. The analytic results have shown
that both the leakage time delay and communication time delay can change the dynamic
behavior quantitatively, for example, greatly changing the stability of equilibrium solution,
further leading to Hopf bifurcation and oscillation solutions. Moreover, the impact of the
order on the creation of bifurcation was also numerically demonstrated. As a continuation
of the previously mentioned series of works, our results may enrich our understanding of
the bifurcation for delayed ring fractional neural networks. Finally, simulation examples
have been performed to illustrate the main results.
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