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Abstract
We give a relatively short proof of the fact that the solution set of a nonlocal
semilinear differential inclusion is dense in the weak solution set of the corresponding
convexified system. Moreover, we prove a similar result for the solutions with
continuous pseudoderivatives when the right-hand side is continuous with
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1 Introduction
In this paper we study the following nonautonomous semilinear differential inclusion with
nonlocal initial conditions:

⎧
⎨

⎩

ẋ(t) ∈ A(t)x(t) + F(t, x(t)), t ∈ I = [0, S],

x(0) = g(x(·))
(1.1)

in a Banach space E. Here, {A(t); t ∈ I} is a family of densely defined linear operators on E,
F : I ×E ⇒ E is a multifunction with nonempty closed bounded values, and g : C(I, E) → E
is a given function.

The nonlocal problems have been intensively studied using various frames and tech-
niques, and they continue to be an important research subject. The interest for this study
comes from the fact that these mathematical models describe more accurately than the
traditional Cauchy problems the evolution of various phenomena (see, e.g., [5] for de-
tails). For results on the existence of mild solutions for nonlocal (autonomous or nonau-
tonomous) semilinear differential equations or inclusions, we mention the papers [2, 13,
15, 16, 20–22]. We refer also to [14], where semilinear differential equations with causal
operators are studied. For nonlinear nonlocal problems, we mention [1, 3].

In this paper, the first goal is to prove that the solution set of the nonconvex problem
(1.1) is dense in the solution set of the so-called relaxed (convexified) problem

⎧
⎨

⎩

ẋ(t) ∈ A(t)x(t) + co F(t, x(t)),

x(0) = g(x(·)).
(1.2)
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These kinds of results are known in literature as relaxation theorems. These results are
very important in the theory of optimal control. The value of the cost functionals associ-
ated with system (1.1) does not change under convexification. This problem is studied also
in case A is m-dissipative nonlinear. For local problems, where x(0) = x0 with x0 ∈ D(A),
there are many relaxation type theorems for different systems, under various assumptions
(see, e.g., [6, 8, 10, 12, 18]).

In the present paper we prove a relaxation theorem for the nonlocal problem (1.1), as-
suming that F(·, ·) is almost continuous with closed bounded values and F(t, ·) is Lipschitz
continuous, in general Banach spaces. We should mention that the solution set of (1.2)
is not closed in general, even when A(·) generates a compact semigroup (see [7]). In [7]
the local autonomous version of (1.1) with A generator of a compact (or equicontinuous)
semigroup is studied. More exactly, the notions of limit and weak solutions are defined and
the relations between them are studied. In our paper, we introduce these kinds of gener-
alized solutions for our system (1.1) in order to prove our main results. Our hypotheses
imply the possibility that the limit solutions may not be mild solutions. We prove that the
limit solutions are in fact weak solutions. Further, we prove that the latter have integral
representations, and we give a relatively simple proof of the relaxation theorem in gen-
eral Banach spaces. In a forthcoming paper [4], using a completely different approach, we
provide a relaxation theorem in the case when A is an m-dissipative nonlinear operator,
but the duality map of E is assumed to be single valued. To our knowledge, these kinds of
results are new in the case of nonlocal problems.

The second goal of this paper is to establish the relation between the mild solutions of
(1.1) and the solutions of (1.2) with continuous pseudoderivatives. Actually, we consider
the case when F(·, ·) is jointly continuous with closed convex values, and we prove, using
the successive approximations method, that the set of solutions of (1.1) with continuous
pseudoderivatives is dense in the set of mild solutions of (1.1).

2 Preliminaries
In this section we give the main definitions and notations used along this paper. Moreover,
we present the standing hypotheses used throughout the paper.

The Hausdorff metric in the space of the closed bounded subsets of E is DH (A, B) :=
max{Ex(A, B), Ex(B, A)}, where Ex(A, B) = supa∈A infb∈B |a – b|. If a ∈ E and B ⊂ E, then the
distance between a and B is dist(a, B) = infb∈B |a – b|. We denote by B the closed unit ball
in E. The multifunction G : I × E ⇒ E is said to be continuous if it is continuous with
respect to the Hausdorff metric. It is called almost continuous if for any ε > 0 there exists
a compact set Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε such that G|Iε×E is continuous.
A multifunction H : I ⇒ E is said to be lower semicontinuous (LSC) at t̄ if for every ti → t̄
and every h̄ ∈ H(t̄) there exists hi ∈ H(ti) such that hi → h̄. H is called LSC if it is LSC at
every t ∈ I .

Denote by L(E) the space of all bounded linear operators from the Banach space E into E.
We recall that a family of bounded linear operators {T(t, s); 0 ≤ s ≤ t ≤ S} on E is said to
be an evolution system if

(i) T(s, s) = I and T(t, r)T(r, s) = T(t, s) for all 0 ≤ s ≤ r ≤ t ≤ S;
(ii) the map (t, s) −→ T(t, s) is strongly continuous (w.r.t. the operator topology in L(E))

for 0 ≤ s ≤ t ≤ S.

Remark 2.1 Due to (ii) there exists M > 0 such that M = sup0≤s<t≤S ‖T(t, s)‖L(E).
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We refer the reader to [17] for the theory of semilinear equations and evolution opera-
tors.

Throughout the paper we consider the following assumption on A(·):
(A) {A(t); t ∈ [0, S]} is a family of closed densely defined unbounded linear operators on

E of domains D(A(t)) ⊂ E, with D(A(t)) = D(A) not depending on t and dense in E,
such that there exists an evolution system {T(t, s); 0 ≤ s ≤ t ≤ S} with the property
that t −→ T(t, s) is differentiable and

∂T(t, s)
∂t

= A(t)T(t, s).

Consider the nonautonomous Cauchy problem

⎧
⎨

⎩

ẋ(t) ∈ A(t)x(t) + f (t), t ∈ I,

x(0) = x0,
(2.1)

where {A(t); t ∈ I} satisfies (A), f (·) ∈ L1(I, E) and x0 ∈ E.
Recall that the continuous function x(·) is called the mild solution of (2.1) if it satisfies

the integral equation

x(t) = T(t, 0)x0 +
∫ t

0
T(t, s)f (s) ds (2.2)

for any t ∈ I . Notice that, for any 0 ≤ τ < t ≤ S, the mild solution x(·) of (2.1) satisfies

x(t) = T(t, τ )x(τ ) +
∫ t

τ

T(t, s)f (s) ds.

Definition 2.2 A continuous function x(·) is said to be a mild solution of (1.1) if there
exists f (·) ∈ L1(I, E) with f (t) ∈ F(t, x(t)) for a.a. t ∈ I such that x(·) is a mild solution of
(2.1), where x0 is replaced by g(x(·)).

A function f (·) ∈ L1(I, E) with f (t) ∈ F(t, x(t)) a.e. on I and satisfying (2.2) will be called
a pseudoderivative of x(·). Clearly, the pseudoderivative depends on x(·) and A(·). Since
in this paper A(·) is previously defined and does not change, then we will stress only the
dependence of the pseudoderivative on the solution.

We end this section by stating the hypotheses on F and g .
(F1) F(·, ·) is an almost continuous multifunction with nonempty closed bounded values.
(F2) There exists a Lebesgue integrable function k(·) such that DH(F(t, x), F(t, y)) ≤

k(t)|x – y| for a.a. t ∈ I and all x, y ∈ E.
(F3) ‖F(t, 0)‖ ≤ a(t) for any t ∈ I , where a(·) is a Lebesgue integrable function.

(g) g : C(I, E) → E is Lipschitz continuous with a constant μ > 0, i.e.,

∣
∣g

(
x(·)) – g

(
y(·))∣∣ ≤ μ

∥
∥x(·) – y(·)∥∥C(I,E)

for any x(·), y(·) ∈ C(I, E).

Remark 2.3 It follows from (F2) and (F3) that ‖F(t, x)‖ ≤ a(t) + k(t)|x| for any (t, x) ∈ I ×E.
Clearly, (F1) can be relaxed to F(·, x) satisfies Lusin’s property.
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Finally, denote K(t) :=
∫ t

0 k(s) ds and K := K(S). We need also the following assumption:
(C) M(μ + K) < 1.

3 Main results
In this section we first study the existence of mild solutions for the nonlocal differential
inclusion (1.1). Then, we establish the main result of this section, which is a relaxation
theorem. To this end, we use the so-called weak and limit solutions of (1.1).

The following proposition, which is a reformulation of Proposition 2.1 in [1], is used in
the proofs of Theorem 3.2 and Lemma 3.7.

Proposition 3.1 Let G : I ⇒ E and g : I → E be strongly measurable. Then, for every
ε > 0, there exists a strongly measurable function u(·) such that u(t) ∈ G(t) ∩ [g(t) +
(dist(g(t), G(t)) + ε)B] for a.e. t ∈ I .

Theorem 3.2 Under hypotheses (A), (F1), (F2), (F3), (g), and (C), problem (1.1) has a so-
lution.

Proof Take z0 ∈ E and let

y0(t) = T(t, 0)z0 +
∫ t

0
T(t, s)f0(s) ds, t ∈ I,

where f0(·) is an arbitrary strongly measurable selection of F(·, z0).
Now we define

y1(t) = T(t, 0)g
(
y0(·)) +

∫ t

0
T(t, s)f1(s) ds, t ∈ I,

where f1(t) ∈ F(t, y0(t)) a.e. on I . Let εn = 1
2nMS for n ≥ 1. If yn(·) is known for n ≥ 1, then

we define

yn+1(t) = T(t, 0)g
(
yn(·)) +

∫ t

0
T(t, s)fn+1(s) ds, t ∈ I,

where

fn+1(t) ∈ F
(
t, yn(t)

) ∩ (
fn(t) +

(
k(t)

∣
∣yn(t) – yn–1(t)

∣
∣ + εn

)
B

)
.

Notice that the right-hand side has a strongly measurable selection thanks to Proposition
3.1. In the case when E is separable, one can replace εn by 0. Consequently, for t ∈ I ,

∣
∣yn+1(t) – yn(t)

∣
∣ ≤ ∣

∣T(t, 0)
(
g
(
yn(·)) – g

(
yn–1(·)))∣∣ +

∣
∣
∣
∣

∫ t

0
T(t, s)

(
fn+1(s) – fn(s)

)
ds

∣
∣
∣
∣

≤ Mμ
∥
∥yn(·) – yn–1(·)∥∥C(I,E) + M

∫ t

0

(
k(s)

∣
∣yn(s) – yn–1(s)

∣
∣ + εn

)
ds.

Thus,

∥
∥yn+1(·) – yn(·)∥∥C(I,E) ≤ M(μ + K)

∥
∥yn(·) – yn–1(·)∥∥C(I,E) +

1
2n .
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One can prove by induction that

∥
∥yn+1(·) – yn(·)∥∥C(I,E) ≤ Mn(μ + K)n∥∥y1(·) – y0(·)∥∥ +

n–1∑

i=0

(
M(μ + K)

)i 1
2n–i .

Using (C), we get that (yn(·))n is a Cauchy sequence in C(I, E), hence it converges uniformly
to some continuous function y(·). As we have chosen the pseudoderivatives, we have that

∣
∣fn+1(t) – fn(t)

∣
∣ ≤ k(t)

∣
∣yn(t) – yn–1(t)

∣
∣ + εn

a.e. on I . One can prove that (fn(·))n converges strongly in L1(I, E) to f (·). Further, for any
t ∈ I ,

y(t) = T(t, 0)g
(
y(·)) +

∫ t

0
T(t, s)f (s) ds.

Due to (F1) we have f (t) ∈ F(t, y(t)) a.e. on I . Therefore, y(·) is a mild solution of (1.1). �

Remark 3.3 We note that in the paper [2] the existence of mild solution of (1.1) is proved
under similar (but stronger) hypotheses to ours.

Following [7], we define weak solutions and limit solutions of the nonlocal problem (1.1).

Definition 3.4 The continuous function z(·) is said to be a weak solution of (1.1) if z(0) =
g(z(·)) and

z(t) ∈ T(t, τ )z(τ ) +
∫ t

τ

T(t, s)F
(
s, z(s)

)
ds

for every 0 ≤ τ ≤ t ≤ S.

The above integral is in the sense of Aumann.

Definition 3.5 The continuous function z(·) is said to be a limit solution of (1.1) if there
exist a sequence of positive numbers εn ↓ 0 and a sequence (zn(·))n in C(I, E) such that, for
every n, zn(·) is a mild solution of

⎧
⎨

⎩

żn(t) ∈ A(t)zn(t) + F(t, zn(t) + εnB), t ∈ I,

zn(0) = vn,
(3.1)

with vn ∈ E satisfying |vn – g(zn(·))| < εn, such that z(t) = limn→∞ zn(t) uniformly on I .
The function zn(·) in (3.1) is called an εn-solution of (1.1).

Now we state the first main result of this paper.

Theorem 3.6 Under the hypotheses of Theorem 3.2, the solution set of (1.1) is dense in the
solution set of the relaxed system (1.2).
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To prove this result we need some preliminary results.

Lemma 3.7 Under the hypotheses of Theorem 3.2, the solution set of (1.1) is dense in the
set of limit solutions of (1.1).

Proof Let y(·) be a limit solution of (1.1). Consequently, y(t) = limn→∞ zn(t), where (zn(·))n

is a sequence of mild solutions of (3.1) with εn ↓ 0. It is easy to see that, in order to get the
conclusion, it is enough to show that for every δ > 0 there exists ε > 0 such that, if z0(·) is
an ε-solution of (1.1), then there exists a solution z(·) of (1.1) with ‖z(·) – z0(·)‖C(I,E) < δ.

Let z0(·) be an ε-solution of (1.1) for some ε > 0. Using (F2), we have that ż0(t) ∈
A(t)z0(t) + f0(t) + εk(t)B, where f0(·) ∈ L1(I, E) with f0(t) ∈ F(t, z0(t)) a.e. on I , and |z0(0) –
g(z0(·))| < ε. Define

z1(t) = T(t, 0)g
(
z0(·)) +

∫ t

0
T(t, s)f0(s) ds, t ∈ I.

Then, for every t ∈ I ,

∣
∣z1(t) – z0(t)

∣
∣ ≤ ∣

∣T(t, 0)
∣
∣
∣
∣g

(
z0(·)) – z0(0)

∣
∣ +

∣
∣
∣
∣

∫ t

0
T(t, s)εk(s) ds

∣
∣
∣
∣ ≤ Mε(K + 1).

Let f1(·) ∈ L1(I, E) be such that f1(t) ∈ F(t, z1(t)) and |f1(t) – f0(t)| ≤ k(t)|z1(t) – z0(t)| + ε
2MS

a.e. on I. Define

z2(t) = T(t, 0)g
(
z1(·)) +

∫ t

0
T(t, s)f1(s) ds, t ∈ I.

Then, for every t ∈ I ,

∣
∣z2(t) – z1(t)

∣
∣ ≤ ∣

∣T(t, 0)
∣
∣
∣
∣g

(
z1(·)) – g

(
z0(0)

)∣
∣ +

∣
∣
∣
∣

∫ t

0
T(t, s)

∣
∣f1(s) – f0(s)

∣
∣ds

∣
∣
∣
∣

≤ M(μ + K)
∥
∥z1(·) – z0(·)∥∥C(I,E) + ε/2.

We continue successively and, for every n ≥ 1, define

zn+1(t) = T(t, 0)g
(
zn(·)) +

∫ t

0
T(t, s)fn(s) ds, (3.2)

where fn(t) ∈ F(t, zn(t)) and

∣
∣fn(t) – fn–1(t)

∣
∣ ≤ k(t)

∣
∣zn(t) – zn–1(t)

∣
∣ +

ε

2nMS
(3.3)

a.e. on I . Thus

∣
∣zn+1(t) – zn(t)

∣
∣ ≤ M

∣
∣g

(
zn(·)) – g

(
zn–1(·))∣∣ +

∣
∣
∣
∣

∫ t

0
T(t, s)k(s)

(
zn(s) – zn–1(s)

)
ds

∣
∣
∣
∣ +

ε

2n

≤ M(μ + K)
∥
∥zn(·) – zn–1(·)∥∥C(I,E) +

ε

2n .
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Further, we can prove that

∣
∣zn+1(t) – zn(t)

∣
∣ ≤ [

M(μ + K)
]n∥∥z1(·) – z0(·)∥∥C(I,E) + ε

n–1∑

i=0

[
M(μ + K)i] 1

2n–1 .

It is easy to see that (zn(·))n is Cauchy in C(I, E), since M(μ+ K) < 1. Therefore, there exists
limn→∞ zn(t) = z(t) uniformly on I , where z(·) ∈ C(I, E). Moreover,

∣
∣z0(t) – z(t)

∣
∣ ≤

∞∑

n=0

[
M(μ + K)

]n∥∥z1(·) – z0(·)∥∥C(I,E) + ε

∞∑

n=0

n–1∑

i=0

[
M(μ + K)

]i 1
2n–i

≤ (M(K + 1) + 1)ε
1 – M(μ + K)

for any t ∈ I .
It remains to show that z(·) is a solution of (1.1). Since g(·) is Lipschitz continuous, we

have that g(zn(·)) → g(z(·)). By (3.3) we get that fn(t) → f (t) strongly in L1(I, E). Then,
passing to the limit in (3.2), we obtain

z(t) = T(t, 0)g
(
z(·)) +

∫ t

0
T(t, s)f (s) ds

for t ∈ I and, since F(·, ·) is almost continuous, f (s) ∈ F(s, z(s)) a.e. on I . Therefore, z(·) is a
solution of (1.1). �

Lemma 3.8 Under the hypotheses of Theorem 3.2, the set of limit solutions of (1.1) coin-
cides with the set of weak solutions of (1.1). Moreover, both sets are closed.

Proof Let z(·) be a limit solution of (1.1). Then there exist a sequence (εn)n of positive
numbers, εn ↓ 0, and (zn(·))n a sequence of εn-solutions of (1.1) such that limn→∞ zn(t) =
z(t) uniformly on I . Then, for 0 ≤ s < t ≤ S,

zn(t) = T(t, s)zn(s) +
∫ t

s
T(t, τ )fn(τ ) dτ ,

where fn(t) ∈ F(t, zn(t) + εnB) a.e. on I and |zn(0) – g(zn(·))| < εn. Further, by (F2), we have
that

zn(t) ∈ T(t, s)zn(s) +
∫ t

s
T(t, τ )F

(
τ , zn(τ )

)
dτ +

∫ t

s
T(t, τ )k(τ )εnBdτ . (3.4)

Since limn→∞ zn(t) = z(t) uniformly on I , it follows that limn→∞ T(t, s)zn(s) = T(t, s)z(s) and
since F(·, ·) is almost continuous, then, for any 0 ≤ s < t ≤ S,

lim
n→∞

∫ t

s
T(t, τ )F

(
τ , zn(τ )

)
dτ =

∫ t

s
T(t, τ )F

(
τ , z(τ )

)
dτ .

Consequently, passing to the limit for n → ∞ in (3.4), we get that

z(t) ∈ T(t, s)z(s) +
∫ t

s
T(t, s)F

(
τ , z(τ )

)
dτ
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for any 0 ≤ s < t ≤ S. Moreover, limn→∞ g(zn(·)) = g(z(·)), hence z(0) = g(z(·)). Therefore,
z(·) is a weak solution of (1.1).

Conversely, let x(·) be a weak solution of (1.1), i.e., x(0) = g(x(·)) and

x(t) ∈ T(t, s)x(s) +
∫ t

s
T(t, τ )F

(
τ , x(τ )

)
dτ

for every 0 ≤ s < t ≤ S. Then, using Remark 2.3,

∣
∣x(t)

∣
∣ ≤ M

∣
∣x(0)

∣
∣+M

∫ t

0

(
a(τ )+k(τ )

∣
∣x(τ )

∣
∣
)

dτ ≤ M
(∣
∣x(0)

∣
∣+M1

)
+M

∫ t

0
k(τ )

∣
∣x(τ )

∣
∣) dτ ,

where M1 =
∫ S

0 a(τ ) dτ . Consequently, by Gronwall’s lemma, we get that |x(t)| ≤ c for any
t ∈ I , where c = M(|x(0)| + M1) exp(MK). Therefore,

∣
∣x(t) – x(s)

∣
∣ ≤ ∣

∣x(t) – T(t, s)x(s)
∣
∣ +

∣
∣T(t, s)x(s) – x(s)

∣
∣

≤ M
∫ t

s

(
a(τ ) + k(τ )c

)
dτ +

∥
∥T(t, s) – I

∥
∥

L(E)c.

Then, for every ε > 0, there exists a subdivision 0 = t0 < t1 < · · · < tm < tm+1 = S such that

∣
∣x(t) – x(s)

∣
∣ ≤ ε

3
(3.5)

for any s, t ∈ [tk , tk+1], k ∈ {0, 1, . . . , m}.
Since

x(tk+1) ∈ T(tk+1, tk)x(tk) +
∫ tk+1

tk

T(tk+1, τ )F
(
τ , x(τ )

)
dτ ,

then there exists a strongly measurable selection fk(τ ) ∈ F(τ , x(τ )), for a.a. τ ∈ [tk , tk+1),
such that

x(tk+1) ∈ T(tk+1, tk)x(tk) +
∫ tk+1

tk

T(tk+1, τ )fk(τ ) dτ +
ε

3(m + 1)(Mm + 1)
B. (3.6)

Define

z(t) = T(t, 0)g
(
x(·)) +

∫ t

0
T(t, s)f (s) ds,

where f (s) = fk(s) for s ∈ [tk , tk+1), k ∈ {0, 1, 2, . . . , m}. Notice that

∣
∣x(tk+1) – z(tk+1)

∣
∣ ≤ ε

3(m + 1)(Mm + 1)
+ M

∣
∣x(tk) – z(tk)

∣
∣. (3.7)

Let t ∈ [tk , tk+1) for some k ∈ {0, 1, 2, . . . , m}. We have that

∣
∣x(t) – z(t)

∣
∣ ≤ ∣

∣x(t) – x(tk+1)
∣
∣ +

∣
∣x(tk+1) – z(tk+1)

∣
∣ +

∣
∣z(tk+1) – z(t)

∣
∣.



Javaid et al. Advances in Difference Equations        (2019) 2019:168 Page 9 of 15

Then, due to (3.5), (3.7), one has that |x(t) – z(t)| ≤ ε. The latter implies that f (·), the
pseudoderivative of z(·), satisfies f (t) ∈ F(t, z(t) + εB) a.e. on I . Moreover, |z(0) – g(z(·))| =
|g(x(·)) – g(z(·))| ≤ μ‖x(·) – z(·)‖ ≤ με.

Therefore, z(·) is an ε-solution of (1.1) with |x(t) – z(t)| ≤ ε on I . Consequently, x(·) is a
limit solution of (1.1).

It remains to show that the set of weak solutions of (1.1) is closed. To this end, let (yn(·))n

be a sequence of weak solutions of (1.1) with limn→∞ yn(t) = y(t) uniformly on I . Then
limn→∞ g(yn(t)) = g(y(t)) uniformly on I . Furthermore, limn→∞ F(t, yn(t)) = F(t, y(t)) for
a.a. t ∈ I , since F(·, ·) is almost continuous. Thus, limn→∞ T(t, s)F(s, yn(s)) = T(t, s)F(s, y(s))
for any t ∈ [0, S] and a.a. s ∈ [0, t]. It follows that

lim
n→∞

[

T(t, τ )yn(τ ) +
∫ t

τ

T(t, s)F
(
s, yn(s)

)
ds

]

= T(t, τ )y(τ ) +
∫ t

τ

T(t, s)F
(
s, y(s)

)
ds.

Therefore,

y(t) ∈ T(t, τ )y(τ ) +
∫ t

τ

T(t, s)F
(
s, y(s)

)
ds

for every 0 ≤ τ < t ≤ T . �

Lemma 3.9 Under the hypotheses of Theorem 3.2, the set of weak solutions of (1.1) coin-
cides with the set of the weak solutions of the relaxed system (1.2).

Proof Obviously, every weak solution of (1.1) is also a weak solution of the relaxed system
(1.2). Let z(·) be a weak solution of (1.2). Then z(0) = g(z(·)) and

z(t) ∈ T(t, s)z(s) +
∫ t

s
T(t, τ )co F

(
τ , z(τ )

)
dτ

for any 0 ≤ s < t ≤ S. Since T(·, ·) is a linear evolution operator, one has that co T(t, s) ×
F(s, z(s)) = T(t, s)co F(s, z(s)). Due to the properties of Aumann integral,

∫ t

s
co T(t, τ )F

(
τ , z(τ )

)
dτ =

∫ t

s
T(t, τ )F

(
τ , z(τ )

)
dτ .

It follows that

z(t) ∈ T(t, s)z(s) +
∫ t

s
T(t, τ )F

(
τ , z(τ )

)
dτ ,

hence z(·) is a weak solution of (1.1). �

Proof of Theorem 3.6 We have proved that the solution set of (1.1) is dense in the set of the
limit solutions of (1.1) (Lemma 3.7). By Lemmas 3.8 and 3.9, the set of the limit solutions
of (1.1) coincides with the set of weak solutions of (1.2). The proof is therefore complete,
since the last set contains the solution set of the relaxed system (1.2). �

As it was noticed, the solution set of (1.2) is not necessarily closed; however, we can
define its closure.
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Remark 3.10 Similar result is proved in a forthcoming paper [4], where the authors study
nonlinear system which forces them to assume that the duality map of E is single val-
ued. Here the proof is much shorter due to (in some sense) stronger assumptions. Notice,
moreover, that in case of separable E, one can replace the almost continuity of F by F(·, x)
is measurable for every x.

4 Solutions with continuous pseudoderivatives
In this section we study the solutions of (1.1) with continuous pseudoderivatives, i.e.,

x(t) = T(t, 0)g
(
x(·)) +

∫ t

0
T(t, s)fx(s) ds,

where the function fx(·) is continuous on I and satisfies fx(s) ∈ F(s, x(s)) a.e. on I .
We will need the following assumptions on F(·, ·), which are stronger than assumptions

(F1) and (F2) considered in the previous section.
(F4) F(·, ·) is jointly continuous with nonempty closed convex and bounded values.
(F5) There exists a constant κ > 0 such that DH (F(t, x), F(t, y) ≤ κ|x – y| for every t ∈ I

and every x, y ∈ E.

Remark 4.1 Since F(·, 0) is continuous on I , one has that there exists a constant a > 0 such
that ‖F(t, 0)‖ ≤ a for all t ∈ I . Then, by (F5), we have that ‖F(t, x)‖ ≤ a + κ|x| for all t ∈ I
and all x ∈ E.

Now we will prove the second relaxation theorem of this paper, which is a particular
extension of Theorem 4 from [11].

Theorem 4.2 Assume (A), (F4), (F5), and (g). Moreover, assume that M(μ + Sκ) < 1. Then
the set of solutions of (1.1) with continuous pseudoderivatives is nonempty and dense in the
set of all solutions of (1.1).

Proof Let x(·) be a mild solution of (1.1) with a pseudoderivative fx(·) ∈ L1(I, E). Let
G(t) = F(t, x(t)) for t ∈ I . Then G is continuous with closed convex and bounded values.
Furthermore, ‖G(t)‖ ≤ a + κ(maxt∈I |x(t)|) = η. Thus |fx(t)| ≤ η for any t ∈ I .

Let ε > 0 and take δ ∈ (0, ε
2Mη

). Due to Lusin’s theorem, there exists a compact set Iδ ⊂ I
with meas(I \ Iδ) < δ such that fx|Iδ (·) is continuous. Applying now Dugundji extension
theorem, we get a continuous function hδ(·) on I such that hδ(t) = fx(t) on Iδ and hδ(t) ∈
conv(fx(Iδ)) for any t ∈ I . Then |hδ(t)| ≤ η for every t ∈ I . Let

zδ(t) = T(t, 0)g
(
x(·)) +

∫ t

0
T(t, s)hδ(s) ds.

Then

∣
∣zδ(t) – x(t)

∣
∣ ≤ M

∫

I\Iδ

∣
∣hδ(s) – fx(s)

∣
∣ds < ε

for any t ∈ I .
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Let ν > 0. Denote z0(t) := zδ(t) and f0(t) := hδ(t) for any t ∈ I . Hence, |z0(t) – x(t)| < ε

for any t ∈ I and f0(t) ∈ F(t, x(t)) a.e. on I . We define the multifunction G0 : I ⇒ E by
G0(t) = f0(t) if x(t) = z0(t) and

G0(t) =
{

v ∈ F
(
t, z0(t)

)
;
∣
∣f0(t) – v

∣
∣ < (κ + μ)

∣
∣x(t) – z0(t)

∣
∣
}

,

otherwise. The multifunction G0(·) is nonempty valued due to (F5). It is easy to see that
G0(·) has closed convex values. We claim that G0(·) is LSC. To this end, it is enough to
prove that the multifunction H0 : I ⇒ E given by H0(t) = f0(t) if x(t) = z0(t) and

H0(t) =
{

v ∈ F
(
t, z0(t)

)
;
∣
∣f0(t) – v

∣
∣ < (κ + μ)

∣
∣x(t) – z0(t)

∣
∣
}

otherwise, is LSC, since G0 = H0. To this end, let t̄ ∈ I be such that x(t̄) �= z0(t̄). Let v̄ ∈ H0(t̄)
and the sequence (ti)i ⊂ I such that ti → t̄. Then there exists γ > 0 such that |f0(t̄) – v̄| ≤
(κ + μ)|x(t̄) – z0(t̄)| – γ . From (F4), since z0(·) is continuous, we get that the multifunction
F(·, z0(·)) is LSC. Hence, there exists a sequence (vi)i with vi ∈ F(ti, z0(ti)) such that vi → v̄.
Since the functions f0(·), x(·), and z0(·) are continuous, we get that

∣
∣f0(ti) – vi

∣
∣ < (κ + μ)

∣
∣x(ti) – z0(ti)

∣
∣

for i large enough. Therefore, vi ∈ H0(ti) for i large enough, hence H0(·) is LSC in t̄. It is
easy to see that H0(·) is LSC also in the points t̄ ∈ I with x(t̄) = z0(t̄).

By Michael’s selection theorem (see, e.g., [9, Lemma 2.1]), there exists a continuous se-
lection f1(t) ∈ G0(t). Hence, |fx(t) – f0(t)| ≤ (κ + ν)|x(t) – z0(t)| on I . Define

z1(t) = T(t, 0)g
(
z0(·)) +

∫ t

0
T(t, s)f1(s) ds

for t ∈ I . Then

∣
∣z1(t) – z0(t)

∣
∣ ≤ ∥

∥T(t, 0)
∥
∥

L(E)

∣
∣g

(
x(·)) – g

(
z0(·))∣∣ + M

∫ t

0

∣
∣f0(s) – f1(s)

∣
∣ds

≤ Mμ
∥
∥x(·) – z0(·)∥∥C(I,E) + M

∫ t

0
(κ + ν)

∣
∣x(s) – z0(s)

∣
∣ds

≤ Mμε + MS(κ + ν)ε = M
(
μ + S(κ + ν)

)
ε.

We continue by induction. Let fn(·) and zn(·) be already defined for n ≥ 1. We define the
multifunction Gn : I ⇒ E by

Gn(t) =

⎧
⎨

⎩

fn(t), if zn(t) = zn–1(t),

{v ∈ F(t, zn(t)); |fn(t) – v| < (κ + ν)|zn(t) – zn–1(t)|}, if zn(t) �= zn–1(t).

We can prove, in the same way as we did for G0, that Gn(·) is a nonempty closed con-
vex valued, LSC multifunction. Then there exists a continuous function fn+1(·) such that
fn+1(t) ∈ Gn(t) for any t ∈ I . Now, define

zn+1(t) = T(t, 0)g
(
zn(·)) +

∫ t

0
T(t, s)fn+1(s) ds
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for t ∈ I . Then we have that |fn+1(t) – fn(t)| ≤ (κ + ν)|zn(t) – zn–1(t)| and

∣
∣zn+1(t) – zn(t)

∣
∣ ≤ Mμ

∥
∥zn(·) – zn–1(·)∥∥C(I,E) + MS(κ + ν)

∣
∣zn(t) – zn–1(t)

∣
∣

≤ M
(
μ + S(κ + ν)

)∥
∥zn(·) – zn–1(·)∥∥C(I,E)

for any t ∈ I .
Since M(μ + Sκ) < 1, there exists ν̄ > 0 such that M(K + S(κ + ν)) < 1 for every ν ≤ ν̄ .
Consequently, the sequence (zn(·))n is Cauchy in C(I, E), hence it converges uniformly to

some continuous function z(·). Furthermore, the sequence of continuous functions (fn(·))n

also converges uniformly to some function f (·), which is also continuous. Moreover,

z(t) = T(t, 0)g
(
z(·)) +

∫ t

0
T(t, s)f (s) ds

and f (t) ∈ F(t, z(t)) for any t ∈ I . Finally,

∣
∣z(t) – x(t)

∣
∣ ≤

∞∑

k=0

∣
∣zk+1(t) – zk(t)

∣
∣ +

∣
∣z0(t) – x(t)

∣
∣ ≤ ε

1 – M(K + S(κ + ν))
.

That completes the proof since ε > 0 is arbitrary. �

Remark 4.3 Theorem 4.2 is new even in the case of ordinary differential inclusions in R
n.

5 Example
Let Ω ⊂ R

n be a nonempty open and bounded set with C2 boundary ∂Ω , Φ ⊂ R
m be a

nonempty bounded open set with smooth boundary ∂Φ , and let �l ∈ R
n with ‖�l‖ = α ≤ 1.

Consider the following partial differential inclusion:

(
ut

vt

)

∈
(

α
u
〈�l,∇yv〉

)

+ G(t, u, v), t ∈ (0, T), x ∈ Ω , y ∈ Φ , (5.1)

⎧
⎪⎪⎨

⎪⎪⎩

u(t, x) = 0 on (0, T) × ∂Ω ,

u(0, x) = β
∫

Ω

∫ T
0 h(s, x,λ, u(s,λ)) ds dλ, x ∈ Ω ,

v(0, y) = βv(T , y), y ∈ Φ ,

(5.2)

where the partial derivatives are taken in the sense of distributions.
Let X = L1(Ω) and Y = L1(Φ). Let E = X × Y with the norm ‖z‖ = max{|u|X , |v|Y }, where

z = (u, v) with u ∈ X and v ∈ Y .
As it is shown in [19, Theorem 7.2.7], the Laplace operator B given by

⎧
⎨

⎩

D(B) = {p ∈ W 1,1
0 (Ω);
p ∈ X},

Bp = 
p for p ∈ D(B)

is linear m-dissipative. Thus, B generates a C0-semigroup of contractions {SB(t); t ≥ 0}
(see also [5], p. 38).
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It is well known that the operator C defined by

⎧
⎨

⎩

D(C) = {q ∈ Y ; 〈�l,∇q〉 ∈ Y },
C(v) = 〈�l,∇v〉, for v ∈ D(C)

generates an isometry semigroup {S(h); h ≥ 0} given by (S(h)f )(x) = f (x + t�l) for any f ∈ Y ,
h ≥ 0, x ∈R

n (see, e.g., [5, Theorem 1.9.5]).
We assume the following hypotheses.
(G) The multifunction G satisfies the following conditions:

(i) it has nonempty closed values;
(ii) G(·, u, v) is measurable;

(iii) ‖G(·, u, v)‖ is Lebesgue integrable;
(iv) there exists a Lebesgue integrable function L(·) such that

DH
(
G(t, z1), G(t, z2)

) ≤ L(t)|z1 – z2|

for any t ∈ [0, T] and any zi = (ui, vi) ∈R
2, i = 1, 2.

(H) The function h satisfies the conditions:
(i) h(t, x,λ, r) is measurable in (t, x,λ) for all r ∈R;

(ii) there exist a function H(·) ∈ C(Ω ,R+) and a positive Lebesgue integrable
function ν(·) such that |h(t, x,λ, r)| ≤ ν(t)H(λ) for any
(t, x,λ, r) ∈ [0, T] × Ω × Ω ×R;

(iii) for any (t, x,λ, u), (t, x,λ, v) ∈ [0, T] × Ω × Ω ×R, we have that

∣
∣h(t, x,λ, u) – h(t, x,λ, v)

∣
∣ ≤ K

Tμ(Ω)
|u – v|.

Let ‖G(t, 0, 0)‖ ≤ η(t), where η(·) is Lebesgue integrable.
Then we can rewrite problem (5.1)–(5.2) in the abstract form (1.1), where A = (αB, C),

the multifunction F : [0, T] × E ⇒ E is given by

F
(
t, u(·), v(·)) =

{(
z1(·), z2(·)) ∈ E;

(
z1(x), z2(y)

) ∈ G
(
t, u(x), v(y)

)
for a.a. x ∈ Ω , y ∈ Φ

}

for t ∈ [0, T], u(·) ∈ L1(Ω), v(·) ∈ L1(Φ), and g : C([0, T], E) → E,

g
(
w1(·), w2(·))(x, y) =

(

β

∫

Ω

∫ T

0
h
(
s, x,λ, w1(s)(λ)

)
ds dλ,βw2(T)(y)

)

for w1(·), w2(·) ∈ C([0, T], E).
Let M =

√
α2 +�l2. It is easy to see that all the conditions of Theorem 3.6 then are satisfied

if

M
(

β +
∫ T

0
L(s) ds

)

< 1. (5.3)

Applying Theorem 3.6, we obtain the following result.
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Theorem 5.1 Assume (G), (H), and condition (5.3). Then the solution set of (5.1)–(5.2) is
nonempty and dense in the solution set of

(
ut

vt

)

∈
(

α
u
〈�l,∇yv〉

)

+ co G(t, u, v), (t, x, y) ∈ (0, T) × Ω × Φ

with

⎧
⎪⎪⎨

⎪⎪⎩

u(t, x) = 0 on (0, T) × ∂Ω ,

u(0, x) = β
∫

Ω

∫ T
0 h(s, x,λ, u(s,λ)) ds dλ, x ∈ Ω ,

v(0, y) = βv(T , y), y ∈ Φ .
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Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 January 2019 Accepted: 17 April 2019

References
1. Ahmed, R., Donchev, T., Lazu, A.I.: Nonlocal m-dissipative evolution inclusions in general Banach spaces. Mediterr. J.

Math. 14, 215 (2017). https://doi.org/10.1007/s00009-017-1016-5
2. Aitalionbrahim, M.: Existence of mild solutions of a semilinear nonconvex differential inclusion with nonlocal

conditions. Matemat. Vestn. 63, 181–190 (2011)
3. Aizicovici, S., Staicu, V.: Multivalued evolution equations with nonlocal initial conditions in Banach spaces. Nonlinear

Differ. Equ. Appl. 14, 361–376 (2007)
4. Bilal, S., Carja, O., Donchev, T., Javaid, N., Lazu, A.I.: Relaxation of nonlocal m-dissipative differential inclusions. An. St.

Univ. Ovidius Constanta. To appear
5. Burlică, M., Necula, M., Roşu, D., Vrabie, I.I.: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions.

Monographs and Research Notes in Mathematics. CRC Press, New York (2016)
6. Cardinali, T., Papageorgiou, N., Papalini, F.: On nonconvex functional evolution inclusions involving m-dissipative

operators. Czechoslov. Math. J. 47, 135–148 (1997)
7. Carja, O., Donchev, T., Lazu, A.I.: Generalized solutions of semilinear evolution inclusions. SIAM J. Optim. 26,

1365–1379 (2016)
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