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Abstract
In this paper, we investigate the existence of positive solutions for an infinite system
of fractional order boundary value problems in a Banach sequence space c. Our
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the criterion of relative compactness in C1(J, c). Finally, an example is given to illustrate
our abstract results.
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1 Introduction
In this paper, we investigate the existence of positive solutions for the following infinite
system of fractional order boundary value problems:

⎧
⎨

⎩

cDαun(t) + fn(t, u1(t), u2(t), . . . , u′
1(t), u′

2(t), . . .) = 0, 0 ≤ t ≤ 1,

un(0) = an, un(1) = bn, n = 1, 2, . . . ,
(1.1)

where cDα denotes the Caputo fractional derivative of order 1 < α ≤ 2, and fn : [0, 1] ×
R

∞
+ × R

∞ → R+ are given functions (for n = 1, 2, . . .) where R
∞ denotes the vector

space consisting of all sequences of real numbers and R
∞
+ denotes the positive cone

of R
∞. For simplicity, we will write u(t) instead of the sequence of real functions

(un(t))n∈N, and u′(t) will denote the sequence of real functions (u′
n(t))n∈N. Functions such as

fn(t, u1(t), u2(t), . . . , u′
1(t), u′

2(t), . . .) will be written as fn(t, u(t), u′(t)) in the sequel. By a solu-
tion of the infinite system (1.1) we mean that there is a sequence of functions u(t) = (un(t))
satisfying (1.1) on the interval J := [0, 1].

The theory of infinite systems of differential equations is an important branch of non-
linear analysis. Some infinite systems of differential equations or integral equations have
been investigated in a few of Banach sequence spaces by [2, 4–7, 16, 17, 20] etc. On the
one hand, there are a number of problems of infinite systems of differential equations aris-
ing naturally in the description of physical phenomena, where only positive solutions are
meaningful. The research on the boundary value problems of fractional differential equa-
tions has received a great attention in the last decade, and a variety of results can be found
in [1, 3, 8, 10, 14, 18, 19, 21, 22] and the references therein. In this paper, motivated by the
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above mentioned literature, we investigate the existence of positive solutions to the infinite
system (1.1). Our considerations will be placed in the Banach space c consisting of all con-
vergent sequences of real numbers. Our approach mainly depends on the Krasnosel’skii
fixed point theorem in a cone in conjunction with the criterion of relative compactness in
the Banach space C1(J , c).

2 Preliminaries
Let AC(J) denote the space of real functions which are absolutely continuous on the inter-
val J . It is known that AC(J) coincides with the space of primitives of Lebesgue summable
functions (cf. [12, p. 338]). Further, we denote by AC1(J) the space of real functions x(t)
which have continuous derivatives on J such that x′(t) ∈ AC(J). Moreover, we will denote
by L∞(J) the Banach space consisting of all essentially bounded functions on J and by L1(J)
the Banach space consisting of Lebesgue integrable functions on J .

Definition 2.1 (Cf. [11, p. 69]) The fractional integral of α > 0 order of a function ϕ : J →
R is given by

Iαϕ(t) :=
1

Γ (α)

∫ t

0
(t – s)α–1ϕ(s) ds,

provided the right-hand side is pointwise defined on J , where Γ is the gamma function.

Remark 2.1 (Cf. [9, p. 13]) Let ϕ ∈ L1(J) and α > 0. Then the integral Iαϕ(t) exists for
almost every t ∈ J . Moreover, the function Iαϕ itself is also an element of the space L1(J).

Definition 2.2 (Cf. [11, pp. 91–92]) If ϕ ∈ ACm–1(J), then the Caputo fractional derivative
cDαϕ exists almost everywhere on J . If α > 0 is not an integer, then it is expressed as follows:

(cDαϕ
)
(t) :=

1
Γ (m – α)

∫ t

0
(t – s)m–α–1ϕ(m)(s) ds,

where m = [α] + 1 and [α] stands for the largest integer not greater than α.

Example 2.1 (Cf. [9, p. 193]) Let 1 < α ≤ 2. From the definition of the Caputo fractional
derivative, we quote for ϕ(t) = tδ , then

cDα
(
tδ

)
=

⎧
⎨

⎩

0, δ = 0, 1;
Γ (δ+1)

Γ (δ+1–α) tδ–α , δ > 1.

Lemma 2.1 (Cf. [11, pp. 95–96]) Let 1 < α ≤ 2. The following relations hold:
(i) if y ∈ L∞(J), then cDαIαy(t) = y(t);

(ii) if y ∈ AC1(J), then IαcDαy(t) = y(t) – y(0) – y′(0)t.

Lemma 2.2 Let 1 < α ≤ 2. If ψ ∈ L∞(J), then y ∈ AC1(J) is a solution of the boundary value
problem

⎧
⎨

⎩

cDαy(t) + ψ(t) = 0, t ∈ J ,

y(0) = y0, y(1) = y1,
(2.1)
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if and only if y satisfies

y(t) =
∫ 1

0
G(t, s)ψ(s) ds + (y1 – y0)t + y0, t ∈ J , (2.2)

where the Green’s function associated with (2.1) is defined by

G(t, s) =
1

Γ (α)

⎧
⎨

⎩

t(1 – s)α–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

t(1 – s)α–1, 0 ≤ t ≤ s ≤ 1.
(2.3)

Proof By Lemma 2.1(ii), we deduce from (2.1) that

0 = IαcDαy(t) + Iαψ(t) = y(t) – y′(0)t – y(0) +
∫ t

0

(t – s)α–1

Γ (α)
ψ(s) ds,

and the boundary conditions give

y(0) = y0, y′(0) = y1 – y0 +
∫ 1

0

(1 – s)α–1

Γ (α)
ψ(s) ds.

Thus, we obtain that

y(t) = –
∫ t

0

(t – s)α–1

Γ (α)
ψ(s) ds + t

∫ 1

0

(1 – s)α–1

Γ (α)
ψ(s) ds + (y1 – y0)t + y0

=
∫ 1

0
G(t, s)ψ(s) ds + (y1 – y0)t + y0, t ∈ J .

Inversely, if y ∈ AC1(J) satisfies (2.2), then we have

y(t) = –Iαψ(t) +
(∫ 1

0

(1 – s)α–1

Γ (α)
ψ(s) ds + y1 – y0

)

t + y0.

The boundary conditions are easy to be verified. Further, by Lemma 2.1(i) and Example 2.1
(which shows that cDαt = cDα1 = 0), we have

cDαy(t) = –ψ(t), t ∈ J ,

that is, y is a solution of (2.1). �

Remark 2.2 Clearly, the Green’s function G(t, s) defined by (2.3) is nonnegative and con-
tinuous on J × J .

A simple calculation yields

∂G(t, s)
∂t

=
1

Γ (α)

⎧
⎨

⎩

(1 – s)α–1 – (α – 1)(t – s)α–2, 0 ≤ s < t ≤ 1,

(1 – s)α–1, 0 ≤ t ≤ s ≤ 1.

The following estimates hold:

∫ 1

0
G(t, s) ds ≤ α – 1

Γ (α + 1)
,

∫ 1

0

∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣ds ≤ α + 1

Γ (α + 1)
, ∀t ∈ J . (2.4)
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Further, for ∀t1, t2 ∈ J , we have the estimates:

∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣ds ≤ |t1 – t2| + |tα

1 – tα
2 |

Γ (α + 1)
,

∫ 1

0

∣
∣
∣
∣
∂G(t1, s)

∂t
–

∂G(t2, s)
∂t

∣
∣
∣
∣ds ≤ |tα–1

1 – tα–1
2 |

Γ (α)
.

(2.5)

Let (E,‖ · ‖E) be an infinite dimensional real Banach space. We denote by C(J , E) the
space consisting of all functions defined and continuous on the interval J with values in
the space E. Further, we denote by C1(J , E) the space consisting of all functions defined
and continuous differentiable on J with values in the space E. It is well known that C1(J , E)
is a Banach space equipped with the standard norm

‖u‖C1 = ‖u‖C +
∥
∥u′∥∥

C ,

where ‖v‖C = supt∈J ‖v(t)‖E for v ∈ C(J , E).
For a set Ω in C1(J , E), we will denote by Ω ′ the set situated in C(J , E) and by Ω(t) the

set situated in E for fixed t ∈ J as the following forms:

Ω ′ =
{

u′ : u ∈ Ω
}

, Ω(t) =
{

u(t) : u ∈ Ω
}

.

In what follows, we will use the following criterion of compactness in C1(J , E) which is
a generalization of the well-known Arzelà–Ascoli theorem.

Theorem 2.1 (Cf. [15, Proposition 1.7]) A bounded subset Ω of the space C1(J , E) is rela-
tively compact if and only if all functions from Ω and Ω ′ are equicontinuous on J , and the
set Ω(t) is relatively compact in the space E for each t ∈ J .

In the sequel, we will denote by (c,‖ · ‖∞) the Banach space consisting of all convergent
sequences ξ = (ξn) with the norm ‖ξ‖∞ = sup{|ξ1|, |ξ2|, . . .}.

Let us recall [4, Theorem 3.1] that a bounded subset X of the space (c,‖ ·‖∞) is relatively
compact if and only if

lim
k→∞

[
sup

(ξn)∈X

{
sup

{|ξm – ξn| : m, n ≥ k
}}]

= 0. (2.6)

Further, we will denote by C1(J , c) the Banach space consisting of all functions defined
and continuous differentiable on J with values of each function and its derivative in the
space (c,‖ · ‖∞), equipped with the norm

‖u‖∗ := ‖u‖C +
∥
∥u′∥∥

C , u ∈ C1(J , c),

where ‖u‖C = maxt∈J ‖u(t)‖∞ and ‖u′‖C = maxt∈J ‖u′(t)‖∞.
The following Krasnosel’skii fixed point theorem in a cone (cf. [13]) will be utilized in

our considerations.

Theorem 2.2 Let E be a Banach space, and let P ⊆ E be a cone in E . Assume that Ω1,
Ω2 are open subsets of E with 0 ∈ Ω1 ⊆ Ω1 ⊆ Ω2, and let F : P → P be a completely
continuous operator such that, either
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(i) ‖Fx‖ ≤ ‖x‖, x ∈P ∩ ∂Ω1 and ‖Fx‖ ≥ ‖x‖, x ∈P ∩ ∂Ω2, or
(ii) ‖Fx‖ ≥ ‖x‖, x ∈P ∩ ∂Ω1 and ‖Fx‖ ≤ ‖x‖, x ∈P ∩ ∂Ω2.

Then F has a fixed point in P ∩ (Ω2\Ω1).

3 Main results
Solutions to the infinite system (1.1) will be sought in the cone P of the Banach space
C1(J , c), where P is defined by

P :=
{

u = (un) ∈ C1(J , c) : un ∈ AC1(J), un(t) ≥ 0, t ∈ J , n = 1, 2, . . .
}

.

In order to investigate the existence of positive solutions to (1.1) in the cone P , we will
impose the following hypotheses.

(H1) For each n ∈ N, the function fn : J ×R
∞
+ ×R

∞ → R+ is such that fn(·, u, v) is mea-
surable for every (u, v) ∈ R

∞
+ ×R

∞, and the sequences of nonnegative real numbers
a = (an) and b = (bn) are convergent, and a = 0 or b = 0 (where 0 denotes the zero
sequence).

(H2) The operator f defined on the space J × c × c as

f (u, v)(t) :=
(
f1(t, u, v), f2(t, u, v), . . .

)

is such that the class of all functions {f (u, v)(t)}t∈J is equicontinuous at every point
of the space c × c.

(H3) There exist two sequences of continuous functions (pn) and (qn), which are conver-
gent uniformly on J , such that

∣
∣fn(t, u, v)

∣
∣ ≤ ∣

∣pn(t)
∣
∣ +

∣
∣qn(t)

∣
∣
(‖u‖∞ + ‖v‖∞

)
(3.1)

for ∀(t, u, v) ∈ J × c × c.
Moreover, for any bounded subset X of the space c, we assume that the sequence

(fn(t, u, v)) is convergent uniformly on J × X × X , i.e., for arbitrary given ε > 0, there
exists n0 ∈N such that

∣
∣fm(t, u, v) – fn(t, u, v)

∣
∣ ≤ ε, as m, n ≥ n0, (3.2)

for ∀(t, u, v) ∈ J × X × X .
Let us introduce the following notations:

p(t) =
(
pn(t)

)
, P = sup

t∈J

∫ 1

0

(

G(t, s) +
∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

)
∥
∥p(s)

∥
∥∞ ds;

q(t) =
(
qn(t)

)
, Q = sup

t∈J

∫ 1

0

(

G(t, s) +
∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

)
∥
∥q(s)

∥
∥∞ ds.

Now, we define the operator F on C1(J , c) by Fu := (F1u, F2u, . . .) such that, for each
n ∈N, the function Fn : C1(J , c) →R is expressed in the form

Fnu(t) =
∫ 1

0
G(t, s)fn

(
s, u(s), u′(s)

)
ds + bnt + an(1 – t), (3.3)
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where the Green’s function is defined by (2.3). Then we have

(Fnu)′(t) =
∫ 1

0

∂G(t, s)
∂t

fn
(
s, u(s), u′(s)

)
ds + bn – an, n = 1, 2, . . . . (3.4)

By Lemma 2.2, it is clear that there exist positive solutions to (1.1) if and only if the
operator F has fixed points in the cone P , that is, there exists u ∈ P (u = 0) such that
Fnu = un (n = 1, 2, . . .).

Lemma 3.1 Under assumptions (H1)–(H3), the operator F : P → P defined by (3.3) is
completely continuous in the Banach space C1(J , c).

Proof Let u ∈P be arbitrarily fixed. In view of expressions (3.3) and (3.4), it may infer that
Fnu ∈ AC1(J) and Fnu(t) ≥ 0 (n = 1, 2, . . .) on account of our assumptions.

According to the equicontinuity of the operator f at point (u, u′) by (H2), for given ε > 0,
there exists δ > 0 such that

∥
∥f

(
u, u′)(s) – f

(
v, v′)(s)

∥
∥∞ ≤ Γ (α)

2
ε,

whenever ‖u – v‖C ≤ δ and ‖u′ – v′‖C ≤ δ for v ∈P and ∀s ∈ J . Then we deduce from (2.4)
that

‖Fu – Fv‖∗ ≤ sup
t∈J

∫ 1

0
G(t, s)

∥
∥f

(
u, u′)(s) – f

(
v, v′)(s)

∥
∥∞ ds

+ sup
t∈J

∫ 1

0

∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

∥
∥f

(
u, u′)(s) – f

(
v, v′)(s)

∥
∥∞ ds

≤
(

sup
t∈J

∫ 1

0
G(t, s) ds + sup

t∈J

∫ 1

0

∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣ds

)
Γ (α)

2
ε ≤ ε,

which implies that F : P →P is continuous.
Next, let Ω ⊆P be a bounded set. It follows that there exists M > 0 such that ‖u‖∗ ≤ M

for ∀u ∈ Ω . Then, for given u ∈ Ω and n ∈N, we deduce from (3.1) that

∣
∣Fnu(t)

∣
∣ ≤

∫ 1

0
G(t, s)fn

(
s, u(s), u′(s)

)
ds + bnt + an(1 – t)

≤
∫ 1

0
G(t, s)

[
pn(s) + qn(s)

(∥
∥u(s)

∥
∥∞ +

∥
∥u′(s)

∥
∥∞

)]
ds

+ bnt + an(1 – t)

≤
∫ 1

0
G(t, s)

∥
∥p(s)

∥
∥∞ ds + M

∫ 1

0
G(t, s)

∥
∥q(s)

∥
∥∞ ds

+ ‖b‖∞t + ‖a‖∞(1 – t).

Similarly, we have

∣
∣(Fnu)′(t)

∣
∣ ≤

∫ 1

0

∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

∥
∥p(s)

∥
∥∞ ds + M

∫ 1

0

∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

∥
∥q(s)

∥
∥∞ ds

+ ‖b‖∞ + ‖a‖∞.
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Thus, we obtain that

‖Fu‖∗ ≤ P + QM + 2‖b‖∞ + 2‖a‖∞, ∀u ∈ Ω , (3.5)

which implies that F maps bounded sets of the cone P into bounded ones.
Let ∀t1, t2 ∈ J . For an arbitrary fixed u ∈ Ω we deduce from (2.5) that

∣
∣Fnu(t1) – Fnu(t2)

∣
∣

≤
∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣fn

(
s, u(s), u′(s)

)
ds + |bn – an| · |t1 – t2|

≤
(‖p‖C + M‖q‖C

Γ (α + 1)
+ ‖b – a‖∞

)
(|t1 – t2| +

∣
∣tα

1 – tα
2
∣
∣
)
, n = 1, 2, . . . ;

and

∣
∣(Fnu)′(t1) – (Fnu)′(t2)

∣
∣ ≤

∫ 1

0

∣
∣
∣
∣
∂G(t1, s)

∂t
–

∂G(t2, s)
∂t

∣
∣
∣
∣fn

(
s, u(s), u′(s)

)
ds

≤ ‖p‖C + M‖q‖C

Γ (α)
∣
∣tα–1

1 – tα–1
2

∣
∣, n = 1, 2, . . . ,

which imply that all functions from the sets FΩ and (FΩ)′ are equicontinuous on the
interval J .

Now, for fixed t ∈ J , let us consider the set FΩ(t). For ∀u ∈ Ω , we have

∣
∣Fmu(t) – Fnu(t)

∣
∣ ≤

∫ 1

0
G(t, s)

∣
∣fm

(
s, u(s), u′(s)

)
– fn

(
s, u(s), u′(s)

)∣
∣ds

+ |bm – bn|t + |am – an|(1 – t), ∀m, n ∈ N.

From estimate (3.2) and the convergence of (an) and (bn), we conclude that

lim
k→∞

[
sup
u∈Ω

{
sup

{∣
∣Fmu(t) – Fnu(t)

∣
∣ : m, n ≥ k

}}]
= 0,

which shows that FΩ(t) is relatively compact in the space (c,‖ · ‖∞) for each t ∈ J by
formula (2.6).

Taking into account the fact that the sets FΩ and (FΩ)′ consist of functions equicon-
tinuous on the interval J , on the base of Theorem 2.1, we infer that the set FΩ is relatively
compact in the Banach space C1(J , c). Consequently, we show that F : P → P is com-
pletely continuous. �

Now we are in a position to state our main result.

Theorem 3.1 Under assumptions (H1)–(H3), if additionally Q < 1, the infinite system
(1.1) has at least one positive solution u(t) = (un(t)), and (un(t)) is a convergent sequence,
i.e., (un(t)) ∈ c for each t ∈ J .
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Proof Let r1 := max{‖a‖∞,‖b‖∞} and Ω1 := {u ∈ C1(J , c) : ‖u‖∗ < r1}. For u ∈P ∩ ∂Ω1, we
have ‖u‖∗ = r1. According to the nonnegativity of fn and G(t, s), we deduce from (3.3) that

Fnu(t) ≥ bnt + an(1 – t), n = 1, 2, . . . ,

it follows that

‖Fu‖∗ ≥ sup
t∈J

{‖b‖∞t + ‖a‖∞(1 – t)
}

= max
{‖a‖∞,‖b‖∞

}
= r1 = ‖u‖∗.

Let

r2 :=
P + 2‖b‖∞ + 2‖a‖∞

1 – Q
,

and let Ω2 := {u ∈ C1(J , c) : ‖u‖∗ < r2}. For u ∈ P ∩ ∂Ω2, we have ‖u‖∗ = r2. Similar to
estimate (3.5) we have

‖Fu‖∗ ≤ P + Qr2 + 2‖b‖∞ + 2‖a‖∞ = r2 = ‖u‖∗.

Since Ω1 ⊂ Ω2, then by the second part of Theorem 2.1, it follows that F has a fixed
point u in P ∩ (Ω2\Ω1). Thus, u(t) = (un(t)) is a positive solution of the infinite system
(1.1), and u(t) ∈ c for each t ∈ J . �

Example 3.1 Consider the following infinite system of fractional order boundary value
problems:

cD3/2un(t) +
n∑

k=0

tk

k!
+

tn+1

2n+1
|u′

n(t)|
1 + |un(t)| +

∞∑

k=n+1

tk+1

2k+1
uk(t)

1 + |uk(t)| = 0,

un(0) =
1
n

, un(1) =
n

n + 1
, 0 ≤ t ≤ 1, n = 1, 2, . . . .

(3.6)

In order to show that this system admits a positive solution in C1(J , c), we are going to
check the conditions of Theorem 3.1. To this end, we define the functions and sequences
as follows:

fn(t, u, v) :=
n∑

k=0

tk

k!
+

tn+1

2n+1
|vn|

1 + |un| +
∞∑

k=n+1

tk+1

2k+1
uk

1 + |uk| ,

an :=
1
n

, bn :=
n

n + 1
, n = 1, 2, . . . .

Clearly, fn : J ×R
∞
+ ×R

∞ →R+ is measurable for each n ∈ N, and the sequences a = (an),
b = (bn) are convergent. Thus, assumption (H1) is verified.

For a fixed point (̃u, ṽ) ∈ c × c and given ε > 0, choose δ = ε/2(1 + ‖v‖∞) and take (u, v) ∈
c×c such that ‖u – ũ‖∞ ≤ δ and ‖v – ṽ‖∞ ≤ δ. Then, for each n ∈ N, we have the following
estimate:

∣
∣fn(t, u, v) – fn(t, ũ, ṽ)

∣
∣

≤ tn+1

2n+1

( |vn – ṽn|
1 + |un| +

|̃vn||un – ũn|
(1 + |un|)(1 + |̃un|)

)
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+
∞∑

k=n+1

tk+1

2k+1

( |uk – ũk|
1 + |uk| +

|̃uk||uk – ũk|
(1 + |uk|)(1 + |̃uk|)

)

≤ tn+1

2n

(‖v – ṽ‖∞ + ‖̃v‖∞‖u – ũ‖∞
)

+

( ∞∑

k=n+1

tk+1

2k

)

‖u – ũ‖∞

≤
( ∞∑

k=1

tk+1

2k

)
[(

1 + ‖v‖∞
)‖u – ũ‖∞ + ‖v – ṽ‖∞

] ≤ ε,

which implies that the class of functions {f (u, v)(t)}t∈J is equicontinuous at (̃u, ṽ). Thus,
assumption (H2) is verified.

Next, let us define the sequences of functions (pn) and (qn) as follows:

pn(t) :=
n∑

k=0

tk

k!
, qn(t) :=

∞∑

k=n

tk+1

2k , n = 1, 2, . . . .

Let X be a bounded subset of the space c. We assume ‖u‖∞ ≤ M for ∀u ∈ X. Thus, for
∀m, n ∈N with m > n and u, v ∈ X, we get

∣
∣fm(t, u, v) – fn(t, u, v)

∣
∣

≤
m∑

k=n+1

tk

k!
+

tn+1

2n+1

( |vm|
1 + |um| +

|vn|
1 + |un|

)

+
m∑

k=n+1

tk+1

2k+1 · |uk|
1 + |uk|

≤
m∑

k=n+1

tk

k!
+

( m∑

k=n

tk+1

2k

)
(‖u‖∞ + ‖v‖∞

)

≤
m∑

k=n+1

tk

k!
+ 2M

( m∑

k=n

tk+1

2k

)

,

then the uniform convergence of (pn) and (qn) implies that estimate (3.2) of (H3) is satisfied
for ∀t ∈ J . Further, we conclude that estimate (3.1) of (H3) is satisfied from the following
inequality:

∣
∣fn(t, u, v)

∣
∣ ≤

n∑

k=0

tk

k!
+

tn+1

2n+1 ‖v‖∞ +

( ∞∑

k=n+1

tk+1

2k+1

)

‖u‖∞

≤
n∑

k=0

tk

k!
+

( ∞∑

k=n

tk+1

2k

)
(‖u‖∞ + ‖v‖∞

)
, ∀t ∈ J .

Moreover, from ‖q(t)‖∞ = t2/(2 – t) ≤ t2 we deduce that

∫ 1

0

(

G(t, s) +
∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

)
s2

2 – s
ds

≤
∫ 1

0

(

G(t, s) +
∣
∣
∣
∣
∂G(t, s)

∂t

∣
∣
∣
∣

)

s2 ds

≤
∫ 1

0

t(1 – s) 1
2 s2

Γ (3/2)
ds –

∫ t

0

(t – s) 1
2 s2

Γ (3/2)
ds +

∫ 1

0

(1 – s) 1
2 s2

Γ (3/2)
ds +

∫ t

0

(t – s)– 1
2 s2

2Γ (3/2)
ds
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=
2

Γ (9/2)

(

t – t7/2 + 1 +
7
2

t5/2
)

≤ 9
Γ (9/2)

= 0.773 . . . , ∀t ∈ J ,

it follows that Q < 1.
Now, based on Theorem 3.1, we infer that there exists at least one positive solution to the

infinite system (3.6), and for each t ∈ J , the solution (un(t)) forms a convergent sequence.
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