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Abstract
To model complex systems with discrete-time features and memory effects in the
uncertain environment, a definition of an uncertain fractional forward difference
equation with Riemann–Liouville-like forward difference is introduced. Moreover,
analytic solutions to a type of special linear uncertain fractional difference equations
are presented by the Picard iteration method. Then, an existence and uniqueness
theorem of the solutions is proved by applying Banach contraction mapping
theorem. Finally, two examples are provided to illustrate the validity of the existence
and uniqueness theorem.
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1 Introduction
Since 1965, fractional calculus has been a topic of interest and has become a useful tool
for tackling problems in physics, biology, economics, and several fields in engineering [1–
4]. In fact, due to the discrete-time features of these complex systems, some efforts have
been made within discretization of continuous time methods. That is, numerical versions
of continuous fractional calculus can result in the discrete models, but this treatment can
readily lead to cumulate errors and cannot accurately depict the non-locality of complex
systems. Consequently, research on discrete fractional calculus provides a very new idea
to model the systems with memory effects and discrete-time features. In addition, with
the improvement of computer technology, fractional difference equations are more eas-
ily solved by computers. Therefore fractional difference equations have been increasingly
brought into focus. In this new area, a ground-breaking work has been set up by Miller
and Ross. After that, the definitions and basic properties [5–7], correlation transforma-
tions [8], and equations [9–13] of fractional order difference have been studied in succes-
sion.

On the other hand, any system has its inherent structure and is disturbed by external
factors in the practical application. Thereby, the fuzzy fractional differential equations
(FFDEs) [14] and stochastic fractional differential equations (SSDEs) [15] have been ex-
tensively researched. A system disturbed by external objective random noises is popularly
governed by SSDEs. This noise is usually characterized by Brownian motion. Neverthe-
less, when the system is interfered by external subjective noises, how to depict the subjec-
tive noises in mathematical language is a question. In general, external subjective noises
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make it difficult to accurately describe the behavior of systems. Fortunately, in 2007 [16]
Liu established uncertainty theory for modeling belief degrees and refined it in 2010 [17]
to do so. Then subjective noises may be described by canonical Liu process in the un-
certainty theory. In recent years, more and more systems have been found to have mem-
ory effects such as stock price movement. To investigate systems with memory effects in
the uncertain environment, the conception of uncertain fractional differential equations
(UFDEs) rested on the uncertain theory was introduced in [18]. Furthermore, existence
of their solutions was discussed in [19]. Recently, UFDEs were extended and applied to
European option pricing in [20]. Meanwhile, comparison principles of the fractional dif-
ferential equations were proposed in [21]. Furthermore, a numerical approach for solving
UFDEs was also provided in [22] by the comparison principles in [21]. To our knowledge,
research on the fractional equations in the uncertain environment is just beginning, and
a lot of work needs to be done. So the uncertain fractional difference equations should be
also explored to adjust to the need of theory and applications.

Motivated by the works mentioned above, to develop modeling techniques with dis-
crete fractional calculus, we will define an uncertain fractional forward difference equation
(UFFDE) and present an existence and uniqueness theorem of solutions to UFFDEs. The
rest is arranged as follows: In Sect. 2, some facts in discrete fractional calculus are revis-
ited. In Sect. 3, the fractional sum and difference for uncertain sequences are introduced.
In Sect. 4, UFFDEs for Riemann–Liouville type are defined and the analytic solutions for
a type of the linear UFFDEs for Riemann–Liouville type are obtained. In Sect. 5, an exis-
tence and uniqueness theorem of solutions is stated and verified. In Sect. 6, a conclusion
is drawn.

2 Preliminaries
Some important facts in uncertainty theory, such as uncertainty space, uncertain measure,
uncertain variable, and uncertainty distribution, may be adopted in the following sections.
More details can be found in [16, 17, 19]. This section is concerned with some facts in
fractional order sum. The μth order fractional sum is defined in [8] as

�–μ
s f (t) =

1
Γ (μ)

t–μ∑

l=s

(
t – σ (l)

)(μ–1)f (l),

where μ > 0, s is a real number, f (t) is a real-value function defined on Ns = {s, s + 1, . . .},
�

–μ
s f (t) is defined on Ns+μ, σ (l) = l + 1, t(μ) = Γ (t+1)

Γ (t+1–μ) , and Γ (μ) is the gamma function.
Note that the fractional sum �

–μ
s maps functions whose domains are Ns to functions

whose domains are Ns+μ. In the rest of this paper, the starting point s is generally a real
number.

An important result on the fractional sum operator will be presented.

Lemma 1 ([8]) Let ν ∈ R \ {. . . , –2, –1}, where R represents the set of real numbers, μ > 0,
and t ∈Ns+μ+ν . Then

�–μ
s+ν(t – s)(ν) =

Γ (ν + 1)
Γ (μ + 1 + ν)

(t – s)(μ+ν).
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3 Fractional sum and fractional Riemann–Liouville-like forward difference for
uncertain sequences

In this section, at first, the integer order difference and sum for uncertain sequences will be
given. Then the fractional sum and the fractional Riemann–Liouville-like forward differ-
ence for uncertain sequences will be defined. The properties of the fractional sum operator
for uncertain sequences will be finally obtained.

Definition 1 Let h > 0 and ξt be an uncertain sequence which is actually a series of un-
certain variables indexed by t = s + ih, i ∈ N0. Then

�hξt =
ξt+h – ξt

h

is called first order forward difference of uncertain sequence ξt , where h is a step size, and

�n
hξt := �h

(
�n–1

h ξt
)

is called nth order forward difference of uncertain sequence ξt , where n ≥ 2 is a natural
number.

Definition 2 Let h > 0 and ξt be an uncertain sequence which is a series of uncertain
variables indexed by t = s + jh, j ∈N1. Then

s�
–1
h ξt =

t/h–1∑

l=s/h

ξlhh (1)

is called first order forward sum of uncertain sequence ξt , and

s�
–n
h ξt := s�

–1
h

(
s�

–(n–1)
h ξt

)
(2)

is called nth order forward sum of uncertain sequence ξt , where n ≥ 2 is a natural number.

Lemma 2 The following equality holds:

�h
(

s�
–1
h ξt

)
= ξt .

Proof The equality is easily obtained by Definition 1 and Definition 2. �

According to Eq. (1) and Eq. (2), we can readily obtain the positive integer nth order
forward sum for uncertain sequence ξt as follows:

s�
–n
h ξt =

1
Γ (n)

t/h–n∑

l=s/h

(t – lh – h)(n–1)
h ξlhh, (3)

where

(t – lh – h)(n)
h = (t – lh – h)(t – lh – 2h) · · · (t – lh – nh)
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and (t)(0)
h = 1. Obviously, the right-hand side of formula (3) makes sense for all positive real

number n. Generally, we consider the case with h = 1. So we have a definition of any order
sum of uncertain sequence as follows.

Definition 3 Assume that μ > 0 and ξt is an uncertain sequence. Then

�–μ
s ξt =

1
Γ (μ)

t–μ∑

l=s

(
t – σ (l)

)(μ–1)
ξl

is called μth order forward fractional sum for uncertain sequence ξt , where t ∈Ns+μ, σ (l) =
l + 1.

Definition 4 The fractional Riemann–Liouville-like forward difference for uncertain se-
quence ξt is defined by

�ν
s ξt = �q(�–(q–ν)

s ξt
)
,

where ν > 0 and q – 1 < ν ≤ q, q represents a positive integer.

Lemma 3 Let μ,ν > 0 and ξt be an uncertain sequence. Then we have the following equal-
ities:

�–ν
s+μ

(
�–μ

s ξt
)

= �–(μ+ν)
s ξt = �–μ

s+ν

(
�–ν

s ξt
)
.

Proof According to the definition of fractional sum for uncertain sequences, conclusion
is easy to be verified. �

Lemma 4 For any real number ν > 0, we have

�–ν
s �ξt = ��–ν

s ξt –
(t – s)(ν–1)

Γ (ν)
ξs, (4)

where ξt is an uncertain sequence, and �ξt = ξt+1 – ξt .

Proof By similar derivation to [9], the lemma is easy to be verified. �

4 Uncertain fractional forward difference equation for Riemann–Liouville type
A definition of the UFFDE with Riemann–Liouville type will be exhibited in this section.
The analytic solutions to a class of the linear UFFDEs with Riemann–Liouville type will
be provided along with ones for linear uncertain first order forward difference equations.

Definition 5 A fractional difference equation is called an uncertain fractional difference
equation if it is driven by an uncertain sequence. Further, an uncertain fractional for-
ward difference equation for Riemann–Liouville type is the uncertain fractional difference
equation with Riemann–Liouville-like forward difference.
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We will just explore the solution of the following UFFDE with the initial condition in
this paper:

�
μ
μ–1Y (t) = G

(
t + μ, Y (t + μ)

)
+ H

(
t + μ, Y (t + μ)

)
ξt+μ, (5)

�
μ–1
μ–1Y (t)|t=0 = Y0, (6)

where �
μ
μ–1 denotes fractional Riemann–Liouville-like forward difference, G, H : [0,∞)×

R → R are two functions. t ∈ N0 ∩ [0, T], μ ∈ (0, 1], Y0 is a crisp number, and ξμ, ξμ+1, . . . ,
ξμ+t are t + 1 i.i.d. uncertain variables that have linear uncertainty distribution L(a, b).
A solution of UFFDE (5) with the initial condition (6) is an uncertain sequence Y (t) that
satisfies Eq. (5) uniformly in t.

Note that i.i.d. uncertain variables means that they are independent and have the same
uncertainty distribution. More details can be seen in [17].

Remark 1 According to Definition 3 and Lemma 4, UFFDE (5) is equivalent to the uncer-
tain fractional sum equation

Y (t) =
1

Γ (μ)

t–μ∑

l=0

(
t – σ (l)

)(μ–1)(G
(
l + μ, Y (l + μ)

)
+ H

(
l + μ, Y (l + μ)

)
ξl+μ

)

+
Y0

Γ (μ)
t(μ–1)

for t ∈Nμ ∩ [0, T].

The following special linear UFFDE will be considered in the sequel:

�
μ
μ–1Y (t) = λY (t + μ) + λξt+μ, (7)

�
μ–1
μ–1Y (t)|t=0 = Y0 (8)

for t ∈ N0 ∩ [0, T], where �
μ
μ–1 denotes the fractional Riemann–Liouville-like forward

difference, μ ∈ (0, 1], 0 < λ < 1, ξμ, ξμ+1, . . . , ξμ+t are t + 1 i.i.d. uncertain variables that have
linear uncertainty distribution L(a, b), Y0 is a crisp number.

Theorem 1 UFFDE (7) with the initial value condition (8) has a solution

Y (t) = Y0Fμ,λ(t) + ζt , t ∈Nμ ∩ [0, T] (9)

for 0 < λ < 1, where ζt is an uncertain sequence with the linear uncertainty distribution
L(a · eμ,λ(t), b · eμ,λ(t)), and

Fμ,λ(t) =
∞∑

k=0

λk (t + kμ – 1)((k+1)μ–1)

Γ ((k + 1)μ)
, (10)

and

eμ,λ(t) =
∞∑

k=1

λk (t + (k – 1)μ)(kμ)

Γ (kμ + 1)
. (11)
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Proof The Picard approximation can be adopted to derive the solution. First, apply the
�

–μ
0 = �–μ operator to Eq. (7) to get

�–μ�
μ
μ–1Y (t) = λ�–μY (t + μ) + λ�–μξt+μ, t ∈ Nμ ∩ [0, T]. (12)

Apply Lemma 2, Lemma 3, and Lemma 4 to the left-hand side of Eq. (12) to obtain

�–μ�
μ
μ–1Y (t) = �–μ��

–(1–μ)
μ–1 Y (t)

= ��–μ�
–(1–μ)
μ–1 Y (t) –

t(μ–1)

Γ (μ)
Y0

= ��–1Y (t) –
t(μ–1)

Γ (μ)
Y0

= Y (t) –
t(μ–1)

Γ (μ)
Y0, t ∈Nμ ∩ [0, T].

According to Eq. (12), we have

Y (t) –
t(μ–1)

Γ (μ)
Y0 = λ�–μY (t + μ) + λ�–μξt+μ.

That is, the solution of UFFDE (7) is the solution of the sum equation as follows:

Y (t) =
t(μ–1)

Γ (μ)
Y0 + λ�–μY (t + μ) + λ�–μξt+μ, t ∈Nμ ∩ [0, T]. (13)

Define Y0(t) = t(μ–1)

Γ (μ) Y0 for t ∈Nμ–1 ∩ [0, T] and

Yn(t) =
t(μ–1)

Γ (μ)
Y0 + λ�–μYn–1(t + μ) + λ�–μξt+μ, t ∈Nμ ∩ [0, T], n ∈N0. (14)

Since ξμ, ξμ+1, . . . , ξμ+t are t + 1 i.i.d. uncertain variables, write ξμ+t = ξ in distribution. By
Lemma 1 and the fact (Theorem 1.21 [17]) that the linear combination of finite indepen-
dent linear uncertain variables is a linear uncertain variable with positive linear combina-
tion coefficient, we get

Y1(t) =
t(μ–1)

Γ (μ)
Y0 + λ�–μY0(t + μ – 1) + λ�–μξ

=
t(μ–1)

Γ (μ)
Y0 + λ

(t + μ – 1)(2μ–1)

Γ (2μ)
Y0 + λ

t(μ)

Γ (μ + 1)
ξ ,

Y2(t) =
t(μ–1)

Γ (μ)
Y0 + λ�–μY1(t + μ) + λ�–μξt+μ

=
t(μ–1)

Γ (μ)
Y0 + λ

(t + μ – 1)(2μ–1)

Γ (2μ)
Y0 + λ2 (t + 2μ – 1)(3μ–1)

Γ (3μ)
Y0

+ λ
t(μ)

Γ (μ + 1)
ξ + λ2 (t + μ)(2μ)

Γ (2μ + 1)
ξ ,

...
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Yn(t) =
n∑

k=1

λk (t + (k – 1)μ)(kμ)

Γ (kμ + 1)
ξ +

n∑

k=0

λk (t + kμ – 1)((k+1)μ–1)

Γ ((k + 1)μ)
Y0, t ∈Nμ ∩ [0, T],

...

Since the series

∞∑

k=0

λk (t + (k – 1)μ)(kμ)

Γ (kμ + 1)

and

∞∑

k=0

λk (t + kμ – 1)((k+1)μ–1)

Γ ((k + 1)μ)

are absolutely convergent for |λ| < 1 by the d’Alembert ratio comparison test, the limitation
limn→∞ Yn exists. Write Yn(t) → Ȳ (t) as n → ∞. We have

Ȳ (t) =
∞∑

k=1

λk (t + (k – 1)μ)(kμ)

Γ (kμ + 1)
ξ +

∞∑

k=0

λk (t + kμ – 1)((k+1)μ–1)

Γ ((k + 1)μ)
Y0, t ∈Nμ ∩ [0, T].

Taking limit on both sides of Eq. (14) yields

Ȳ (t) =
t(μ–1)

Γ (μ)
Y0 + λ�–μȲ (t + μ) + λ�–μξt+μ, t ∈Nμ ∩ [0, T], n ∈N0.

That is, Ȳ (t) satisfies Eq. (13). Hence Ȳ (t) is a solution of Eq. (7) with the initial value
condition (8). The proof is completed. �

The following corollary will give the solutions of linear uncertain first order forward
difference equations in light of Theorem 1.

Corollary 1 Uncertain first order forward difference equation

�Y (t) = αY (t + 1) + αξt+1, t ∈N0 ∩ [0, T], (15)

Y (t)|t=0 = Y0 (16)

has a solution

Y (t) = Y0
1

(1 – α)t + ηt , t ∈N1 ∩ [0, T]

for 0 < α < 1, where ηt is an uncertain sequence with linear uncertainty distribution
L( a

(1–α)t – a, b
(1–α)t – b).

Proof Since
∑∞

k=0 αk (t+k–1)(k)

Γ (k+1) = 1
(1–α)t , uncertain first order forward difference equation

(15) with initial value condition (16) has a solution Y (t) = 1
(1–α)t Y0 + η(t) by Theorem

1, where η(t) is an uncertain sequence with linear uncertainty distribution L( a
(1–α)t –

a, b
(1–α)t – b). The conclusion is proved. �
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5 Existence and uniqueness
Analytic solution is provided only for a special linear UFFDE. To find out the conditions
that UFFDEs have solutions, an existence and uniqueness theorem is provided in this sec-
tion.

Theorem 2 (Existence and uniqueness) Assume that G(t, x) and H(t, x) satisfy the Lips-
chitz condition

∣∣G(t, x) – G(t, y)
∣∣ +

∣∣H(t, x) – H(t, y)
∣∣ ≤ L|x – y|, (17)

and there is a positive number L that satisfies the following inequality:

L <
Γ (μ + 1)Γ (T + 1 – μ)

Γ (T + 1)(1 + Q)
, (18)

where Q = |a| ∨ |b|. Then UFFDE (5) with initial value condition (6) has a unique solution
Y (t) for t ∈ Nμ ∩ [0, T] almost surely.

Proof Let lk
μ be the set of all finite real sequences x = {x(t)}k

μ which has k terms with the
norm ‖x‖ = maxt∈Nμ∩[0,T] |x(t)|. It is evident that (lk

μ,‖·‖) is a Banach space. For any Xt , Yt ∈
lk
μ, the operator P is defined as follows:

PXt =
1

Γ (μ)

t–μ∑

l=0

(
t – σ (l)

)(μ–1)(G(l + μ, Xl+μ) + H(l + μ, Xl+μ)ξl+μ

)

+
Y0

Γ (μ)
t(μ–1).

At each time t, since ξt (t ∈ Nμ ∩ [0, T]) is an uncertain variable who has linear uncertainty
distribution L(a, b), we have M{(ξt < a) ∪ (ξt > b)} = 0. For any given γ ∈ Γ \ {(ξt < a) ∪
(ξt > b)}, |ξt(γ )| ≤ Q (Q = |a| ∨ |b|) holds almost surely for t ∈ Nμ ∩ [0, T], where Γ is the
universal set on the uncertainty space. Then

∥∥PXt(γ ) – PYt(γ )
∥∥

= max
t∈Nμ∩[0,T]

∣∣PXt(γ ) – PYt(γ )
∣∣

≤ 1
Γ (μ)

max
t∈Nμ∩[0,T]

t–μ∑

l=0

(
t – σ (l)

)(μ–1)(∣∣G
(
l + μ, Xl+μ(γ )

)
– G

(
l + μ, Yl+μ(γ )

)∣∣

+
∣∣[H

(
l + μ, Xl+μ(γ )

)
– H

(
l + μ, Yl+μ(γ )

)]
ξl+μ(γ )

∣∣)

≤ 1
Γ (μ)

max
t∈Nμ∩[0,T]

t–μ∑

l=0

(
t – σ (l)

)(μ–1)(∣∣G
(
l + μ, Xl+μ(γ )

)
– G

(
l + μ, Yl+μ(γ )

)∣∣

+ Q
∣∣H

(
l + μ, Xl+μ(γ )

)
– H

(
l + μ, Yl+μ(γ )

)∣∣)

≤ L(1 + Q) max
t∈Nμ∩[0,T]

1
Γ (μ)

t–μ∑

l=0

(
t – σ (l)

)(μ–1)∣∣Xl+μ(γ ) – Yl+μ(γ )
∣∣
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≤ L(1 + Q)
∥∥Xt(γ ) – Yt(γ )

∥∥ max
t∈Nμ∩[0,T]

1
Γ (μ)

t–μ∑

l=0

(
t – σ (l)

)(μ–1)

= L(1 + Q)
∥∥Xt(γ ) – Yt(γ )

∥∥ max
t∈Nμ∩[0,T]

�
–μ
0 t(0)

= L(1 + Q)
∥∥Xt(γ ) – Yt(γ )

∥∥ max
t∈Nμ∩[0,T]

1
Γ (μ + 1)

t(μ) (by Lemma 1)

= L(1 + Q)
∥∥Xt(γ ) – Yt(γ )

∥∥ 1
Γ (μ + 1)

max
t∈Nμ∩[0,T]

t(μ)

≤ L(1 + Q)T (μ)

Γ (μ + 1)
∥∥Xt(γ ) – Yt(γ )

∥∥.

When 0 < L < Γ (μ+1)Γ (T+1–μ)
Γ (T+1)(1+Q) , P is a contraction mapping in lk

μ almost surely. Thus we
obtain a unique fixed point Yt(γ ) of P in lk

μ almost surely by the Banach contraction
mapping theorem. Furthermore, Yt(γ ) = limn→∞ Y n

t (γ ), where Y n
t (γ ) = P(Y n–1

t (γ )) for
Y 0

t (γ ) = Y0
Γ (μ) t(μ–1).

For any given t ∈ Nμ ∩ [0, T], as G and H are Lipschitz continuous functions, the oper-
ator P is measurable. Note that Y 0

t (γ ) is an uncertain variable, Y 1
t , Y 2

t , . . . , Y n
t , . . . are un-

certain variables since a real-valued measurable function of uncertain variables is an un-
certain variable by Theorem 1.10 in [17]. Thus Yt = limn→∞ Y n

t is an uncertain variable by
Theorem 3 in [19].

Hence UFFDE (5) with initial value condition (6) has a unique solution Yt for t ∈ Nμ ∩
[0, T] almost surely. �

Here are two examples to illustrate Theorem 2.

Example 1 Consider the following UFFDE:

�
1
2
– 1

2
Y (t) =

sin Y (t + 1
2 )

50 + (t + 1
2 )2

+ ξt+ 1
2

, t ∈N0 ∩ [0, 4], (19)

where ξ 1
2

, ξ 1
2 +1, . . . , ξ 1

2 +4 are 5 i.i.d. uncertain variables with linear uncertainty distribution
L(–1, 2).

It is easy to verify that

∣∣G(t, x) – G(t, y)
∣∣ +

∣∣H(t, x) – H(t, y)
∣∣ ≤ 1

50
|x – y|

and

Γ ( 1
2 + 1)Γ (4 + 1 – 1

2 )
3Γ (4 + 1)

≈ 0.143 >
1

50
.

Then UFFDE (19) has a unique solution almost surely by Theorem 2.

Example 2 Consider the following UFFDE:

�
1
4
– 1

4
X(t) = 0.025X2

(
t +

1
4

)
+ ξt+ 1

4
, t ∈N0 ∩ [0, 3], (20)
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with X0 = 1
2 , where ξ 1

4
, ξ 1

4 +1, ξ 1
4 +2 and ξ 1

4 +3 are 4 i.i.d. uncertain variables with linear uncer-
tainty distribution L(–1, 3).

Since the solution of Eq. (20) is the solution of the following sum equation with X0 = 1
2

X(t) =
t(–0.75)

Γ (0.25)
X0 +

1
Γ (0.25)

t–0.25∑

l=0

(t – l – 1)(–0.75)(0.025X2(l + 0.25) + ξl+0.25
)
,

we have X(t) ∈ [–20, 20]. It is easy to verify that

∣∣G(t, x) – G(t, y)
∣∣ +

∣∣H(t, x) – H(t, y)
∣∣ ≤ 0.025|x – y||x + y| ≤ 0.1|x – y|

for x, y ∈ [–20, 20] and

Γ ( 1
4 + 1)Γ (3 + 1 – 1

4 )
4Γ (3 + 1)

≈ 0.167 > 0.1.

Then UFFDE(20) has a unique solution almost surely by Theorem 2.

6 Conclusions
We mainly give a definition of an UFFDE and analytic solutions to a type of linear UFFDEs.
Furthermore, a Lipschitz condition with an upper bounded constant results in that there
is a unique solution almost surely provided to an UFFDE. Our results pave the way for our
future work that is to explore the stability analysis and applications of UFFDEs.
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