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Abstract
The efficient conditions guaranteeing the existence of positive T -periodic solution to
the p-Laplacian–Liénard equation

(φp(x
′(t)))′ + f (x(t))x′(t) + α1(t)g(x(t)) =

α2(t)
xμ(t)

,

are established in this paper. Here φp(s) = |s|p–2s, p > 1, α1,α2 ∈ L([0, T ],R), f ∈ C(R+,R)
(R+ stands for positive real numbers) with a singularity at x = 0, g(x) is continuous on
(0; +∞), μ is a constant with μ > 0, the signs of α1 and α2 are allowed to change. The
approach is based on the continuation theorem for p-Laplacian-like nonlinear
systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
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1 Introduction
This paper is devoted to investigating the existence of positive T-periodic solutions to the
following equation with an indefinite singularity:

(
φp

(
x′(t)

))′ + f
(
x(t)

)
x′(t) + α1(t)g

(
x(t)

)
=

α2(t)
xμ(t)

, (1.1)

where φp(s) = |s|p–2s, p > 1, α1,α2 ∈ L([0, T], R) with period T , f ∈ C(R+, R) (R+ stands for
positive real numbers) with a singularity at x = 0, g(x) is continuous on (0; +∞), μ is a
constant with μ > 0. In this equation, the signs of α1 and α2 are allowed to change.

Let us recall the early work about second-order singular equations. In 1987, Lazer and
Solimini [2] considered the following equations:

x′′ +
1

xγ
= p(t) (1.2)

and

x′′ –
1

xγ
= p(t), (1.3)
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where γ > 0 and p(t) is a periodic function. Equations (1.2) and (1.3) may be the simplest
examples combining singular nonlinearity and periodic dependence of coefficients. In the
related literature, it is said that the nonlinearity g has an attractive singularity (resp. repul-
sive singularity) at zero if limx→0+ g(x) = +∞ (resp. limx→0+ g(x) = –∞). Obviously, (1.2)
has an attractive singularity and (1.3) has a repulsive singularity. After that, a lot of results
have been obtained for second-order singular differential equations. Hakl and Zamora [3]
answered an open problem presented by Lazer and Solimini [2]. Hakl, Torres, and Zamora
[4] studied the existence of periodic solutions to the second-order differential equation
with repulsive singularity and, based on Schaefer’s fixed point theorem, new conditions for
the existence of periodic solutions were obtained. Jiang, Chu, and Zhang [5] considered
positive periodic solutions to the repulsive singular perturbations of the Hill equations
and proved that such a perturbation problem has at least two positive periodic solutions
when the anti-maximum principle holds for the Hill operator and the perturbation is su-
perlinear at infinity. In [6], the authors considered the following singular equation:

x′′(t) + f
(
x(t)

)
x′(t) + φ(t)xm(t) –

α(t)
xμ(t)

= 0,

where f : (0, +∞) → R is a continuous function which may have a singularity at the ori-
gin, the signs of φ and α are allowed to change, m is a non-negative constant, and μ is a
positive constant. Obviously, when p = 2 and g(x) = xm(t), (1.1) is changed into the above
equation. Hence, the above equation is a special case of (1.1), and (1.1) has a more general
form. Since (1.1) contains a p-Laplacian operator and stronger nonlinearity, we will de-
velop some new technique for overcoming the above difficulties in the present paper. For
more details about second-order singular equations, see e.g. [7–13].

For the singular Liénard equation, Habets and Sanchez [14] considered the forced Lié-
nard equation

⎧
⎨

⎩
u′′ + f (u)u′ + g(t, u) = h(t),

u(0) = u(T), u′(0) = u′(T),

where g is continuous on R × (0, +∞) and becomes infinite at u = 0. Based on upper and
lower solutions and degree theory, they obtained some existence results for the above
equation. In 1996, Zhang [15] studied the existence of positive T-periodic solutions of the
singular Liénard equation

⎧
⎨

⎩
u′′ + f (u)u′ + g(t, u) = 0,

u(0) = u(T), u′(0) = u′(T),

where g is an L1-Carathéodory function and has a repulsive singularity at u. Hakl, Torres,
and Zamora [16] studied the periodic problem for the second-order equation

u′′ + f (u)u′ + g(t, u) = h(t, u),

where h is a Carathéodory function and f , g are continuous functions on (0, +∞) which
may have singularities at zero. Both attractive and repulsive singularities are considered.
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Using a novel technique of construction of lower and upper functions, some existence
results of periodic solutions have been obtained for the above equation. In 2013, Hakl and
Zamora [17] investigated the following singular Liénard equation:

u′′ +
cu′

uμ
+

g1

uν
–

g2

uγ
= h0(t)uδ(t) for a.e. t ∈ [0,ω],

where g1, g2, δ are non-negative constants, c, μ, ν , γ are real numbers, h0 ∈ L([0,ω], R).
When μ or ν is sufficiently large, they obtained the existence of positive periodic solution
for the above equation.

On the other hand, second-order indefinite singular equations have received great atten-
tion of many researchers. Hakl and Zamora [18] considered the existence of a T-periodic
solution to the second-order differential equation

u′′ = h(t)g(u),

where g(u) is a positive and decreasing function which has a strong singularity at the ori-
gin, and the weight h ∈ L(R/TZ) is a sign-changing function. By using Leray–Schauder
degree theory, they obtained some efficient conditions guaranteeing the existence of a T-
periodic solution to the above equation and proved that no T-periodic solution of certain
homotopy appears on the boundary of an unbounded open set during the deformation to
an autonomous problem. Bravo and Torres [19] investigated the existence of T-periodic
solutions for

x′′ =
a(t)
x3 ,

where a is a piecewise constant. In that case, the dynamic is ruled by two alternating au-
tonomous planar systems. Boscaggin and Zanolin [20] studied the problem of existence
and multiplicity of positive periodic solutions to the scalar ODE

u′′ + λa(t)g(u) = 0, λ > 0,

where g(x) is a positive function on rR+, superlinear at zero and sublinear at infinity, and
a(t) is a T-periodic and sign-indefinite weight with negative mean value. Using critical
point theory, they proved the existence of at least two positive T-periodic solutions for
λ large. In [16], Hakl, Torres, and Zamora studied the following singular second-order
differential equation:

u′′(t) + f
(
u(t)

)
u′(t) +

g1

uν
–

g2

uγ
= h0(t)uδ(t) for a.e. t ∈ [0,ω], (1.4)

where g1, g2, δ ≥ 0, ν > 0, γ ∈ R, h0 ∈ L([0,ω]; R), f ∈ C(R+; rR). For broad category param-
eters g1, g2, δ, ν , γ , the conditions guaranteeing solvability of problem (1.4) have been
obtained. For more works about superlinear/sublinear problems with a weight function
having an indefinite sign, see e.g. [21–26].

The distinctive contributions of this paper are outlined as follows:
(1) Problem (1.1) is a more general form compared with existing problems (see [3, 4,

10–13]). Hence, the results of this paper can be extended to other more specific
problems;
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(2) Due to indefinite singularity, it is very difficult to estimate a priori bound. In order to
overcome this difficulty, we develop a new technique introduced in [1] for
continuation theorem;

(3) A unified framework is established to handle singular equations with indefinite
weight and p-Laplacian.

The following sections are organized as follows. In Sect. 2, some useful lemmas and
notations are given. In Sect. 3, sufficient conditions are established for the existence of
positive periodic solutions of (1.1). In Sect. 4, some applications are given to show the
feasibility of our results. Finally, Sect. 5 concludes the paper.

2 Preliminary and some lemmas
In this section, we give some notations and lemmas which will be used in this paper. Let

CT =
{

x | x ∈ C(R, R), x(t + T) ≡ x(t),∀t ∈ R
}

with the norm

|ϕ|0 = max
t∈[0,T]

∣
∣ϕ(t)

∣
∣, ∀ϕ ∈ CT

and

C1
T =

{
x | x ∈ C1(R, R), x(t + T) ≡ x(t),∀t ∈ R

}

with the norm

|ϕ|∞ = max
t∈[0,T]

{|ϕ|0,
∣∣ϕ′∣∣

0

}
, ∀ϕ ∈ C1

T .

Clearly, CT and C1
T are Banach spaces. For each φ ∈ CT with y ∈ L([0, T], R), let

φ+(t) = max
{
φ(t), 0

}
, φ–(t) = max

{
–φ(t), 0

}
, φ =

1
T

∫ T

0
φ(s) ds.

Clearly, for t ∈ R, φ(t) = φ+(t) – φ–(t), φ = φ+ – φ–.
Since p-Laplacian (φp(s′)) (p 	= 2) in (1.1) is a nonlinear operator, the famous Mawhin’s

continuation theorem [27] cannot be directly applied to (1.1). Fortunately, Manásevich
and Mawhin [1] obtained the following continuation theorem for nonlinear systems with
p-Laplacian-like operators.

Theorem 2.1 Assume that Ω is an open bounded set in CT such that the following condi-
tions hold.

(1) For each λ ∈ (0, 1), the problem

(
φp

(
u′))′ = λf

(
t, u, u′), u(0) = u(T), u′(0) = u′(T),

has no solution on ∂Ω .
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(2) The equation

F (a) =
1
T

∫ T

0
f (t, a, 0) dt = 0

has no solution on ∂Ω ∩ RN .
(3) The Brouwer degree

dB
(
F ,Ω ∩ RN , 0

) 	= 0.

Then problem

(
φp

(
u′)) = f

(
t, u, u′), u(0) = u(T), u′(0) = u′(T),

has a solution in Ω .

Lemma 2.1 ([4]) Let u ∈ C([0,ω], R) be an arbitrary absolutely continuous function with
u(0) = u(ω). Then the inequality

(
max u(t) – min u(t)

)2 ≤ ω

4

∫ ω

0

∣∣u′(s)
∣∣2 ds

holds. Throughout this paper, assume that

α1,α2 > 0.

Now, consider the equation

(
φp

(
x′(t)

))′ + λ
[
f
(
x(t)

)
x′(t) + α1(t)g

(
x(t)

)]
= λ

α2(t)
xμ

, λ ∈ (0, 1]. (2.1)

Let

Ω =
{

x ∈ C1
T :

(
φp

(
x′(t)

))′ + λ
[
f
(
x(t)

)
x′(t) + α1(t)g

(
x(t)

)]
= λ

α2(t)
xμ

,

λ ∈ (0, 1], x(t) > 0, t ∈ [0, T]
}

.

Lemma 2.2 Assume that there exist positive constants gL and gM such that

gL ≤ g(u) ≤ gM, ∀u ∈ R.

Furthermore, assume (α2)+ > 0, gL(α1)+ – gM(α1)– > 0. Then, for each u ∈ Ω , there are con-
stants η1,η2 ∈ [0, T] such that

u(η1) ≤
(

(α2)+

gL(α1)+ – gM(α1)–

) 1
μ

:= A1
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and

u(η2) ≥
(

α2

gM(α1)+

) 1
μ

:= A2.

Proof Let u ∈ Ω , we have

(
φp

(
u′(t)

))′ + λ
[
f (u)u′ + α1(t)g

(
u(t)

)]
= λ

α2(t)
uμ

. (2.2)

Integrating (2.2) over [0, T], we have

∫ T

0
α1(t)g

(
u(t)

)
dt =

∫ T

0

α2(t)
uμ

dt

and

∫ T

0
(α1)+(t)g

(
u(t)

)
dt –

∫ T

0
(α1)–(t)g

(
u(t)

)
dt ≤

∫ T

0

(α2)+(t)
uμ

dt.

In view of mean value theorem of integrals, there exists η1 ∈ [0, T] such that

gLT(α1)+ – gMT(α1)– ≤ T
(α2)+

uμ(η1)
,

i.e.,

u(η1) ≤
(

(α2)+

gL(α1)+ – gM(α1)–

) 1
μ

:= A1.

Multiplying both sides of (2.2) by uμ and integrating it over [0, T], we have

∫ T

0

(
φp

(
u′(t)

))′uμ(t) dt +
∫ T

0
α1(t)g

(
u(t)

)
uμ(t) dt =

∫ T

0
α2(t) dt.

Since
∫ T

0 (φp(u′(t)))′uμ(t) dt = –μ
∫ T

0 |u′(t)|p–2uμ–1|u′(t)|2 dt ≤ 0, thus

gM

∫ T

0
(α1)+(t)uμ(t) dt ≥ Tα2.

From mean value theorem of integrals, there exists η2 ∈ [0, T] such that

u(η2) ≥
(

α2

gM(α1)+

) 1
μ

:= A2. �

Lemma 2.3 Let g(u) satisfy the conditions of Lemma 2.2. Let

F(x) =
∫ x

1
f (s) ds, K0 := sup

s∈[A2,+∞)
F(s) < +∞ (2.3)
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and

lim
s→0+

(
F(s) –

T(α2)+

sμ
– gMT(α1)–

)
> K0, (2.4)

where A2 is defined in Lemma 2.2. Then there exists a constant γ0 > 0 such that

min
t∈[0,T]

u(t) ≥ γ0 for u ∈ Ω .

Proof Let u ∈ Ω , then u satisfies (2.2). There exist t1, t2 ∈ R such that t2 – t1 ∈ (0, T) and

u(t1) = max
t∈[0,T]

u(t), u(t2) = min
t∈[0,T]

u(t).

From (2.3), the definitions of A2 and u(t1), we have

A2 ≤ u(t1) < +∞

and

F
(
u(t1)

) ≤ sup
s∈[A2,+∞)

F(s) := K0. (2.5)

Integrating (2.2) over [t1, t2], we have

∫ t2

t1

f
(
u(t)

)
u′(t) dt +

∫ t2

t1

α1(t)g
(
u(t)

)
dt =

∫ t2

t1

α2(t)
uμ(t)

dt. (2.6)

From the definitions of u(t1), (2.5), and (2.6), we obtain that

F
(
u(t2)

)
= F

(
u(t1)

)
+

∫ t2

t1

α2(t)
uμ(t)

dt –
∫ t2

t1

α1(t)g
(
u(t)

)
dt

< K0 +
∫ T

0

(α2)+(t)
uμ(t)

dt + gM

∫ T

0
(α1)–(t) dt

≤ K0 +
T(α2)+

uμ(t2)
+ gMT(α1)–

and

F
(
u(t2)

)
–

T(α2)+

uμ(t2)
– gMT(α1)– ≤ K0. (2.7)

In view of (2.4), there exists a constant γ0 > 0 such that

F(s) –
T(α2)+

sμ
– gMT(α1)– > K0, ∀s ∈ (0,γ0). (2.8)

By (2.7) and (2.8), we have

min
t∈[0,T]

u(t) ≥ γ0 for u ∈ Ω . �
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Lemma 2.4 Let g(u) satisfy the condition of Lemma 2.2. Let

G(x) =
∫ x

1
sμf (s) ds, lim

s→+∞
(
G(s) – gMTα1sμ

)
= +∞ (2.9)

and

lim
s→0+

G(s) < ρ + Tα2, (2.10)

where

ρ = inf
s∈[A2,+∞)

(
G(s) – gMTα1sμ

)
,

A2 is defined in Lemma 2.2. Then there exist constants γ2 > γ1 > 0 such that

min
t∈[0,T]

u(t) ≥ γ1 for u ∈ Ω

and

max
t∈[0,T]

u(t) ≤ γ2 for u ∈ Ω .

Proof Let u ∈ Ω , then u satisfies (2.2). There exist t1, t2 ∈ R such that t2 – t1 ∈ (0, T) and

u(t1) = max
t∈[0,T]

u(t), u(t2) = min
t∈[0,T]

u(t).

Multiplying (2.2) by uμ(t), and then integrating it over the interval [t1, t2], we have

∫ t2

t1

(
φp

(
u′(t)

))′uμ(t) dt +
∫ t2

t1

f
(
u(t)

)
u′(t)uμ(t) dt +

∫ t2

t1

α1(t)g
(
u(t)

)
uμ(t) dt

=
∫ t2

t1

α2(t) dt. (2.11)

From
∫ t2

t1
(φp(u′(t)))′uμ(t) dt < 0, (2.9), and (2.11), we have

G
(
u(t2)

) ≥ G
(
u(t1)

)
–

∫ t2

t1

α1(t)g
(
u(t)

)
uμ(t) dt +

∫ t2

t1

α2(t) dt

≥ G
(
u(t1)

)
– gMTα1uμ(t1) + Tα2 ≥ ρ + Tα2. (2.12)

By (2.10) there exists a constant γ1 > 0 such that

G(s) < ρ + Tα2, ∀s ∈ (0,γ1). (2.13)

By (2.12) and (2.13), we have

min
t∈[0,T]

u(t) ≥ γ1 for u ∈ Ω . (2.14)
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From Lemma 2.2 and (2.14), we have

γ1 ≤ u(t2) ≤ A1. (2.15)

By (2.12) we have

G
(
u(t1)

)
– gMTα1uμ(t1) ≤ G

(
u(t2)

)
– Tα2 ≤ max

γ1≤s≤A1
G(s) – Tα2. (2.16)

In view of (2.9), there exists a constant γ2 > γ1 such that

G(s) – gMTα1sμ > max
γ1≤s≤A1

G(s) – Tα2, s ∈ (γ2, +∞). (2.17)

Thus, (2.6) and (2.17) imply

max
t∈[0,T]

u(t) = u(t1) ≤ γ2. �

Lemma 2.5 Let g(u) satisfy the conditions of Lemma 2.2. Let

F(x) =
∫ x

0
f (s) ds, B0 := inf

s∈[A2,+∞)
F(s) > –∞ (2.18)

and

lim
s→0+

(
F(s) +

T(α2)+

sμ
+ gMT(α1)–

)
< B0, (2.19)

where A2 is defined in Lemma 2.2. Then there exists a constant γ3 > 0 such that

min
t∈[0,T]

u(t) ≥ γ3 for u ∈ Ω .

Proof Let u ∈ Ω , then u satisfies (2.2). There exist t1, t2 ∈ R such that t2 – t1 ∈ (0, T) and

u(t1) = max
t∈[0,T]

u(t), u(t2) = min
t∈[0,T]

u(t).

From (2.18), the definitions of A2 and u(t1), we have

A2 ≤ u(t1) < +∞

and

F
(
u(t1)

) ≥ inf
s∈[A2,+∞)

F(s) := B0. (2.20)

Integrating (2.2) over [t1, t2] we have

∫ t2

t1

f
(
u(t)

)
u′(t) dt +

∫ t2

t1

α1(t)g
(
u(t)

)
dt =

∫ t2

t1

α2(t)
uμ(t)

dt
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and

F
(
u(t2)

)
= F

(
u(t1)

)
+

∫ t2

t1

α2(t)
uμ(t)

dt –
∫ t2

t1

α1(t)g
(
u(t)

)
dt. (2.21)

Form (2.20) and (2.21), we have

F
(
u(t2)

) ≥ B0 –
∫ t2

t1

(α2)–(t)
uμ(t)

dt –
∫ t2

t1

(α1)+(t)g
(
u(t)

)
dt

≥ B0 –
∫ T

0

(α2)–(t)
uμ(t)

dt –
∫ T

0
(α1)+(t)g

(
u(t)

)
dt

≥ B0 – gMT(α1)+ –
(α2)–

uμ(t2)
,

i.e.,

F
(
u(t2)

)
+ gMT(α1)+ +

(α2)–

uμ(t2)
≥ B0. (2.22)

In view of (2.19), there exists a constant γ3 > 0 such that

F(s) +
T(α2)+

sμ
+ gMT(α1)– < B0, ∀s ∈ (0,γ3). (2.23)

By (2.22) and (2.23), we have

min
t∈[0,T]

u(t) ≥ γ3 for u ∈ Ω . �

3 Main results
Theorem 3.1 Assume that the conditions of Lemmas 2.2 and 2.3 hold. Then Eq. (1.1) has
at least one positive T-periodic solution.

Proof From the conditions of Lemma 2.3, there exists a constant γ0 > 0 such that

min
t∈[0,T]

u(t) ≥ γ0 for u ∈ Ω . (3.1)

Now, we prove that

max
t∈[0,T]

u(t) ≤ M1, max
t∈[0,T]

∣
∣u′(t)

∣
∣ ≤ M2, for u ∈ Ω , (3.2)

where M1, M2 are positive constants. In fact, for u ∈ Ω , by Lemma 2.2, there exists η ∈
[0, T] such that

u(η) ≤ A1.

Furthermore,

u(t) = u(η) +
∫ t

η

u′(s) ds



Zhou et al. Advances in Difference Equations        (2019) 2019:158 Page 11 of 17

and

∣
∣u(t)

∣
∣ ≤ A1 +

∫ T

0

∣
∣u′(s)

∣
∣ds ≤ A1 + T

1
q

(∫ T

0

∣
∣u′(s)

∣
∣p ds

) 1
p

, (3.3)

where p, q > 1 and 1
p + 1

q = 1. Multiply (2.2) by u(t) and integrate it over the interval [0, T],
then

∫ T

0

∣∣u′(t)
∣∣p dt =

∫ T

0
α1(t)g

(
u(t)

)
u(t) dt +

∫ T

0

α2(t)
uμ

u(t) dt

≤
∫ T

0
(α1)+(t)gMu(t) dt +

∫ T

0

(α2)+(t)
γ

μ
0

u(t) dt

≤ T(α1)+gM|u|0 +
T(α2)+

γ
μ
0

|u|0

=
(

T(α1)+gM +
T(α2)+

γ
μ
0

)
|u|0. (3.4)

By (3.3) and (3.4), we have

|u|0 ≤ A1 + T
1
q

(
T(α1)+gM +

T(α2)+

γ
μ
0

) 1
p
|u|

1
p
0 . (3.5)

By (3.5), there exists a positive constant M1 such that

|u|0 ≤ M1,

i.e.,

max
t∈[0,T]

u(t) ≤ M1. (3.6)

Let u(t1) = maxt∈[0,T] u(t) for u ∈ Ω , then u′(t1) = 0. Integrating (2.2) over [t1, t], we have

φp
(
u′(t)

)
= λ

∫ t

t1

[
–f

(
x(s)

)
x′(s) – α1(s)g

(
x(s)

)
+

α2(s)
xμ(s)

]
ds, t ∈ [t1, t1 + T].

Thus,

∣∣u′(t)
∣∣p–1 ≤ ∣∣F

(
u(t)

)
– F

(
u(t1)

)∣∣ + gMT(α1)– +
Tα2

γ
μ
0

≤ 2 max
γ0≤s≤M1

∣
∣F(s)

∣
∣ + gMT(α1)–(t) +

Tα2(t)
γ

μ
0

and

∣∣u′(t)
∣∣ ≤

(
2 max

γ0≤s≤M1

∣∣F(s)
∣∣ + gMT(α1)– +

Tα2

γ
μ
0

) 1
p–1

:= M2. (3.7)
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In view of (3.6) and (3.7), it follows that (3.2) holds. Let |u|∞ = max{γ0, M1, M2} + 1 for
u ∈ Ω . Then condition (1) of Theorem 2.1 holds. Next, let

F (a) = g(a)α1 –
α2

aμ
= 0, a ∈ R. (3.8)

Clearly, Eq. (3.8) has no solution on ∂Ω ∩ R. Hence, condition (2) of Theorem 2.1 holds.
Furthermore, since α1,α2, gL < g(u) < gM , u ∈ Ω , for sufficiently large gL, we have the fol-
lowing inequality:

g(u)α1 –
α2

uμ
> 0 for u ∈ (0,γ0];

on the other hand, for sufficiently small gM , we have the following inequality:

g(u)α1 –
α2

uμ
< 0 for u ∈ [M1, +∞).

Thus,

(
g(γ0)α1 –

α2

γ0μ

)(
g(M1)α1 –

α2

Mμ
1

)
< 0,

which implies

dB
(
F , (γ0, M1) ∩ R, 0

) 	= 0,

i.e., condition (3) of Theorem 2.1 holds. By using Theorem 2.1, we see that Eq. (1.1) has at
least one positive T-periodic solution. �

Remark 3.1 Inequality (3.3) can be deduced by Lemma 2.1. In fact, by Lemma 2.1, we have

u(t) – u(η2) ≤ max u(t) – min u(t)

≤ T 1
2

2

(∫ T

0

∣
∣u′(s)

∣
∣2

) 1
2

ds.

Thus,

u(t) ≤ A1 +
T

p–1
p

2

(∫ T

0

∣∣u′(s)
∣∣p

) 1
p

ds.

Theorem 3.2 Assume that the conditions of Lemmas 2.2 and 2.4 hold. Then Eq. (1.1) has
at least one positive T-periodic solution.

Theorem 3.3 Assume that the conditions of Lemmas 2.2 and 2.5 hold. Then Eq. (1.1) has
at least one positive T-periodic solution.
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4 Examples
This section presents some examples that demonstrate the validity of our theoretical re-
sults.

Example 4.1 Consider the following equation:

(∣∣u′(t)
∣∣2u′(t)

)′ –
x′(t)
x2 + (2 + sin t)

sin2 x + 1
sin2 x + 2

= (2 – cos t)x– 1
2 (t), (4.1)

where

p = 4, φ4
(
u′) =

∣∣u′(t)
∣∣2u′(t), f (x) = –

1
x2 , α1(t) = 2 + sin t,

g(x) =
sin2 x + 1
sin2 x + 2

, α2(t) = 2 – sin t, μ =
1
2

.

Then we have

α1 = α2 = 2 > 0.

Clearly,

(α1)+ = (α2)+ = 2, (α1)– = (α2)– = 0, gL =
1
3

, gM = 1, (4.2)

gL(α1)+ – gM(α1)– =
2
3

> 0, A2 =
(

α2

gM(α1)+

) 1
μ

= 1. (4.3)

Based on (4.2) and (4.3), it is easy to see that all the conditions of Lemma 2.2 hold.

F(x) =
∫ x

1
–

1
s2 ds =

1
x

– 1, K0 := sup
s∈[1,+∞)

F(s) = 0 < +∞, (4.4)

lim
s→0+

(
F(s) –

T(α2)+

sμ
– gMT(α1)–

)
= lim

s→0+

(
1
s

– 1 –
4π

s 1
2

)
= +∞. (4.5)

Equations (4.4) and (4.5) imply that all the conditions of Lemma 2.3 hold. Thus, based on
Theorem 3.1, Eq. (4.1) has at least one positive 2π-periodic solution.

Example 4.2 Consider the following equation:

(∣∣u′(t)
∣∣2u′(t)

)′ +
100x′(t)

x 1
2

+ (1 + sin t)
sin2 x + 1
sin2 x + 2

= (100 – cos t)x– 1
2 (t), (4.6)

where

p = 4, φ4
(
u′) =

∣
∣u′(t)

∣
∣2u′(t), f (x) =

100
x 1

2
, α1(t) = 1 + sin t,

g(x) =
sin2 x + 1
sin2 x + 2

, α2(t) = 100 – sin t, μ =
1
2

.
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Then we have

α1 = 1 > 0, α2 = 100 > 0.

Clearly,

(α1)+ = 1, (α1)– = 0, gL =
1
3

, gM = 1, (4.7)

gL(α1)+ – gM(α1)– =
1
3

> 0, A2 =
(

α2

gM(α1)+

) 1
μ

= 10. (4.8)

Equation (4.7) and (4.8) imply that all the conditions of Lemma 2.2 hold.

G(x) =
∫ x

1
sμf (s) ds = 100x – 100,

lim
s→+∞

(
G(s) – gMTα1sμ

)
= lim

s→+∞
(
100s – 100 – 2πs

1
2
)

= +∞, (4.9)

ρ = inf
s∈[A2,+∞)

(
G(s) – gMTα1sμ

)
= 990 – 2π

√
10 < +∞,

lim
s→0+

G(s) = –100 < ρ + Tα2. (4.10)

Equation (4.9) and (4.10) imply that all the conditions of Lemma 2.4 hold. Based on The-
orem 3.2, Eq. (4.6) has at least one positive 2π-periodic solution.

Finally, we give an application for Eq. (1.1) to Rayleigh–Plesset equation. In [28], Plesset
and Prosperetti studied the following model:

ρ

(
RR′′ +

3
2
(
R′)2

)
=

[
Pv – P∞(t)

]
+ Pg0

(
R0

R

)3k

–
2S
R

–
4vR′

R
, (4.11)

where R(t) is the ratio of the bubble at the time t, ρ is the liquid density, P∞ is the pressure
in the liquid at a large distance from the bubble. The physical meaning of the rest of the
parameters in (4.11) can be seen in [4]. The transformation R = x

2
5 in (4.11) leads to the

equation

x′′ +
4v

x
4
5

x′ +
5[P∞(t) – Pv]

2ρ
x

1
5 +

5S

x
1
5

–
(

5Pg0 R3k
0

2ρ

)
1

x
6k–1

5
= 0. (4.12)

For k ≥ 1, Hark and Torres [4] obtained the existence of positive periodic solutions inves-
tigated for (4.12) by using Schaefer’s fixed point theorem. In order to study (4.12) by using
Theorem 3.2, (4.12) is converted to

x′′ +
4v

x
4
5

x′ +
[
P∞(t) – Pv

]( 5
2ρ

x
1
5 +

5S
P∞(t) – Pv

x– 1
5

)
=

(
5Pg0 R3k

0

2ρ

)
1

x
6k–1

5
. (4.13)

This is a special type of Eq. (1.1). Corresponding to (1.1), we have

p = 2, f (x) =
4v

x
4
5

, g(x) =
5

2ρ
x

1
5 +

5S
P∞(t) – Pv

x– 1
5 ,

α1(t) = P∞(t) – Pv, α2(t) =
5Pg0 R3k

0

2ρ
, μ =

6k – 1
5

.
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Assume that P∞(t) is a T-periodic continuous function, g(x) is a positive bounded func-
tion, i.e., there exist positive constants gL and gM such that

gL ≤ g(u) ≤ gM, ∀u > 0.

Furthermore, assume that

P∞ > Pv, gL(α1)+ – gM(α1)– > 0, k >
1
6

, k 	= 1
3

.

Let

G(x) =
∫ x

A2

sμf (s) ds =
∫ x

A2

4vsμ– 4
5 ds =

4v
μ + 1

5
xμ+ 1

5 –
4v

μ + 1
5

Aμ+ 1
5

2 ,

where A2 = ( α2
gM(α1)+

)
1
μ , then

lim
s→+∞

(
G(s) – gMTα1sμ

)
= lim

s→+∞

(
4v

μ + 1
5

sμ+ 1
5 –

4v
μ + 1

5
Aμ+ 1

5
2 – gMTα1sμ

)
= +∞,

ρ = inf
s∈[A2,+∞)

(
G(s) – gMTα1sμ

)
= –gMTα1Aμ

2 < +∞,

lim
s→0+

G(s) = –gMTα1Aμ
2 < ρ + Tα2.

Thus, based on Theorem 3.2, Eq. (4.13) has at least one positive T-periodic solution.

Remark 4.1 For k = 1
3 , (4.12) is changed into the following equation:

x′′ +
4v

x
4
5

x′ +
5[P∞(t) – Pv]

2ρ
x

1
5 =

(
5Pg0 R0

2ρ
– 5S

)
1

x
1
5

, (4.14)

where g(x) = x
1
5 . Since g(x) is an unbounded function for x > 0, we cannot obtain existence

results of periodic solutions by the results of this paper. However, Lu, Guo, and Chen [6]
obtained the following theorem.

Theorem 4.1 Assume Pv < P∞, S < Pg0R0
2ρ

. If v > T[P∞(t)–Pv]+
2ρ

, then Rayleigh–Plesset equation
(4.14) has at least one positive T-periodic solution.

5 Conclusions
In this paper, we study a class of second-order indefinite singular equations with p-
Laplacian. By employing some analytic techniques and continuation theorem due to
Manásevich and Mawhin, we have presented some new sufficient criteria for the exis-
tence of positive periodic solutions for the above singular equation. These criteria possess
adjustable parameters which are important in some applied fields. Finally, some examples
are given to demonstrate the effectiveness of the obtained theoretical results. It is noted
that there exist positive periodic solutions to a Rayleigh–Plesset equation for k > 1

6 . When
k ≤ 1

6 , we want to obtain some existence results of periodic solutions for the Rayleigh–
Plesset equation. In addition, there exist many problems for further study such as dynamic
properties of indefinite singular equations.
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