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Abstract
This paper aims to investigate the effects of human behavior and contact
heterogeneity on the spread of infectious diseases. For this purpose, a network-based
SIRS epidemic model with a general feedback mechanism is proposed. In contrast to
previous models, we consider the different fear degrees of individuals who have
different potential number of contacts with others, when an epidemic prevails. The
basic reproductive number that governs the global dynamics of the model is
analytically derived. Accordingly, the permanence of the disease and stability
conditions of the equilibria are studied in detail. It is shown that the general feedback
mechanism cannot change the basic reproductive number, but theoretical and
numerical results indicate that it plays an active role in reducing the disease damage.
The obtained results generalize and improve some well-known ones.

Keywords: Complex networks; Epidemic dynamics; Feedback mechanism; The basic
reproductive number

1 Introduction
Throughout human history, infectious diseases have been a serious threat to public health
and social development. To better understand the dynamical mechanisms of the disease
transmission, it is crucial to develop appropriate mathematical models. In the early days,
the compartmental epidemic models (see Refs. [1, 2] and the references therein) are mostly
based on the homogeneous mixing assumption. That is, all individuals mix uniformly and
have the same contact rate. However, in modern society, individual behaviors and disease
transmissions exhibit heterogeneity [3]. In this case, it is not sufficient to describe the fea-
tures of disease transmission by using only traditional epidemic models. To further inves-
tigate the disease spreading characteristics, the idea of a complex network is introduced
to the epidemic models.

In recent years, studies on the network-based models have attracted increasing atten-
tion [3–30]. The pioneering work regarding SIS and SIR epidemic models on complex
heterogeneous networks were presented, respectively, by Pastor-Satorras et al. [17] and
Moreno et al. [15]. Interestingly enough, these studies show that the spreading thresh-
old will vanish in a heterogenous network with sufficiently large size. However, on some
scale-free networks, Olinky and Stone [16] found the SIS epidemic model may have a non-
infinitesimal threshold. Furthermore, in a finite size network [18], it was inferred that if
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the spreading rate is above a threshold value, the infection spreads and becomes endemic.
Later, Wang and Dai [20] proved this conclusion rigorously by a monotone iterative tech-
nique. It is a pity that the results obtained in Refs. [18, 20] are based on the hypothesis
that each infected node (individual) will contact every neighbor in one time step, that is,
the infectivity of each infected node is equal to its degree. Since, in real life, individuals
who have many acquaintances cannot contact all their acquaintances in one time step, Fu
et al. [5] and Yang et al. [23] argued that this hypothesis is not always true. Zhang and Fu
[27] further pointed out that the infectivity is nonlinear in the node degree. Moreover, for
some infectious diseases, such as tuberculosis, it can last a lifetime. In order to reflect the
effects of demographics and network structures, Zhu et al. [28], Li et al. [9] and Huang et
al. [7] investigated the network-based SIS, SIRS and SIQRS epidemic models with birth
and death rates and with nonlinear infectivity, respectively. They showed the disease dy-
namics of the models is completely determined by the epidemic thresholds. One can refer
to Refs. [4, 6, 12, 29–31] for more work on nonlinear infectivity.

However, in the models mentioned above, the initiative response of people is not con-
sidered when an epidemic prevails. In reality, people will consciously decrease the number
of contacts with others during the epidemic outbreaks. To describe this phenomenon, Liu
and Yan et al. [14] introduced a feedback mechanism to investigate the spreading of an
epidemic on exponential networks. Wang and Yan et al. [32] studied the modeling and
controlling of epidemic spread on the small-world network with feedback mechanism.
Zhang and Sun [25] proposed an SIS epidemic model with a new feedback mechanism
on heterogeneous networks. They studied the stability of the equilibria and the effect of
feedback mechanism. They later extended the model with a generalized feedback mecha-
nism on weighted networks and obtained similar results [26]. By using Lyapunov’s direct
method [9, 33] and constructing monotone iterative sequences [20, 29], Wei and Xu et al.
[22] further obtained sufficient conditions for the global stability of the endemic equilib-
rium of the model proposed in Ref. [25]. Recently, Li and Liu et al. [11] presented an SIRS
epidemic model with feedback mechanism on adaptive scale-free networks. They showed
a threshold below which the disease-free equilibrium is globally asymptotically stable and
above which the disease is permanent. Furthermore, Li et al. [11] and Zhang et al. [26] nu-
merically found that the endemic equilibrium is globally asymptotically stable. However,
to the best of our knowledge, the rigorous mathematical proof of this conclusion is not yet
available.

Motivated by the above discussion, in this paper, we shall investigate the global dynamics
of an SIRS epidemic model with a general feedback mechanism on complex heterogeneous
networks. The rest of this paper is organized as follows: the model is formulated in the next
section. In Sect. 3, we analyze the existence of equilibria and derive the basic reproductive
number. In Sect. 4, we obtain the criteria for the global stability of the disease-free equi-
librium and the permanence of the disease. In Sect. 5, the global stability of the endemic
equilibrium is discussed in detail. In Sect. 6, numerical simulations are given to confirm
the analytical findings. Finally, we conclude the paper in Sect. 7.

2 The model formulation
We consider the whole population and their contacts as a network. Each node of the net-
work represents an individual. An edge connecting two nodes describes the potential con-
tact, along which the infection may spread. For epidemic spreading of SIRS process, every
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node has three possible states: susceptible, infected and recovered. To account for the het-
erogeneity in the contacts among individuals, the population is divided into groups based
on the number of potential contacts the individual has per unit of time (i.e., the node de-
gree). That is, the kth group contains all degree k nodes for k = 1, 2, . . . , n. Here n is the
maximum node degree of the finite size network. Let Sk(t), Ik(t) and Rk(t) be the relative
densities of susceptible, infected and recovered nodes in the kth group at time t, respec-
tively. Let Nk(t) := Sk(t) + Ik(t) + Rk(t) for all t ≥ 0 and k = 1, 2, . . . , n.

Using mean-field theory, the dynamics of the network-based SIRS model with a general
feedback mechanism can be formulated by the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dSk (t)
dt = bNk(t) – λ(k)Sk(t)Θ(t)U(α(k),Θ(t)) – μSk(t) + ωRk(t),

dIk (t)
dt = λ(k)Sk(t)Θ(t)U(α(k),Θ(t)) – μIk(t) – γ Ik(t),

dRk (t)
dt = γ Ik(t) – μRk(t) – ωRk(t),

(2.1)

where k = 1, 2, . . . , n; b > 0 is the natural birth rate [8, 9, 28]; λ(k) > 0 is the degree-
dependent infection rate [6, 28]; ω > 0 is the rate of immunity-lost for recovered nodes;
μ > 0 is the death rate; γ > 0 is the recovery rate of the infected nodes; Θ(t) describes the
probability that any given edge points to an infected node. According to Refs. [7, 27, 28],

Θ(t) =
1

〈k〉
n∑

k=1

ϕ(k)P(k)Ik(t), (2.2)

where ϕ(k) is the infectivity of a node with degree k, that is, ϕ(k) denotes the average
occupied edges from which a node with degree k can transmit the disease [16, 27]. 〈k〉 =
∑n

k=1 kP(k) is the average degree of the network. Here P(k) denotes the probability that
a randomly chosen node has degree k (i.e., the degree distribution). For convenience, the
usual notation 〈h̃(k)〉 =

∑n
k=1 h̃(k)P(k) is used.

The general feedback mechanism is assumed to be of the form U(α(k),Θ(t)), which
satisfies the following general assumptions:

(H1) U(0,Θ(t)) = U(α(k), 0) = 1;
(H2) U(α(k),Θ(t)) > 0 for α(k) ≥ 0 and 0 ≤ Θ ≤ 1;
(H3) ∂U/∂Θ ≤ 0.

The assumptions (H1) and (H2) reflect the fact that, for α(k) and Θ(t) small, the traditional
term λ(k)Sk(t)Θ(t) dominates (i.e., the feedback mechanism is negligible), while for α(k)
and Θ(t) slightly large, the feedback mechanism U(α(k),Θ(t)) is at work. Here, α(k) is a
degree-dependent parameter measuring the fear degree of the kth group to infectious dis-
eases. One can also note from (H3) that U(α(k),Θ(t)) is decreasing when Θ(t) is large and
increasing when Θ(t) is small. Therefore, the function U(α(k),Θ(t)) can be used to inter-
pret the initiative response of people when infectious diseases prevail. That is because peo-
ple will decrease their contacts with others consciously, when the probability of contacting
with infected people (i.e., Θ(t)) is becoming large. For example, U(α(k),Θ(t)) = e–α(k)Θq(t),
U(α(k),Θ(t)) = 1 – α(k)Θq(t), where q is positive constant. The latter case where α(k) = α

(a degree-independent constant) and q = 1 was considered by Li et al. [11] and Zhang et
al. [25]. For notational convenience, let φk(Θ(t)) = U(α(k),Θ(t)) and φ′

k(Θ) = ∂U/∂Θ .
In this paper, we assume that the birth rate equals the death rate, i.e., b = μ. It implies that

deaths are balanced by births. Since adding (removing) nodes and edges resulting from the
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birth (death) only take a small proportion in the huge network, we further assume that the
degree of each node is time invariant. These two assumptions are also presented in Refs.
[8, 9, 11, 13, 28]. From a practical perspective, the initial conditions for system (2.1) satisfy

0 ≤ Sk(0), Ik(0), Rk(0) ≤ 1, Sk(0) + Ik(0) + Rk(0) = 1, k = 1, 2, . . . , n, and

Θ(0) > 0.
(2.3)

Consequently, for k = 1, 2, . . . , n, we have Sk(t) + Ik(t) + Rk(t) ≡ 1, t ≥ 0, and system (2.1)
is equivalent to the following system:

⎧
⎨

⎩

dIk (t)
dt = λ(k)(1 – Ik(t) – Rk(t))Θ(t)φk(Θ(t)) – (μ + γ )Ik(t),

dRk (t)
dt = γ Ik(t) – (μ + ω)Rk(t).

(2.4)

To investigate the global dynamics of system (2.1), we only need to study the global dy-
namics of system (2.4).

3 Equilibria and the basic reproduction number

Obviously, system (2.4) has a disease-free equilibrium E0 = {
2n

︷ ︸︸ ︷
0, 0, . . . , 0}. Next, we follow

the approach of van den Driessche and Watmough [34] or Diekmann et al. [35] to find the
basic reproduction number, which is defined as the expected average number of secondary
infections generated by an infected node during its infection time.

If we set

x =
(
I1(t), . . . , In(t), R1(t), . . . , Rn(t)

)T ,

F (x) =
(
F1(x), . . . ,Fn(x), 0, . . . , 0

)T ,

and V (x) = (V1(x), . . . ,Vn(x),Vn+1(x), . . . ,V2n(x))T , system (2.4) can be written as

dx
dt

= F (x) – V (x), (3.1)

where

Fi(x) = λ(i)
(
1 – Ii(t) – Ri(t)

)
Θ(t)φi

(
Θ(t)

)
,

Vi(x) = (μ + γ )Ii(t), Vn+i(x) = (μ + ω)Ri(t) – γ Ii(t), i = 1, 2, . . . , n.

Here, Fi(x) is the rate at which new infections occur in compartment i and Vj(x) is the rate
of transfer of individuals into or out of compartment j by all other means, j = 1, 2, . . . , 2n.

It is easy to show that the conditions (A1)–(A5) in Ref. [34] are satisfied by system (3.1).
Note that the infected compartments are Ik , k = 1, 2, . . . , n. According to Lemma 1 in Ref.
[34], we obtain F = [ ∂Fi

∂xj
(E0)]1≤i,j≤n and V = [ ∂Vi

∂xj
(E0)]1≤i,j≤n = (μ + γ )Ẽn, where

F =
1

〈k〉

⎛

⎜
⎜
⎜
⎜
⎝

λ(1)ϕ(1)P(1) λ(1)ϕ(2)P(2) · · · λ(1)ϕ(n)P(n)
λ(2)ϕ(1)P(1) λ(2)ϕ(2)P(2) · · · λ(2)ϕ(n)P(n)

...
...

. . .
...

λ(n)ϕ(1)P(1) λ(n)ϕ(2)P(2) · · · λ(n)ϕ(n)P(n)

⎞

⎟
⎟
⎟
⎟
⎠

n×n

,
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Ẽn is the n × n identity matrix. Then, from Ref. [34], the basic reproduction number is
R0 = ρ(FV –1) = 1

μ+γ
ρ(F), where ρ(·) denotes the spectral radius of a matrix. Through a

similarity transformation of the matrix F , the eigenvalues of the matrix F will not change.
So, we have

R0 =
〈λ(k)ϕ(k)〉
(μ + γ )〈k〉 . (3.2)

To obtain the endemic equilibrium E∗ = {I∗
1 , R∗

1, I∗
2 , R∗

2, . . . , I∗
n , R∗

n} of system (2.4), we need
to impose the requirement that the right side of system (2.4) be equal to zero. Then the
equilibrium E∗ should satisfy

⎧
⎨

⎩

λ(k)(1 – I∗
k – R∗

k)Θ∗φk(Θ∗) – (μ + γ )I∗
k = 0,

γ I∗
k – (μ + ω)R∗

k = 0,
(3.3)

where Θ∗ = 1
〈k〉
∑n

k=1 ϕ(k)P(k)I∗
k . It follows from (3.3) that

I∗
k =

(μ + ω)λ(k)Θ∗φk(Θ∗)
(μ + ω)(μ + γ ) + (μ + ω + γ )λ(k)Θ∗φk(Θ∗)

. (3.4)

For simplicity, we also denote Θ∗ by Θ . Then from (3.4), we get the self-consistency equa-
tion:

Θ =
1

〈k〉
n∑

k=1

ϕ(k)P(k)
(μ + ω)λ(k)Θφk(Θ)

(μ + ω)(μ + γ ) + (μ + ω + γ )λ(k)Θφk(Θ)
. (3.5)

Considering f (Θ) := 1 – 1
〈k〉
∑n

k=1 ϕ(k)P(k) (μ+ω)λ(k)φk (Θ)
(μ+ω)(μ+γ )+(μ+ω+γ )λ(k)Θφk (Θ) , then

f ′(Θ) = –
1

〈k〉
n∑

k=1

ϕ(k)P(k)
(μ + ω)λ(k)[(μ + ω)(μ + γ )φ′

k(Θ) – (μ + ω + γ )λ(k)φ2
k (Θ)]

[(μ + ω)(μ + γ ) + (μ + ω + γ )λ(k)Θφk(Θ)]2 .

Since φ′
k(Θ) ≤ 0 and φk(Θ) > 0 for 0 ≤ Θ ≤ 1, we have f ′(Θ) > 0. Note that f (1) > 0. There-

fore, Eq. (3.5) has a unique nontrivial solution Θ (Θ ∈ (0, 1)) if and only if f (0) < 0, that
is, R0 > 1. Substituting the nontrivial solution of (3.5) into (3.4), we can get I∗

k . It follows
from (3.3) and (3.4) that 0 < I∗

k , R∗
k < 1 for k = 1, 2, . . . , n. That is, the equilibrium E∗ is well

defined.
Summarizing the discussions above, the following theorem can be established.

Theorem 3.1 For system (2.4), there always exists a disease-free equilibrium E0 =

{
2n

︷ ︸︸ ︷
0, 0, . . . , 0}. IfR0 ≤ 1, there is no endemic equilibrium; Otherwise, system (2.4) has a unique

endemic equilibrium E∗ = {I∗
1 , R∗

1, I∗
2 , R∗

2, . . . , I∗
n , R∗

n}, where

I∗
k =

(μ + ω)λ(k)Θ∗φk(Θ∗)
(μ + ω)(μ + γ ) + (μ + ω + γ )λ(k)Θ∗φk(Θ∗)

, R∗
k =

γ I∗
k

μ + ω
,

Θ∗ =
1

〈k〉
n∑

k=1

ϕ(k)P(k)I∗
k .

(3.6)
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Remark 3.1
(a) Theorem 3.1 shows that the existence of the endemic equilibrium E∗ is completely

determined by the basic reproduction number R0. Although the general feedback
mechanism cannot change the value of R0, Eq. (3.4) shows the feedback mechanism
can lower the final number of the infected nodes, i.e., it can reduce the endemic
level.

(b) If U(α(k),Θ(t)) = 1 (i.e., without feedback mechanism), then system (2.1)
degenerates into system (2.1) in Ref. [9]. However, the value of R0 is the same as
that in Ref. [9]. This also means that the general feedback mechanism does not
affect the basic reproduction number R0.

(c) If ϕ(k) = k, λ(k) = λk and U(α(k),Θ(t)) = 1 – αΘ(t), then system (2.1) becomes
system (1) in Ref. [11], and R0 > 1 is simplified to λ > 〈k〉

(μ+γ )〈k2〉 =: λc, which is
consistent with Ref. [11].

4 Stability of the equilibrium E0 and permanence of the disease
In this section, the globally asymptotical stability of the disease-free equilibrium E0 and
the permanence of the disease are investigated.

Before going into details, we first give the following lemma, which guarantees the solu-
tions of system (2.4) are nonnegative. Let Ik(t) = xk(t) and Rk(t) = xn+k(t) for k = 1, 2, . . . , n.
Then we study system (2.4) for x := (x1, x2, . . . , x2n) ∈ Ω , where

Ω =
{

x ∈ R2n | xi ≥ 0 for 1 ≤ i ≤ 2n, and xj + xn+j ≤ 1 for all 1 ≤ j ≤ n
}

. (4.1)

Lemma 4.1 The set Ω is positively invariant with respect to system (2.4), that is, x(0) ∈ Ω

implies x(t) ∈ Ω for all t > 0.

The proof is shown in Appendix 1. Next, we will investigate the stability of the disease-
free equilibrium E0.

Theorem 4.1 The disease-free equilibrium E0 of system (2.4) is locally asymptotically sta-
ble if R0 < 1 and it is unstable if R0 > 1.

Proof Rewrite system (2.4) in a compact vector form:

dx(t)
dt

= Ax + H(x), (4.2)

with initial condition x(0) ∈ Ω . Ax is the linear part, where A is the Jacobian matrix of
system (2.4) at the trivial equilibrium E0 and satisfies

A =

[
A11 A12

A21 A22

]

2n×2n

,

A11 =

⎡

⎢
⎢
⎢
⎣

l1q1 – (μ + γ ) l1q2 · · · l1qn

l2q1 l2q2 – (μ + γ ) · · · l2qn

· · · · · · · · · · · ·
lnq1 lnq2 · · · lnqn – (μ + γ )

⎤

⎥
⎥
⎥
⎦

,
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li = λ(i)
〈k〉 , qj = ϕ(j)P(j) (1 ≤ i, j ≤ n), A12 = On, A21 = γ Ẽn, A22 = –(μ + ω)Ẽn. Here, On and Ẽn

stand for the n × n zero and identity matrix, respectively. Note that φk(Θ) = 1 + φ′
k(ξ )Θ ,

where 0 < ξ < Θ . Then we have

dIk(t)
dt

= λ(k)
(
1 – Ik(t) – Rk(t)

)
Θ(t)

[
1 + φ′

k(ξ )Θ(t)
]

– (μ + γ )Ik(t),

=
[
λ(k)Θ(t) – (μ + γ )Ik(t)

]
– λ(k)Θ(t)

[
Ik(t) + Rk(t)

–
(
1 – Ik(t) – Rk(t)

)
Θ(t)φ′

k(ξ )
]
.

Thus, the nonlinear part H(x) = –(h1, h2, . . . , hn,
n

︷ ︸︸ ︷
0, 0, . . . , 0)T , hk = λ(k)Θ[Ik + Rk – (1 – Ik –

Rk)φ′
k(ξ )Θ], for 0 < ξ < Θ and k = 1, 2, . . . , n.

With the help of Lemma 3.1 in Ref. [10], the characteristic equation of the matrix A can
easily be expressed in the following form:

det(̃λE2n – A) = (̃λ + μ + ω)n · det(̃λEn – A11)

= (̃λ + μ + ω)n (̃λ + μ + γ )n–1

(

λ̃ + μ + γ –
n∑

k=1

lkqk

)

= 0. (4.3)

This equation has a negative root –(μ+ω) with multiplicity n and a negative root –(μ+γ )
with multiplicity n – 1. Therefore, the stability of the disease-free equilibrium E0 com-
pletely depends on the sign of the root of λ̃ + μ + γ –

∑n
k=1 lkqk = λ̃ + μ + γ – 〈λ(k)ϕ(k)〉

〈k〉 =
λ̃ – (μ + γ )(R0 – 1) = 0. Then λ̃ < 0 if R0 < 1 and λ̃ > 0 if R0 > 1. Thus, E0 is locally asymp-
totically stable if R0 < 1 and it is unstable if R0 > 1. The proof is completed. �

Remark 4.1 According to Theorem 4.1, we have (1) s(A) > 0 ⇔R0 > 1, and (2) s(A) < 0 ⇔
R0 < 1, where λ̃1, λ̃2, . . . , λ̃2n are the eigenvalues of matrix A, s(A) = max1≤i≤2n Re λ̃i.

Furthermore, we have the following result.

Theorem 4.2 If R0 < 1, the disease-free equilibrium E0 of system (2.4) is globally asymp-
totically stable.

Proof With the help of Theorem 4.1, it is sufficient to show that E0 is globally attractive
for system (2.4). From the second equation of system (2.4) and Eq. (2.2), it follows that

Θ ′(t) =
1

〈k〉
n∑

k=1

ϕ(k)P(k)
dIk(t)

dt

= Θ(t)

[
1

〈k〉
n∑

k=1

ϕ(k)P(k)λ(k)Sk(t)φk
(
Θ(t)

)
– (μ + γ )

]

. (4.4)

This implies that

Θ(t) = Θ(0) exp

{
1

〈k〉
∫ t

0

n∑

k=1

ϕ(k)P(k)λ(k)Sk(t)φk
(
Θ(t)

)
dt – (μ + γ )t

}

. (4.5)
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Since Θ(0) > 0, we have Θ(t) > 0, t > 0. Note that Sk(t) ≤ 1 and φk(Θ) ≤ φk(0) = 1. Then
we derive from (4.4) that

Θ ′(t) ≤ Θ(t)

[
1

〈k〉
n∑

k=1

λ(k)ϕ(k)P(k) – (μ + γ )

]

= (μ + γ )(R0 – 1)Θ(t).

Now we consider the comparison system with G(0) = Θ(0) > 0:

dG(t)
dt

= (μ + γ )(R0 – 1)G(t).

Integrating from 0 to t, we get G(t) = G(0) exp{(μ + γ )(R0 – 1)t}. Since R0 < 1,
limt→+∞ G(t) = 0. By comparison theorem, we have 0 < Θ(t) ≤ G(t), t > 0. Hence, Θ(t) →
0, i.e., Ik(t) → 0, as t → ∞ for k = 1, 2, . . . , n. Combining with the second equation of
system (2.4), it obviously follows that limt→+∞ Rk(t) = 0. Consequently, the disease-free
equilibrium E0 is globally attractive when R0 < 1. The proof is completed. �

Finally, we apply the following two lemmas to study the uniform persistence of system
(2.4).

Lemma 4.2 ([36]) Let A be an irreducible n ×n matrix. If aij ≥ 0 whenever i = j, then there
exists an eigenvector u of A such that u > 0, and the corresponding eigenvalue is s(A).

Lemma 4.3 ([30]) Consider a 2n-dimensional autonomous system

dy(t)
dt

= Ãy + H̃(y), y = (y1, y2, . . . , y2n)T ∈ D ⊂ R2n, (4.6)

where Ã is a 2n × 2n matrix and H̃(y) is continuously differentiable in D.
Assume that

(i) the compact convex set Γ ⊂ D is positively invariant with respect to system (4.6) and
0 ∈ Γ ;

(ii) there exists a positive integer m ≤ 2n such that limy→0 ‖H̃(y)‖/
√∑m

i=1 y2
i = 0;

(iii) there exist a positive number r̃ and a real eigenvector u corresponding to a positive
eigenvalue of ÃT such that (y, u) ≥ r̃

√∑m
i=1 y2

i for all y ∈ Γ ;
(iv) (H̃(y), u) ≤ 0 holds for all y ∈ Γ .

Then for any y0 ∈ Γ – {0} the solution ψ(t, y0) of system (4.6) satisfies lim inft→∞ ‖ψ(t,
y0)‖ ≥ σ0, where σ0 > 0 is independent of the initial value y0. Moreover, there exists a con-
stant solution of (4.6), y = y∗ with y∗ ∈ Γ – {0}.

Now, we verify that system (4.2) satisfies all the hypotheses of Lemma 4.3. It follows
from Lemma 4.1 that condition (i) holds for (4.2) by selecting Γ = Ω . It is clear that
limx→0 ‖H(x)‖/

√∑n
i=1 x2

i = 0, then condition (ii) follows.
For condition (iii), note that AT

11 = (aji)n×n is irreducible and aji > 0 when j = i, then from
Lemma 4.2 and Eq. (4.3), there exists an eigenvector ũ = (u1, u2, . . . , un)T of AT

11 such that
ui > 0 for all i = 1, 2, . . . , n, and the corresponding eigenvalue is s(AT

11) = s(A) = (μ+γ )(R0 –
1). If R0 > 1, we have s(AT

11) =: λ0 > 0. Let un+1 = · · · = u2n = 0 and u = (u1, u2, . . . , u2n)T ,
then AT u = λ0u, that is, u is the eigenvector corresponding to a positive eigenvalue λ0 of
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AT . If we define r̃ = min1≤i≤n ui > 0, then, for all x ∈ Ω , we obtain (x, u) ≥ r̃
√∑n

i=1 x2
i , i.e.,

condition (iii) is satisfied.
Since (H(x), u) = –Θ

∑n
k=1 λ(k)uk[xk + xn+k + (1 – xk – xn+k)(–φ′

k(ξ ))Θ] ≤ 0 for all x ∈ Γ ,
condition (iv) is also verified. Hence all the hypotheses of Lemma 4.3 are satisfied.

As shown above, the following result can be obtained.

Theorem 4.3 If R0 > 1, system (2.4) is uniformly persistent, in the sense that there exists
a constant 0 < σ0 � 1 (independent of initial conditions) such that

lim inf
t→+∞ Ik(t) ≥ σ0, lim inf

t→+∞ Rk(t) ≥ σ0, k = 1, 2, . . . , n,

for any solution of system (2.4) with (2.3).

Remark 4.2 Theorem 4.3 shows that the disease is permanent on the network if R0 > 1.
Moreover, it follows from Lemma 4.3 that, if R0 > 1, there exists a constant solution of
system (2.4), i.e., the endemic equilibrium of system (2.4). This is in agreement with The-
orem 3.1.

5 Global stability of the endemic equilibrium
This section discusses the global stability of the endemic equilibrium E∗ of system (2.4).
Firstly, by constructing a Lyapunov function with the LaSalle invariant principle, we obtain
the following theorem, which partly solves the stability problem in Ref. [11].

Theorem 5.1 If R0 > 1 and α > α0 := λn
4μ

(1– 1
R0

)2, then the endemic equilibrium E∗ of system
(2.4) with ϕ(k) = k, λ(k) = λk and φk(Θ) = 1 – αΘ (i.e., system (1) in Ref. [11]) is globally
asymptotically stable.

Proof We choose ϕ(k) = k, λ(k) = λk and φk(Θ) = 1 – αΘ for system (2.4). It follows from
(4.5) that Θ(t) > 0 for all t > 0. Then we define V : Ω →R by

V =
1
2

n∑

k=1

{
Ak
(
Sk – S∗

k
)2 + Bk

(
Rk – R∗

k
)2} + Θ – Θ∗ – Θ∗ln

Θ

Θ∗ ,

where V = V (I1, I2, . . . , In, R1, R2, . . . , Rn), Ak = kP(k)
S∗

k 〈k〉 , Bk = ωkP(k)
γ S∗

k 〈k〉 , S∗
k = 1 – I∗

k – R∗
k and Sk(t) =

1 – Ik(t) – Rk(t), which satisfies

dSk(t)
dt

= μ – λkSk(1 – αΘ)Θ – μSk + ωRk

= λk
[
S∗

k
(
1 – αΘ∗)Θ∗ – Sk(1 – αΘ)Θ

]
– μ

(
Sk – S∗

k
)

+ ω
(
Rk – R∗

k
)

= λk
{

S∗
k
(
1 – αΘ∗)Θ∗ + (1 – αΘ)Θ

(
S∗

k – Sk
)

– S∗
k
[(

1 – αΘ∗)

– α
(
Θ – Θ∗)][(Θ – Θ∗) + Θ∗]} – μ

(
Sk – S∗

k
)

+ ω
(
Rk – R∗

k
)

= λk
[
(1 – αΘ)Θ

(
S∗

k – Sk
)

– S∗
k
(
1 – 2αΘ∗)(Θ – Θ∗)

+ αS∗
k
(
Θ – Θ∗)2] – μ

(
Sk – S∗

k
)

+ ω
(
Rk – R∗

k
)
. (5.1)
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Here, μ = λk(1 – αΘ∗)S∗
kΘ

∗ + μS∗
k – ωR∗

k . Moreover, recall that

dΘ(t)
dt

= Θ(t)

{
1

〈k〉
n∑

k=1

λk2P(k)(1 – αΘ)Sk – (μ + γ )

}

. (5.2)

Then the time derivative of V along the solution of system (2.4) for t > 0 is

dV
dt

=
n∑

k=1

Ak
(
Sk – S∗

k
)dSk

dt
+

n∑

k=1

Bk
(
Rk – R∗

k
)dRk

dt
+

Θ – Θ∗

Θ

dΘ

dt

=: V1 + V2 + V3. (5.3)

It follows from (5.1) that

V1 = –μ

n∑

k=1

Ak
(
Sk – S∗

k
)2 – λΘ(1 – αΘ)

n∑

k=1

Akk
(
Sk – S∗

k
)2

– λ

n∑

k=1

AkkS∗
k
(
1 – 2αΘ∗)(Sk – S∗

k
)(

Θ – Θ∗)

+ λα

n∑

k=1

AkkS∗
k
(
Sk – S∗

k
)(

Θ – Θ∗)2 + ω

n∑

k=1

Ak
(
Sk – S∗

k
)(

Rk – R∗
k
)

= λα

n∑

k=1

AkkS∗
kΘ

∗(Sk – S∗
k
)(

Θ – Θ∗) – λα

n∑

k=1

Akk
(
S∗

k
)2(

Θ – Θ∗)2

– μ

n∑

k=1

Ak
(
Sk – S∗

k
)2 – λΘ(1 – αΘ)

n∑

k=1

Akk
(
Sk – S∗

k
)2

– λ

n∑

k=1

AkkS∗
k
[(

1 – αΘ∗)(Sk – S∗
k
)(

Θ – Θ∗) – αSk
(
Θ – Θ∗)2]

+ ω

n∑

k=1

Ak
(
Sk – S∗

k
)(

Rk – R∗
k
)
. (5.4)

Using the identities dRk (t)
dt = γ – γ Sk – (μ + ω + γ )Rk and γ = γ S∗

k + (μ + ω + γ )R∗
k , we have

V2 =
n∑

k=1

Bk
(
Rk – R∗

k
)[

–γ
(
Sk – S∗

k
)

– (μ + ω + γ )
(
Rk – R∗

k
)]

= –γ

n∑

k=1

Bk
(
Sk – S∗

k
)(

Rk – R∗
k
)

– (μ + ω + γ )
n∑

k=1

Bk
(
Rk – R∗

k
)2. (5.5)

Combining (5.2) with the identity μ + γ = 1
〈k〉
∑n

k=1 λk2P(k)(1 – αΘ∗)S∗
k , we obtain

V3 =
(
Θ – Θ∗)

{
1

〈k〉
n∑

k=1

λk2P(k)Sk(1 – αΘ) – (μ + γ )

}

=
(
Θ – Θ∗) 1

〈k〉
n∑

k=1

λk2P(k)
[
Sk(1 – αΘ) – S∗

k
(
1 – αΘ∗)]
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=
1

〈k〉
n∑

k=1

λk2P(k)
[(

1 – αΘ∗)(Sk – S∗
k
)(

Θ – Θ∗) – αSk
(
Θ – Θ∗)2]. (5.6)

Note that ωAk = γ Bk . Then, substituting (5.4)–(5.6) into (5.3), we get

dV
dt

= –μ

n∑

k=1

Ak
(
Sk – S∗

k
)2 – λΘ(1 – αΘ)

n∑

k=1

Akk
(
Sk – S∗

k
)2

+ λα

n∑

k=1

AkkS∗
kΘ

∗(Sk – S∗
k
)(

Θ – Θ∗) – λα

n∑

k=1

Akk
(
S∗

k
)2(

Θ – Θ∗)2

– (μ + ω + γ )
n∑

k=1

Bk
(
Rk – R∗

k
)2

= –λΘ(1 – αΘ)
n∑

k=1

AkkX̃k
2 – (μ + ω + γ )

n∑

k=1

BkZ̃k
2

–
n∑

k=1

Ak
[
μX̃k

2 + bkX̃kỸ + ckỸ 2]

= –λΘ(1 – αΘ)
n∑

k=1

AkkX̃k
2 – (μ + ω + γ )

n∑

k=1

BkZ̃k
2

– μ

n∑

k=1

Ak

(

X̃k +
bk

2μ
Ỹ
)2

+
n∑

k=1

Ak
b2

k – 4μck

4μ
Ỹ 2, (5.7)

where bk = –λαkS∗
kΘ

∗, ck = λαk(S∗
k )2, X̃k = Sk – S∗

k , Ỹ = Θ – Θ∗ and Z̃k = Rk – R∗
k .

Note that φk(Θ) = 1 – αΘ > 0 and R0 = λ〈k2〉
(μ+γ )〈k〉 . It follows from (3.3) that (μ + γ )I∗

k ≤
λkΘ∗(1 – αΘ∗), Then (μ + γ ) 1

〈k〉
∑n

k=1 kP(k)I∗
k ≤ λΘ∗(1 – αΘ∗) 1

〈k〉
∑n

k=1 k2P(k), i.e., αΘ∗ ≤
1 – 1

R0
. Since α > α0 := λn

4μ
(1 – 1

R0
)2,

b2
k – 4μck ≤

[

λkS∗
k

(

1 –
1

R0

)]2

– 4μλαk
(
S∗

k
)2

= λk
(
S∗

k
)2
[

λk
(

1 –
1

R0

)2

– 4μα

]

< 0.

This implies that V ′(t) ≤ 0. And V ′(t) = 0 if and only if X̃k = Ỹ = Z̃k = 0, i.e., Sk = S∗
k , Ik = I∗

k
and Rk = R∗

k for k = 1, 2, . . . , n. Hence, the largest invariant subset in the set {V ′(t) = 0} is
the singleton {E∗}. According to the Lyapunov theorem (i.e., Theorem 3.1 in Ref. [33]) and
the LaSalle invariant principle (i.e., Theorem 5.2.4 in Ref. [37]), the endemic equilibrium
E∗ is globally asymptotically stable. The proof is completed. �

Finally, we further study the global stability of E∗ of system (2.4) by applying an iteration
scheme [6, 7, 20, 29]. It follows from Theorem 4.3 that, if R0 > 1, the infection will always
exist in the population. Then a more general result is presented in the following theorem.

Theorem 5.2 Let (Ik(t), Rk(t)) be a solution of system (2.4) satisfying initial conditions
(2.3). If R0 > 1 and γ > μ + ω, then limt→+∞(Ik(t), Rk(t)) = (I∗

k , R∗
k), where (I∗

k , R∗
k) is the

unique positive equilibrium of system (2.4) satisfying (3.6) for k = 1, 2, . . . , n.
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The proof is shown in Appendix 2.

Remark 5.1 Theorems 5.1 and 5.2 show that the outstanding issue in Ref. [11] is partly
solved. So the results we obtained improve and complement that of Ref. [11].

6 Numerical simulations
This section gives some numerical simulations to illustrate our analysis. All the simula-
tions are based on a finite size scale-free network with the degree distribution P(k) = ηk–τ

(2 < τ ≤ 3), where the constant η satisfies
∑n

k=1 ηk–τ = 1, n = 100. Now we investigate the
global behavior of system (2.4). Let I(t) =

∑n
k=1 Ik(t)P(k) and R(t) =

∑n
k=1 Rk(t)P(k) be the

global average densities of the infected nodes and the removed nodes, respectively. In gen-
eral, the nodes with higher degrees tend to be more susceptible to disease, so they tend
to have a greater fear of disease than the nodes with lower degrees. Then we suppose that
the ‘fear factor’ α(k) = 1 – k–1/4, which is an increasing function of degree k. In Figs. 1, 2, 4
and 5, we choose τ = 2.6, λ(k) = λk and ϕ(k) = akσ

1+νkσ , where a = 0.3, σ = 0.75 and ν = 0.02.
Figure 1 displays the time series I(t) with different forms of feedback mechanism. The

initial values of Fig. 1(a) are given by I(0) = 0.9 and R(0) = 0. The parameters are chosen
as λ = 0.05, μ = 0.01, ω = 0.05 and γ = 0.05, then R0 = 0.7059 < 1. In Fig. 1(b), the ini-
tial values are I(0) = 0.1 and R(0) = 0, and the parameters are λ = 0.06, μ = 0.02, ω = 0.04
and γ = 0.01. Then R0 = 1.6942 > 1. It can be seen from Fig. 1, regardless of the forms of
feedback mechanism, whether the disease is disappearing or not is completely dependent
on the basic reproductive number R0. However, one can find that the feedback mecha-
nism can decrease the final number of the infected nodes, i.e. it can weaken the epidemic
spreading.

Figure 1 The time series of I(t) with different forms of feedback mechanism

Figure 2 The time evolution of Ik (t) for k = 1, 2, . . . ,n from bottom to top
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In the following, we only show U(α(k),Θ(t)) = 1 – α(k)Θq(t) (q = 1/2) on behalf of other
forms of the function U(α(k),Θ(t)). To further study the detailed outcome of Fig. 1, the
time series of infected nodes with different degree should be examined. In Fig. 2, the initial
value and parameters are the same as those of Fig. 1. One can see that when R0 < 1 the
infected nodes will ultimately disappear (i.e., the disease dies out) and when R0 > 1 not
only is the disease permanent but also the density of each infected node converges to a
positive constant.

Now we explore the global behavior of the endemic equilibrium E∗ of system (2.4).
Here, τ = 2.9, λ(k) = λkA(k) [16] and ϕ(k) = akσ

1+νkσ , where a = 20, σ = 0.65 and ν = 14,
A(k) = kε

k(2+kε ) , ε = 0.9 and λ = 0.32. The initial value is I(0) = 0.7 and R(0) = 0. The other
parameters are chosen as μ = 0.01, ω = 0.085, γ = 0.096. Then γ – (μ + ω) = 0.001 > 0 and
R0 = 1.0676 > 1. From Fig. 3, it is observed that when R0 > 1 and γ > μ + ω, the endemic
equilibrium of system (2.4) is globally attractive, which is in agreement with Theorem 5.2.

Figure 4 shows the phase diagram of I(t) and R(t) with 20 different sets of randomly
given initial values for system (2.4). It is clearly observed that all trajectories converge to
the point O(0, 0) and E∗(I∗, R∗) = E∗(0.0307, 0.0412) when R0 < 1 and R0 > 1, respectively.
Here, I∗ =

∑n
k=1 I∗

k P(k) and R∗ =
∑n

k=1 R∗
kP(k). The parameters are the same as those of

Fig. 1. However, γ – μ = 0 < ω, that is, the condition γ > μ + ω of Theorem 5.2 is not
satisfied. Furthermore, we can repeat similar simulations to Fig. 3 in Ref. [22], when the
value of α does not satisfy the assumption of Theorem 5.1. Therefore, we can infer that the
endemic equilibrium E∗ of system (2.4) is globally asymptotically stable only when R0 > 1.
We hope to tackle this question in the future.

Figure 3 The time evolution of Ik (t) and Rk (t), for k = 1, 2, . . . ,n from bottom to top, whenR0 = 1.0676 > 1
and γ >μ +ω

Figure 4 Phase diagram of I(t) and R(t) with 20 different sets of random initial values for system (2.4)
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Figure 5 Evolutions of I(t) based on system (2.4) with varying α̂

Finally, we further investigate the influence of the personal initiative response (i.e., feed-
back mechanism) on the epidemic spreading. Let α̂ =

∑n
k=1 α(k)P(k) be changeable pa-

rameter, which is determined by the fear degree of the people to the infectious disease. In
this case, we only study the effect of the parameter α̂ on the disease transmission. Figure 5
displays the evolutions of I(t) with different values of α̂. The initial value and parameters
of Fig. 5 are the same as those of Fig. 1 except for the parameter α(k). Although the pa-
rameter α̂ cannot affect the basic reproductive number R0, Fig. 5 shows that when R0 < 1,
the larger the value of parameter α̂ is, the faster the disease will die out; and when R0 > 1,
the smaller the value of parameter α̂ is, the higher the endemic level will be. This result is
consistent with those in Refs. [11, 22, 25].

7 Conclusions
In this paper, we have investigated the global dynamics of a network-based SIRS epidemic
model with a general feedback mechanism. Some special cases of this model were studied
in Refs. [9, 11]. The basic reproductive number R0 is calculated by using the next genera-
tion matrix method. Interestingly, we find the basic reproductive number R0 is the same
as that in Ref. [9], that is, R0 bears no relation to the general feedback mechanism.

Furthermore, we show that the basic reproductive number R0 determines not only
the existence of the endemic equilibrium E∗ but also the global dynamics of the model.
More specially, if R0 < 1, the disease-free equilibrium E0 is globally asymptotically sta-
ble, namely, the disease will disappear eventually; if R0 > 1, the disease is permanent and
there exists a unique endemic equilibrium E∗, which is globally attractive provided that
γ > μ + ω. With the help of Lyapunov’s direct method, we also obtain the global stability
conditions for the epidemic equilibrium E∗ of system (1) in Ref. [11], which partly solves
the outstanding problem in Ref. [11].

Different from previous work [11, 25, 26], the degree-dependent parameter α(k) is intro-
duced to measure the fear degree of a susceptible individual who has k potential contacts
with others, when epidemic diseases prevail. Both analytical and numerical results indi-
cate that the feedback mechanism can reduce the average densities of infected nodes and
accelerate the extinction of the disease. There is a biological meaning that people will con-
sciously minimize their contacts with others during disease outbreaks. Hence, strength-
ening the individual self-protection awareness has an obvious effect on the suppression of
diseases. We hope this work may be helpful in understanding the epidemic spreading in
real society and designing appropriate strategies to control disease spread.
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Appendix 1: Proof of Lemma 4.1
This appendix will show the set Ω is positively invariant for system (2.4). That is, we will
show that if x(0) ∈ Ω , then x(t) ∈ Ω for all t > 0. From (4.1), ∂Ω (the boundary of Ω) is
composed of the following 3n sets:

∂Ω
(1)
i = {x ∈ Ω | xi = 0}, ∂Ω

(2)
i = {x ∈ Ω | xn+i = 0},

∂Ω
(3)
i = {x ∈ Ω | xi + xn+i = 1}, i = 1, 2, . . . , n,

and the respective outer normal vectors are

ξ
(1)
i = (0, . . . , 0,

i
–1, 0, . . . , 0), ξ

(2)
i = (0, . . . , 0,

n+i
–1, 0, . . . , 0),

ξ
(3)
i = (0, . . . , 0,

i
1, 0, . . . , 0,

n+i
1 , 0, . . . , 0).

For an arbitrary compact set Ω̃ , Nagumo had proved that the set Ω̃ is invariant for the
system dz/dt = f (z), if the vector f (z) is tangent or pointing into Ω̃ for every point z on
∂Ω̃ [36]. Note that Ω is a compact set and, for 1 ≤ i ≤ n,

(
dx
dt

∣
∣
∣
∣
x∈∂Ω

(1)
i

, ξ (1)
i

)

= –λ(i)(1 – xn+i)Θ̃φi(Θ̃) ≤ 0,
(

dx
dt

∣
∣
∣
∣
x∈∂Ω

(2)
i

, ξ (2)
i

)

= –γ xi ≤ 0,

(
dx
dt

∣
∣
∣
∣
x∈∂Ω

(3)
i

, ξ (3)
i

)

= –μxi – (μ + ω)xn+i ≤ 0, where Θ̃ =
1

〈k〉
n∑

k=1
k =i

ϕ(k)P(k)xk ≥ 0.

Hence, through Nagumo’s result, we see that the set Ω is positively invariant.

Appendix 2: Proof of Theorem 5.2
This appendix will show the global attractivity of the endemic equilibrium E∗ of system
(2.4). In the following, k is fixed to be any integer in {1, 2, . . . , n}. From Theorem 4.3, there
exist a small enough constant ξ0 (0 < ξ0 � 1) and a large enough constant T0 > 0 such that
Ik(t) ≥ ξ0 for t > T0. Thus

Θ(t) =
1

〈k〉
n∑

k=1

ϕ(k)P(k)Ik(t) ≥ ξ0

〈k〉
n∑

k=1

ϕ(k)P(k) =: ε0 > 0.

Note that φk(Θ) ≤ φk(0) = 1 for 0 ≤ Θ ≤ 1. Then from the first equation of system (2.4),
we have

dIk(t)
dt

≤ λ(k)
[
1 – Ik(t)

]
– (μ + γ )Ik(t) = λ(k) –

[
λ(k) + μ + γ

]
Ik(t).

By Lemma 2.1 in Ref. [38], we derive that lim supt→∞ Ik(t) ≤ λ(k)
λ(k)+μ+γ

. Then, for any given
small constant 0 < ε

(1)
1 < μ+γ

2[λ(k)+μ+γ ] , by the comparison theorem, there exists a T (1)
1 > T0

such that Ik(t) ≤ X(1)
k – ε

(1)
1 for t > T (1)

1 , where

X(1)
k :=

λ(k)
λ(k) + μ + γ

+ 2ε
(1)
1 < 1. (B.1)
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It then follows from the second equation of system (2.4) that

dRk(t)
dt

= γ
[
1 – Sk(t) – Rk(t)

]
– (μ + ω)Rk(t) ≤ γ – (γ + μ + ω)Rk(t).

Similarly, for any given small constant 0 < ε
(2)
1 < min{ 1

2 , ε(1)
1 , μ+ω

2(μ+γ +ω) }, there exists a T (2)
1 >

T (1)
1 such that Rk(t) ≤ Y (1)

k – ε
(2)
1 for t > T (2)

1 , where

Y (1)
k :=

γ

γ + μ + ω
+ 2ε

(1)
1 < 1. (B.2)

Since Θ(t) ≤ 1
〈k〉
∑n

k=1 ϕ(k)P(k) = 〈ϕ(k)〉
〈k〉 =: β , φk(β) ≤ φk(Θ). Substituting (B.2) into the first

equation of system (2.4) gives

dIk(t)
dt

≥ λ(k)
(
1 – Y (1)

k
)
ε0φk(β) –

[
λ(k) + μ + γ

]
Ik(t), for t > T (4)

1 .

By Lemma 2.1 in Ref. [38], we derive that lim inft→∞ Ik(t) ≥ λ(k)(1–Y (1)
k )ε0φk (β)

λ(k)+μ+γ
. That is, for

any given small constant 0 < ε
(3)
1 < min{ 1

3 , ε(2)
1 , λ(k)(1–Y (1)

k )ε0φk (β)
2[λ(k)+μ+γ ] }, there exists a T (3)

1 > T (2)
1

such that Ik(t) ≥ x(1)
k + ε

(3)
1 for t > T (2)

1 , where

x(1)
k :=

λ(k)(1 – Y (1)
k )ε0φk(β)

λ(k) + μ + γ
– 2ε

(3)
1 > 0. (B.3)

From the second equation of system (2.4), we derive that dRk (t)
dt ≥ γ x(1)

k – (μ + ω)Rk(t),

t > T (3)
1 . Similarly, for any given small constant 0 < ε

(4)
1 < min{ 1

4 , ε(3)
1 , γ x(1)

k
2(μ+ω) }, there exists a

T (4)
1 > T (3)

1 such that Rk(t) ≥ y(1)
k + ε

(4)
1 for t > T (4)

1 , where

y(1)
k :=

γ x(1)
k

μ + ω
– 2ε

(4)
1 > 0. (B.4)

Note that ξ0 is a small enough constant, then 0 < x(1)
k � 1 and 0 < y(1)

k � 1. Then, from the
discussion above, one obtains 0 < x(1)

k < X(1)
k < 1 and 0 < y(1)

k < Y (1)
k < 1 for t > T (4)

1 . Accord-
ingly, it follows from (2.2) that

0 < m1 < Θ(t) < M1 < β < 1,

φk(β) ≤ φk(M1) ≤ φk
(
Θ(t)

)≤ φk(m1) ≤ 1,
(B.5)

where m1 = 1
〈k〉
∑n

k=1 ϕ(k)P(k)x(1)
k and M1 = 1

〈k〉
∑n

k=1 ϕ(k)P(k)X(1)
k . Again, from the first

equation of system (2.4), we have

dIk(t)
dt

≤ λ(k)
[
1 – Ik(t) – y(1)

k
]
M1φk(m1) – (μ + γ )Ik(t), t > T (4)

1 .

So, for any given constant 0 < ε
(1)
2 < min{ 1

5 , ε(4)
1 , μ+γ +λ(k)y(1)

k M1φk (m1)
λ(k)M1φk (m1)+μ+γ

}, there exists a T (1)
2 > T (4)

1
such that

Ik(t) ≤ X(2)
k :=

λ(k)(1 – y(1)
k )M1φk(m1)

λ(k)M1φk(m1) + μ + γ
+ ε

(1)
2 < 1. (B.6)
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From the second equation of system (2.4) one then obtains dRk (t)
dt ≤ γ X(2)

k – (μ + ω)Rk(t),
t > T (1)

2 . Hence, for any given constant 0 < ε
(2)
2 < min{ 1

6 , ε(1)
2 }, there exists a T (2)

2 > T (1)
2 such

that

Rk(t) ≤ Y (2)
k := min

{

Y (1)
k – ε

(2)
1 ,

γ X(2)
k

μ + ω
+ ε

(2)
2

}

, t > T (2)
2 . (B.7)

It follows from (B.1), (B.6) and (B.7) that X(2)
k < X(1)

k and Y (2)
k < Y (1)

k .
Turning back to system (2.4), it can be seen that

dIk(t)
dt

≥ λ(k)
[
1 – Ik(t) – Y (2)

k
]
m1φk(M1) – (μ + γ )Ik(t), t > T (2)

2 .

So, for any given constant 0 < ε
(3)
2 < min{ 1

7 , ε(2)
2 , λ(k)(1–Y (2)

k )m1φk (M1)
λ(k)m1φk (M1)+μ+γ

}, there exists a T (3)
2 > T (2)

2

such that Ik(t) ≥ x(2)
k , where

x(2)
k := max

{

x(1)
k + ε

(2)
1 ,

λ(k)(1 – Y (2)
k )m1φk(M1)

λ(k)m1φk(M1) + μ + γ
– ε

(3)
2

}

, t > T (3)
2 . (B.8)

Therefore, by (2.4), one has dRk (t)
dt ≥ γ x(2)

k – (μ + ω)Rk(t), t > T (3)
2 . Then, for any given con-

stant 0 < ε
(4)
2 < min{ 1

8 , ε(3)
2 , γ x(2)

k
μ+ω

}, there exists a T (4)
2 > T (3)

2 such that

Rk(t) ≥ y(2)
k :=

γ x(2)
k

μ + ω
– ε

(4)
2 , t > T (4)

2 . (B.9)

Repeating the above procedure, we get four sequences: X(i)
k , Y (i)

k , x(i)
k , y(i)

k , i = 1, 2, . . . . By
induction, we know that the first two are monotone decreasing sequences and the last two
are monotone increasing sequences. Then there exists a sufficiently large positive integer
N such that, with n ≥ N ,

X(n)
k =

λ(k)(1 – yn–1
k )Mn–1φk(mn–1)

λ(k)Mn–1φk(mn–1) + μ + γ
+ ε(1)

n , Y (n)
k =

γ X(n)
k

μ + ω
+ ε(2)

n ,

x(n)
k =

λ(k)(1 – Y n
k )mn–1φk(Mn–1)

λ(k)mn–1φk(Mn–1) + μ + γ
– ε(3)

n , y(n)
k =

γ x(n)
k

μ + ω
– ε(4)

n .

(B.10)

Obviously, one has

0 < x(n)
k ≤ Ik(t) ≤ X(n)

k < 1, 0 < y(n)
k ≤ Rk(t) ≤ Y (n)

k < 1, t > T (4)
n . (B.11)

Because the sequential limits of (B.10) exist, let limn→∞ H (n)
k = Hk , where H (n)

k = (X(n)
k , Y (n)

k ,
x(n)

k , y(n)
k , Mn, mn) and Hk = (X̄k , Ȳk , x̄k , ȳk , M, m). Note that 0 < ε

(i)
n < 1

4n+i–4 (i = 1, 2, 3, 4, n >
1), then ε

(i)
n → 0 as n → ∞. Therefore, taking n → ∞, it follows from (B.10) that

X̄k =
λ(k)(1 – ȳk)Mφk(m)
λ(k)Mφk(m) + μ + γ

, Ȳk =
γ X̄k

μ + ω
,

x̄k =
λ(k)(1 – Ȳk)mφk(M)
λ(k)mφk(M) + μ + γ

, ȳk =
γ x̄k

μ + ω
,

(B.12)
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where M = 1
〈k〉
∑n

k=1 ϕ(k)P(k)X̄k , m = 1
〈k〉
∑n

k=1 ϕ(k)P(k)x̄k , 0 < m ≤ M < 1. Furthermore, we
obtain from (B.12)

DkX̄k = λ(k)M
[

λ(k)mφk(M)φk(m) + φk(m)(μ + γ ) –
λ(k)mφk(M)φk(m)γ

μ + ω

]

,

Dkx̄k = λ(k)m
[

λ(k)Mφk(M)φk(m) + φk(M)(μ + γ ) –
λ(k)Mφk(M)φk(m)γ

μ + ω

]

,
(B.13)

where Dk = [λ(k)Mφk(m) + μ + γ ][λ(k)mφk(M) + μ + γ ] – [λ(k)]2Mmφk (M)φk (m)γ 2

(μ+ω)2 . Here, we
claim that Dk = 0. Note that X̄k is the unique nonzero value determined by (B.12). If Dk = 0,
then λ(k)mφk(M) + (μ + γ ) = λ(k)mφk (M)γ

μ+ω
. By t symmetry, we have λ(k)Mφk(m) + (μ + γ ) =

λ(k)Mφk (m)γ
μ+ω

. Obviously, it follows that λ(k)[mφk(M) – Mφk(m)] = λ(k)[mφk (M)–Mφk (m)]γ
μ+ω

, i.e.
μ + ω = γ . This is inconsistent with the assumed conditions of the theorem. Therefore,
Dk = 0.

Combining (B.13) with the expressions of M and m, one has

1 =
1

〈k〉
n∑

k=1

ϕ(k)P(k)
λ(k)
Dk

[

λ(k)mφk(M)φk(m) + φk(m)(μ + γ )

–
λ(k)mφk(M)φk(m)γ

μ + ω

]

,

1 =
1

〈k〉
n∑

k=1

ϕ(k)P(k)
λ(k)
Dk

[

λ(k)Mφk(M)φk(m) + φk(M)(μ + γ )

–
λ(k)Mφk(M)φk(m)γ

μ + ω

]

.

(B.14)

From (B.14), a direct computation leads to

1
〈k〉

n∑

k=1

ϕ(k)P(k)
λ(k)
Dk

{

λ(k)φk(M)φk(m)(M – m)
(

1 –
γ

μ + ω

)

+ (μ + γ )
[
φk(M) – φk(m)

]
}

= 0. (B.15)

Now we want to show that m = M. Suppose it is not true, then there exists τ0 ∈ (m, M)
such that φk(M) – φk(m) = φ′

k(τ0)(M – m). Hence, it follows from (B.15) that

1
〈k〉

n∑

k=1

ϕ(k)P(k)
λ(k)
Dk

(M – m)
[

λ(k)φk(M)φk(m)
(

1 –
γ

μ + ω

)

+ (μ + γ )φ′
k(τ0)

]

= 0. (B.16)

Since φ′
k(Θ) ≤ 0 (0 ≤ Θ ≤ 1) and μ + ω < γ , each item on the left side of (B.16)

is negative. This is apparently a contradiction. Consequently, m = M. Then we have
1

〈k〉
∑n

k=1 ϕ(k)P(k)(X̄k – x̄k) = 0, which implies that X̄k = x̄k for k = 1, 2, . . . , n. From (B.11)
and (B.12), we arrive at limt→∞ Ik(t) = X̄k = x̄k and limt→∞ Rk(t) = Ȳk = ȳk . Note that
Eq. (3.5) has a unique positive solution Θ∗ if R0 > 1. Then, substituting M = m and X̄k = x̄k
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into (B.13), by virtue of (3.6) and (B.12), one can obtain X̄k = I∗
k and Ȳk = R∗

k . As a result,
the endemic equilibrium E∗ of system (2.4) is globally attractive if R0 > 1 and γ > μ + ω.
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