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Abstract
By using an invariant we show in an original and quite unexpected way that a
one-parameter class of nonlinear second-order difference equations is solvable in
closed form, improving and theoretically explaining a recent result in the literature. As
a motivation for this and also for general use of invariants for difference equations in
solvability, we also demonstrate an application of the method of invariants on a very
basic example of linear first-order difference equation with constant coefficients
explaining a frequently confused detail. We also give a general hint how the method
can be applied for the case of difference equations of any order.
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1 Introduction
First, recall that N, N0, Z, R, C stand for natural, nonnegative integer, integer, real and
complex numbers, respectively. If k1, k2 ∈ Z, k1 ≤ k2, the notation j = k1, k2 is the same as
the following one: {j ∈ Z : k1 ≤ j ≤ k2}.

Solvability of difference equations is an old area. Many important eighteenth century
results can be found in [1–7], where first serious results of analytic sort on solvability of
difference equations were obtained.

First nontrivial difference equation which was solved in closed form was the following:

xn + axn–1 + bxn–2 = 0

with a, b ∈R [1–3].
For some influential nineteenth century presentations of the theory of difference equa-

tions, see, for example, [8–10]. Books of the twentieth century usually put aside the solv-
ability of the equations and paid more attention to some other topics; nevertheless, they
contain quite a lot information on solvability (see, for example, [11–18]). For some inter-
esting historical details and comments, see our recent paper [19].

Use of computers, among other things, enhanced some interest in solvable difference
equations, as well as in systems of difference equations. However, a sheer use of them
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without use of any serious mathematical theory causes some problems (some of the prob-
lems were explained, for example, in [20–24]). Knowing explicit formulas for solutions to
difference equations and systems has a great applicable potential (see, for example, [11–14,
25–35] and the related references therein).

Many recent papers on solvability of difference equations and systems use various
changes of variables which transform them to well-known solvable ones, usually linear,
which are the basic classes of practically or theoretically solvable difference equations. For
example, in [20, 21, 36–40] some changes of variables, which in a way can be character-
ized as standard, were used, whereas some more complex changes of variables, as well as
more complex methods, can be found, for example, in [41–45] where some product-type
systems of difference equations were considered (see also the related references therein).

One of the most frequent linear difference equations appearing in solvability is the linear
first-order one, that is,

xn = anxn–1 + bn, n ∈N0, (1)

where (an)n∈N0 , (bn)n∈N0 , and x–1 are real or complex. Some methods for solving equation
(1) can be found, for example, in [11, 12, 15, 16]. Our investigations so far show that equa-
tion (1) essentially occupies the central position in the theory of solvability of difference
equations.

A closely related topic to the solvability of difference equations and systems is finding
invariants for the equations and systems, which is not so popular as the former one. Nev-
ertheless, the topic is no doubt useful in studying of the equations and is also interesting.

For a function I : Rl (or Cl) → R (or C), it is said that it is an invariant for a difference
equation if

I(xn, xn+1, . . . , xn+l–1) = c, (2)

for some constant c and every solution to the equation, on its domain.
Invariants are usually used in establishing some properties of solutions to an equation.

Frequently they are useful in establishing the boundedness of solutions to a difference
equation or a system of difference equations. Many interesting results on the topic can
be found in the following papers by Papaschinopoulos and Schinas: [46–51] (see also the
references therein). However, in some cases they can lead to finding solutions to some
difference equations. Some basic examples of such equations will be given in the next
section.

In [52] the following nonlinear second-order difference equation has been recently in-
vestigated:

xn+1 = xn +
xn

xn – xn–1
(3)

for n ∈ N0, where by a simple inductive argument some formulas for solutions to the dif-
ference equation are verified. However, no theory or explanations how the formulas are
obtained appear there.
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Our main aim is to explain formulas obtained in [52]. We will also extend them for the
case of the following equation:

xn+1 = xn
xn – xn–1 + d

xn – xn–1
, n ∈ N0, (4)

where d, x–1, x0 ∈ C. This will be done in a bit unexpected way, by using an invariant of
equation (4).

For a solution (xn) to a difference equation, we say that it is well-defined if it has defined
finite value for each n which belongs to the domain of the difference equation.

2 An example of using invariants and a hint how to use them
Before we present a proof of our main result, in this section we present, as a motivation and
for benefit of the reader, an application of the method of invariants on a very basic example
of linear first-order difference equation with constant coefficients explaining a frequently
confusing detail. We also give a general hint how to use the method of invariants for the
case of difference equations of any order.

2.1 Linear first-order difference equation with constant coefficients
Here we consider difference equation (1) when the sequences (an)n∈N0 and (bn)n∈N0

are constant, that is, the linear first-order difference equation with constant coeffi-
cients

xn = axn–1 + b, n ∈N0, (5)

where a, b, x–1 ∈C, a �= 0.
Besides the three standard methods for solving difference equation (1) which corre-

spond to the three methods for solving the linear first-order differential equation (see,
e.g., [16]), the special choice of sequences (an)n∈N0 and (bn)n∈N0 enables finding general
solution to the equation also in some other ways. One of the ways is by use of an invariant.
General solution to difference equation (5) in the nontrivial case when a �= 1 (formula (16))
was found for the first time by Lagrange in [5] (see also [53]).

Now we demonstrate how the method of invariants can be used for solving equation
(5) in very detail, which will help to understand the method better. The method is essen-
tially known, but usually scientist are not aware that they use an invariant and do not pay
attention to some details.

Let

I1(xn–1, xn) := xn – axn–1 (6)

for n ∈N0.
Since the following obviously holds

I1(xn–1, xn) = b, n ∈N0, (7)

(6) is an invariant for equation (5).
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An obvious consequence of relation (7) is

I1(xn, xn+1) = I1(xn–1, xn) (8)

for n ∈N0.
Now note that (8) can be written in the following form:

xn – (a + 1)xn–1 + axn–2 = 0, n ∈N, (9)

which is a homogeneous linear second-order difference equation with constant coeffi-
cients, so solvable.

Since in the case a = 1 equation (5) is easily solved, from now on we will assume that
a �= 1.

The characteristic polynomial associated with equation (9) is

p2(λ) = λ2 – (a + 1)λ + a,

from which it follows that

λ1 = 1 and λ2 = a

are the characteristic zeros.
Hence, general solution to equation (9) is

xn = c1 + c2an, n ≥ –1, (10)

where c1 and c2 are arbitrary constants.
To find c1 and c2, it is necessary to solve the linear system

c1 +
c2

a
= x–1, (11)

c1 + c2 = x0, (12)

from which it follows that

c1 =
ax–1 – x0

a – 1
and c2 = a

x0 – x–1

a – 1
. (13)

Using (13) in (10), we have

xn =
ax–1 – x0 + (x0 – x–1)an+1

a – 1
, (14)

which is general solution to equation (9) in terms of parameter a and the initial values x–1

and x0.
Now note that from (5) we have

x0 = ax–1 + b. (15)
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By using (15) in (14), we obtain

xn =
((a – 1)x–1 + b)an+1 – b

a – 1
, n ∈ N0. (16)

The above procedure, although very simple, has many steps. So, at first sight, it is not
quite clear what formula (16) represents, although it is expected that it is general solution
to difference equation (5), which is easily verified by a simple inductive argument.

The confusion is found in the fact that a relation of the form (8) is a consequence of any
relation of the form (7). However, from (8), in general, we cannot conclude that relation
of the form (7) holds. Namely, from (8) we have

I1(xn–1, xn) = I1(x–1, x0) (17)

for n ∈N0.
However, the catch is that in this case I1(x–1, x0) is not only equal to b, but the value of

x0 is not arbitrary (it is specified, see relation (15)).
So, the above procedure is not one-directional, but, in fact, all the steps are equivalent.

More precisely, the initial value problem consisting of equation (5) and initial value x–1 is
equivalent to the initial value problem consisting of equation (9) and initial values x–1 and
the one given in (15).

Remark 1 The above detailed analysis shows that during applications of the method of
invariants for difference equations and systems, it should be tried to transfer a problem to
equivalent one, if possible, or, at least, as long as it is possible. Nevertheless, it is suggested
that the final formulas are always checked by the method of induction for the case (if a
difference equation is complicated, its general solution can be very complicated as it was
the case in several recent papers of ours [20, 40, 41, 43, 44]; we have also found several
papers with wrong formulas for general solutions to difference equations; see, for example,
our comment in [54]).

Remark 2 Obvious consequence of relation (7) appearing in (8) is usually used for the
corresponding invariants for difference equations of any order. Namely, if (2) holds, then
the following relation

I(xn, xn+1, . . . , xn+l–1) = I(xn–1, xn, . . . , xn+l–2) (18)

also holds on the domain of the corresponding difference equation, where l is a fixed nat-
ural number.

Of course, if we know invariants for a difference equation or for a system of difference
equations, then compositions of the invariants with any other function are also invariants,
but the catch is to choose the operative ones, that is, the ones from which we can conclude
something on solutions of the difference equation, which in our case refers to finding a
closed-form formula for general solution to the difference equation or system.
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Remark 3 The above argument can be used to any linear difference equation of the fol-
lowing form

xn = akxn–1 + · · · + a1xn–k + b, n ∈N0, (19)

where coefficients aj, j = 1, k, and b are complex numbers such that a1 �= 0, that is, to non-
homogeneous linear difference equations with constant coefficients whose nonhomoge-
neous part is constant.

Namely, let

I2(xn–k , xn–k+1, . . . , xn) = xn – akxn–1 – · · · – a1xn–k (20)

for n ∈N0.
Since it obviously holds

I2(xn–k , xn–k+1, . . . , xn) = b, n ∈N0, (21)

(20) is an invariant for equation (19).
An obvious consequence of relation (21) is

I2(xn–k , xn–k+1, . . . , xn) = I2(xn–k+1, xn–k+2, . . . , xn+1) (22)

for n ∈N0, which can be written in the following form:

xn+1 – (ak + 1)xn – (ak–1 – ak)xn–1 – · · · – (a1 – a2)xn–k+1 + a1xn = 0 (23)

for n ∈N0.
Now note that difference equation (23) is homogeneous linear with constant coeffi-

cients, but of order k + 1, which is solvable, at least theoretically (equations of order five
and more need not be practically solvable due to the Abel–Ruffini theorem which says
that polynomials of order five or more need not be solvable by radicals [55]).

Remark 4 Let us also note that there is a custom to show solvability of linear second-
order difference equation with constant coefficients prior to showing the solvability of
equation (5). It is also interesting to note that de Moivre essentially knew to solve equation
(9) already at the beginning of the eighteenth century, but the solvability of equation (5)
was discovered several decades later by Lagrange.

3 Main result
Here we show that general solution to difference equation (4) can be found by using the
method of invariants, which, at first sight, is a bit unexpected result. The real background
for the fact has not been thoroughly investigated yet, but let us say that the idea of get-
ting solution in this way essentially stems from the fact that some difference equations
containing quadratic terms have invariants of the form in (20) for fixed k ∈N.
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Before we start with our analysis of solvability of equation (4) by using the method of
invariants, note that if (xn)n≥–1 is an arbitrary well-defined solution to the equation, then
it must be

xn – xn–1 �= 0 (24)

for every n ∈N0, since otherwise if, for some n0 ∈N0, relation (24) does not hold, then the
term xn0+1 is not defined.

Note also that if d = 0, then equation (4) is reduced to the following difference equation:

xn+1 = xn
xn – xn–1

xn – xn–1
(25)

for n ∈N0.
From (25) it follows that, if x0 �= x–1, then x1 = x0, from which we have that x2 is not

defined. This implies that none solution to equation (25) is well-defined.
Hence, from now on we will assume that d �= 0.

3.1 Solving equation (4) by using an invariant
Equation (4) can be written in the following form:

xn+1 = xn +
dxn

xn – xn–1
, n ∈ N0, (26)

from which it follows that for every well-defined solution (xn)n≥–1 to equation (4) we have

(xn+1 – xn)(xn – xn–1) = dxn (27)

for every n ∈N0.
At this point it should be noted that equations (26) and (27) are not equivalent, since, for

example, xn = 0, n ≥ –1, is a solution to equation (27), while it is not a solution to equation
(26).

Let

I(xn–1, xn, xn+1) := (xn+1 – xn)(xn – xn–1) – dxn, n ∈N0. (28)

Then from (27) we see that

I(xn–1, xn, xn+1) = 0, n ∈N0, (29)

that is, it is an invariant for equation (4).
Now we use the idea which is explained in detail in the previous section (see also Re-

mark 2).
Namely, from (29), we have

I(xn–1, xn, xn+1) = I(xn–2, xn–1, xn), n ∈N, (30)
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that is,

(xn+1 – xn)(xn – xn–1) – dxn = (xn – xn–1)(xn–1 – xn–2) – dxn–1 (31)

for every n ∈N.
From (31) it easily follows that

(xn – xn–1)(xn+1 – xn – xn–1 + xn–2 – d) (32)

for n ∈N.
From (24) and (32), it follows that every well-defined solution to equation (4) satisfies

the following difference equation:

xn+1 – xn – xn–1 + xn–2 = d (33)

for n ∈N.
The characteristic polynomial associated with equation (33) is

p3(λ) = λ3 – λ2 – λ + 1 = (λ – 1)
(
λ2 – 1

)
, (34)

from which it follows that the characteristic roots are

λ1 = λ2 = 1, λ3 = –1. (35)

Hence, the general solution to the corresponding linear homogeneous difference equa-
tion

xn+1 – xn – xn–1 + xn–2 = 0

is given by

xh
n = c1n + c2 + c3(–1)n (36)

for n ≥ –1.
Bearing in mind that 1 is a double zero of the characteristic polynomial (34), a particular

solution to equation (33) is searched for in the following form:

xp
n = cn2 (37)

for n ≥ –1.
Substituting (37) in equation (33) we have that it must be

c
(
(n + 1)2 – n2 – (n – 1)2 + (n – 2)2) = d,

so that

c =
d
4

. (38)
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From (37) and (38) it follows that

xp
n =

d
4

n2 (39)

for n ≥ –1.
From (36), (39) and by a well-known theorem on the structure of solutions to nonho-

mogeneous linear difference equations (see, e.g., [12, 14–16]), we have that the general
solution to equation (33) is given by

xn = c1n + c2 + c3(–1)n +
d
4

n2 (40)

for n ≥ –1.
Now we find constants c1, c2, and c3 in terms of the initial values x–1 and x0. Before this,

note that from (4) with n = 0 it follows that

x1 = x0
x0 – x–1 + d

x0 – x–1
. (41)

Using (40) for n = –1, 0, 1, respectively, we get

–c1 + c2 – c3 = x–1 –
d
4

,

c2 + c3 = x0, (42)

c1 + c2 – c3 = x1 –
d
4

.

By adding the first and third equation of system (42) and dividing such obtained equality
by 2, we get

c2 – c3 =
x–1 + x1

2
–

d
4

. (43)

From the second equation in (42) and (43), we similarly get

c2 =
1
2

(
x0 +

x–1 + x1

2
–

d
4

)
, (44)

c3 =
1
2

(
x0 –

x–1 + x1

2
+

d
4

)
, (45)

whereas from the first equation in (42) and (43), we obtain

c1 =
x–1 + x1

2
–

d
4

– x–1 +
d
4

=
x1 – x–1

2
. (46)

Using (44)–(46) in (40), we have

xn =
x1 – x–1

2
n +

4x0 + 2x–1 + 2x1 – d
8

+
4x0 – 2x–1 – 2x1 + d

8
(–1)n +

d
4

n2 (47)

for n ≥ –1.
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Finally, using (41) in (47), after some calculation we obtain

xn =
(

x0 – x–1 +
dx0

x0 – x–1

)
n
2

+
1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

+
(

2x0 – 2x–1 –
2 dx0

x0 – x–1
+ d

)
(–1)n

8
+

d
4

n2 (48)

for n ≥ –1.
The sequence defined in (48) is a candidate for general solution to equation (4). However,

since relations (29) and (30), in general, need not be equivalent, and as we have already
noticed equations (26) and (27) are not equivalent, we have to check that the sequence is
a solution to equation (4).

Let

x̃n :=
(

x0 – x–1 +
dx0

x0 – x–1

)
n
2

+
1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

+
(

2x0 – 2x–1 –
2 dx0

x0 – x–1
+ d

)
(–1)n

8
+

d
4

n2 (49)

for n ≥ –1.
A simple calculation shows that, for n = –1 and n = 0, we have

x̃–1 = –
1
2

(
x0 – x–1 +

dx0

x0 – x–1

)
+

1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

–
1
8

(
2x0 – 2x–1 –

2 dx0

x0 – x–1
+ d

)
+

d
4

= x–1 (50)

and

x̃0 =
1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

+
1
8

(
2x0 – 2x–1 –

2 dx0

x0 – x–1
+ d

)
= x0. (51)

From (49) we have

x̃2n–1 :=
(

x0 – x–1 +
dx0

x0 – x–1

)(
n –

1
2

)
+

1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

–
1
8

(
2x0 – 2x–1 –

2 dx0

x0 – x–1
+ d

)
+ d

(
n –

1
2

)2

= x–1 + n
(

x0 – x–1 +
dx–1

x0 – x–1

)
+ dn2 (52)

and

x̃2n :=
(

x0 – x–1 +
dx0

x0 – x–1

)
n +

1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

+
1
8

(
2x0 – 2x–1 –

2 dx0

x0 – x–1
+ d

)
+ dn2
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= x0 + n
(

x0 – x–1 +
dx0

x0 – x–1

)
+ dn2 (53)

for n ≥ –1.
Using (52) and (53), we have

x̃2n

(
1 +

d
x̃2n – x̃2n–1

)

=
(

x0 + n
(

x0 – x–1 +
dx0

x0 – x–1

)
+ dn2

)(
1 +

d
x0 – x–1 + nd

)

= (x0 – x–1 + nd)
(

x0

x0 – x–1
+ n

)(
x0 – x–1 + (n + 1) d

x0 – x–1 + nd

)

=
(

x0

x0 – x–1
+ n

)
(
x0 – x–1 + (n + 1)d

)

= x–1 + (n + 1)
(

x0 – x–1 +
dx–1

x0 – x–1

)
+ d(n + 1)2

= x̃2n+1. (54)

Using (53) and (54), we have

x̃2n+1

(
1 +

d
x̃2n+1 – x̃2n

)

=
(

x–1 + (n + 1)
(

x0 – x–1 +
dx–1

x0 – x–1

)
+ d(n + 1)2

)(
1 +

d
dx–1

x0–x–1
+ (n + 1)d

)

=
(

x–1

x0 – x–1
+ n + 1

)
(
x0 – x–1 + d(n + 1)

)
( x–1

x0–x–1
+ n + 2

x–1
x0–x–1

+ n + 1

)

=
(
x0 – x–1 + d(n + 1)

)
(

x–1

x0 – x–1
+ n + 2

)

= x0 + (n + 1)
(

x0 – x–1 +
dx0

x0 – x–1

)
+ d(n + 1)2

= x̃2n+2. (55)

From (54) and (55) it follows that the sequence (̃xn)n≥–1 is a solution to equation (4),
which by (50) matches with the solution with initial values x–1 and x0. Hence, formula
(48) really presents general solution to equation (4).

From all the above mentioned results it is easy to see that the following result holds.

Theorem 1 Consider difference equation (4). Then the following statements hold.
(a) A solution (xn)n≥–1 of difference equation (4) is well-defined if and only if x–1 �= x0.
(b) If d = 0, then none solution to difference equation (4) is well-defined.
(c) If d �= 0, then the general solution to equation (4) is given by the following formula:

xn =
(

x0 – x–1 +
dx0

x0 – x–1

)
n
2

+
1
8

(
6x0 + 2x–1 +

2 dx0

x0 – x–1
– d

)

+
(

2x0 – 2x–1 –
2 dx0

x0 – x–1
+ d

)
(–1)n

8
+

d
4

n2 for n ≥ –1.
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