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Abstract
In this work, we investigate the result of dissipative analysis for Takagi–Sugeno fuzzy
Markovian jumping neural networks with impulsive perturbations via delay partition
approach. By using the Lyapunov–Krasovskii functional and delay partition approach,
we derive a set of delay-dependent sufficient criteria for obtaining the required
results. Furthermore, we restate the obtained sufficient conditions in the form of
linear matrix inequalities (LMIs), which can be checked by the standard MATLAB LMI
tool box. The main advantage of this work is reduced conservatism, which is mainly
based on the delay partition approach. Finally, we provide numerical examples with
simulations to demonstrate the applicability of the proposed method.
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1 Introduction
In the last twenty years, neural networks have received increasing consideration because
of their applications in various fields such as signal processing, pattern recognition, op-
timization problems, associative memories, and so on [1, 9, 30, 31, 42, 43]. In particular,
the stability theory of neural networks has become an important topic in both theory and
practice, since stability is one of the major problems related to neural network dynamic be-
haviors. Besides, time-delays are frequently encountered in hardware implementation of
neural networks, since time-delays are the source of generation of instability and poor per-
formance. Hence the stability analysis of neural networks with time delay have obtained
remarkable consideration in recent years [12, 35, 42, 43].

In practice, most of the neural networks are represented by nonlinear models, so it is
important and necessary to design an appropriate neural network approach for nonlinear
systems. In this relation, the Takagi–Sugeno (T–S) fuzzy model can provide an effective
approach for complex nonlinear systems in terms of fuzzy sets and linear input–output
variables [21, 24]. The main advantage of this T–S fuzzy model is easy to analyze and
design linear systems to nonlinear systems. Thus, many authors extended the T–S fuzzy
models to describe different types of neural networks with time delays to establish the
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stability of the concerned network models [5, 25]. Very recently, Shen et al. [27] obtained
an asynchronous state estimation for fuzzy Markovian jumping neural networks with un-
certain measurements in a finite time interval. Based on the Lyapunov stability theory
and Wirtinger-based integral inequality, sufficient conditions were constructed in [4] to
ensure that the state estimation error system is robustly stable along with a guaranteed
dissipative performance of T–S fuzzy neural networks.

On the other side, Markovian jump systems (MJSs), as a certain class of switched sys-
tems consisting of an indexed family of subsystems and a set of Markovian chains, have
received increasing attention [18, 19]. Due to the presence of sudden variation, random
component failures, and abrupt environment changes in dynamic systems, by MJSs we
can model aircraft control, solar receiver control, manufacturing systems, networked con-
trol systems, power systems, and other practical systems [15, 26, 32]. During the past few
years, MJSs have been used to various disciplines of science and engineering fields, and a
great number of results have been obtained in [2, 3, 10, 12, 13, 29]. Based on a general-
ized double integral inequality, dissipativity conditions were proposed under the consid-
eration of free-matrix-based integral inequality and Finsler’s lemma approach in [12]. In
[13] the authors studied the problem of passivity and dissipativity analysis of Markovian
jump neural networks including two types of additive time-varying delays. In [29] the re-
sults on dissipativity-based Markovian jump neural networks are established using some
generalized integral inequalities. Stability analysis of neural models with Markovian jump
limitations and delay constants are derived using reciprocally convex approach in [3].

On the other hand, dissipativity is an important concept of dynamical systems, which
is closely related with the intuitive phenomenon of loss or dissipation of energy. More-
over, dissipativity theory gives a framework for the control design and stability analysis
of practical control systems under an input–output energy-related consideration. Based
on the framework of dissipativity, many problems were investigated for continuous-time
neural networks [12, 13, 23, 35, 37, 41] and discrete-time neural networks [17], but there
appeared a few works based on the dissipativity concept of T–S fuzzy neural networks
[11, 14]. Also, it is well known that impulsive effects are used to express the dynamical
models in many areas such as medicine, biology, economics, and telecommunications.
Roughly speaking, the states of neural networks often undergo rapid disruption and sud-
den changes at certain moments of time, which leads to impulsive effects. Thus impulses
should be taken into account while studying the dissipativity of neural networks and the
corresponding issues studied in the literature [20, 22, 44]. However, up to now, the results
of dissipativity analysis of Markovian jumping T–S fuzzy neural networks together with
impulsive effects have not yet been reported, which is still an open challenge. All this mo-
tivated us to consider a new set of dissipative conditions for fuzzy Markovian jumping
neural networks with impulsive control via delay partitioning approach.

The main contributions of this paper are summarized as follows:
(i) Uncertain parameters, Markovian jumping, nonlinearities, time-delay, dissipative

conditions and impulsive perturbations are considered in the framework of stability
analysis and designing Takagi–Sugeno fuzzy neural networks.

(ii) By employing a proper Lyapunov–Krasovskii functional the asymptotic stability of
addressed neural networks is checked via some less conservative stability
conditions.
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(iii) Some novel uncertain parameters are initially handled in the Lyapunov–Krasovskii
functional, which ensures sufficient conditions for asymptotic stability of designed
neural networks.

(iv) The importance of the proposed algorithm is illustrated by numerical examples.

2 Problem formulation
Let {r(t), t ≥ 0} be a right-continuous Markovian process taking values in the finite space
S = {1, 2, . . . , s} with generator Γ = (πij) (i, j ∈ S) given by

Pr
{

r(t + �t) = j | r(t) = i
}

=

⎧
⎨

⎩
πij�t + o(�t), i �= j,

1 + πii�t + o(�t), i = j,

where �t ≥ 0, lim�t→0(o(�t)/�t) = 0, πij ≥ 0 for j �= i is the transition rate from mode i to
mode j at time t + �t, and πii = –

∑N
j=1,j �=i πij.

Consider the neural networks of Markovian jumping parameters with mixed interval
time-varying delays of the following form:

v̇i(t) = –ai
(
r(t)

)
vi(t) +

n∑

i=1

w1ij
(
r(t)

)
fi
(
vi(t)

)
+

n∑

i=1

w2ij
(
r(t)

)
fi
(
vi
(
t – τ (t)

))

+
n∑

i=1

w3ij
(
r(t)

)∫ t

t–d(t)
fi
(
v(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
vi(t)

)
,

v(tk) = Ik
(
r(t)

)(
v
(
t–
k
))

, t = tk , k ∈ Z+,

(1)

where i = 1, 2, . . . , n, vi(t) is the state of the ith neuron, ai(r(t)) > 0 denotes the rate with
which the cell i resets its potential to the resting states when isolated from the other
cells and inputs, w1ij(r(t)), w2ij(r(t)) and w3ij(r(t)) are the connection weights at the time t,
u(t) = [u1(t), u2(t), . . . , un(t)]T is the external input, y(t) = [y1(t), y2(t), . . . , yn(t)] is the out-
put, Ik(r(t))(·) is a constant real matrix at the time moments tk , and fi(·) stands for the
signal function of the ith neuron. In addition, we suppose that the discrete delay τ (t) and
distributed delay d(t) satisfy

0 ≤ τ1 ≤ τ (t) < τ2, ˙τ (t) ≤ μ1, 0 ≤ d(t) ≤ d, ˙d(t) ≤ μ2, (2)

where τ1, τ2, d, μ1, μ2 are constants. We consider system (1) together with the initial
condition v(s) = ψ(s), s ∈ [– max{τ2, d}, 0].

Then we rewrite model (1) as

v̇(t) = –A
(
r(t)

)
v(t) + W1

(
r(t)

)
f
(
v(t)

)
+ W2

(
r(t)

)
f
(
v
(
t – τ (t)

))

+ W3
(
r(t)

)∫ t

t–d(t)
f
(
v(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
v(t)

)
,

v(tk) = Ik
(
r(t)

)(
v
(
t–
k
))

, t = tk , k ∈ Z+,

(3)
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where v(t) = [v1(t), v2(t), . . . , vn(t)]T , A = diag(a1(r(t)), . . . , an(r(t))), W1 = (w1ij(r(t)))m×n,
W2 = (w2ij(r(t)))m×n, W3 = (w3ij(r(t)))m×n, and f (·) = (f1(·), f2(·), . . . , fn(·))T .

Let v∗ = (v∗
1, v∗

2, . . . , v∗
n) be the equilibrium points of system (3). We can obtain from (3)

that in terms of the transformations x(·) = v(·) – v∗ and f (x(t)) = f (x(t) + v∗) – f (v∗), system
(3) can be written as

ẋ(t) = –A
(
r(t)

)
x(t) + W1

(
r(t)

)
f
(
x(t)

)
+ W2

(
r(t)

)
f
(
x
(
t – τ (t)

))

+ W3
(
r(t)

)∫ t

t–d(t)
f
(
x(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
,

x(tk) = Ik
(
r(t)

)(
x
(
t–
k
))

, t = tk , k ∈ Z+,

(4)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T , f (·) = (f1(·), f2(·), . . . , fn(·))T .
Further, we express the Markovian jumping neural network with impulsive control by a

T–S fuzzy model. We represent the ith rule of this T–S fuzzy model in the following form:

IF v1(t) is Mi1, v2(t) is Mi2, . . . , vj(t) is Mij THEN

ẋ(t) = –Ai
(
r(t)

)
x(t) + W1i

(
r(t)

)
f
(
x(t)

)
+ W2i

(
r(t)

)
f
(
x
(
t – τ (t)

))

+ W3i
(
r(t)

)∫ t

t–d(t)
f
(
x(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
,

x(tk) = Ik
(
r(t)

)(
x
(
t–
k
))

, t = tk , k ∈ Z+, i = 1, 2, . . . , r,

(5)

where Mij are fuzzy sets, (v1(t), v2(t), . . . , vj(t))T represents the premise variable vector, x(t)
denotes the state variable, and r is the number of IF–THEN rules. It is known that system
(5) has a unique global solution on t ≥ 0 with initial values ψx ∈ C([– max{τ2, d}, 0];Rn).
For convenience, r(t) = i, where i ∈ s, and in the upcoming discussion, we represent the
system matrices associated together with the ith mode by Ai(r(t)) = Ai, W1i(r(t)) = W1i,
W2i(r(t)) = W2i, W3i(r(t)) = W3i.

Then the state equation is as follows:

ẋ(t) =
r∑

i=1

λi
(
v(t)

){
–Aix(t) + W1if

(
x(t)

)
+ W2if

(
x
(
t – τ (t)

))

+ W3i

∫ t

t–d(t)
f
(
x(s)

)
ds + u(t)

}
, t > 0, t �= tk ,

y(t) = f
(
x(t)

)
,

x(tk) = Ik
(
x
(
t–
k
))

, t = tk , k ∈ Z+, i = 1, 2, . . . , r,

(6)

where λi(v(t)) = βi(v(t))∑r
i=1 βi(v(t)) , βi(v(t)) =

∏p
j=1 Mij(vj(t)), and Mij(·) is the degree of the

membership function of Mij. Further, we assume that βi(v(t)) ≥ 0, i = 1, 2, . . . , r, and
∑r

i=1 βi(v(t)) > 0 for all v(t). Therefore λi(v(t)) satisfy λi(v(t)) ≥ 0, i = 1, . . . , r, and
∑r

i=1 λi(v(t)) = 1 for any v(t).
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Based on the previous simple transformation, we can equivalently rewrite model (6) as
follows:

ẋ(t) = –Aix(t) + W1if
(
x(t)

)
+ W2if

(
x
(
t – τ (t)

))

+ W3i

∫ t

t–d(t)
f
(
x(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
,

x(tk) = Ik
(
x
(
t–
k
))

, t = tk , k ∈ Z+, i = 1, 2, . . . , r.

(7)

The following assumptions are needed to prove the required result.

Assumption (H1) ([9]) For all j ∈ 1, 2, . . . , n, fj(0) = 0, and there exist constants F–
j and F+

j
such that

F–
j ≤ fj(α1) – fj(α2)

α1 – α2
≤ F+

j (8)

for all α1,α2 ∈ R and α1 �= α2.

Assumption (H2) The impulsive times tk satisfy 0 = t0 < t1 < · · · < tk → ∞ and infk∈Z+{tk –
tk–1} > 0.

The energy function E associated with system (7) is represented by

E(u, y, T) = 〈y,Qy〉T + 2〈y,Su〉T + 〈u,Ru〉T , (9)

where

〈y, u〉T =
∫ T

0
yT u dt, T ≥ 0.

The following definitions and lemmas are needed to prove our results.

Definition 1 Given some value ϑ > 0, real constant matrices Q = QT and R = RT , and
a matrix S , the considered model (7) is (Q,S ,R)–ϑ-dissipative for any T ≥ 0. Under the
zero initial condition, the following condition is holds:

E(u, y, T) ≥ ϑ〈u, u〉T . (10)

Definition 2 The proposed neural network model (7) is called passive if there exists a
scalar γ ≥ 0 such that the following inequality holds for all tf ≥ 0 under the zero initial
condition:

2
[∫ tf

0
yT (s)u(s) ds

]
≥ –γ

[∫ tf

0
uT (s)u(s) ds

]
. (11)

Lemma 2.1 ([7]) For any vectors τ (t) ≥ 0 and positive-definite matrix Q ∈ Rn×n, we have
the following inequalities:

–
∫ t

t–τ (t)
ẋT (s)Qẋ(s) ds ≤ τ (t)ζ T (t)MQ–1MTζ (t) + 2ζ T (t)M

[
x(t) – x

(
t – τ (t)

)]
,
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–
∫ t–τ (t)

t–τ

ẋT (s)Qẋ(s) ds ≤ (
τ – τ (t)

)
ζ T (t)NQ–1NTζ (t)

+ 2ζ T (t)N
[
x
(
t – τ (t)

)
– x(t – τ )

]
,

where M and N are free weighting matrices of appropriate dimensions, and

ζ (t) =
[

xT (t) xT (t – τ1) xT
(

t –
τa

N

)
xT

(
t – 2

τa

N

)
· · · xT

(
t – (N – 1)

τa

N

)

xT (t – τa) xT(t – τ (t)
)

xT
(

t –
τ2

N

)
xT

(
t – 2

τ2

N

)
· · ·

xT
(

t – (N – 1)
τ2

N

)
xT (t – τ2) ẋT (t) f T(x(t)

)
f T(x

(
t – τ (t)

))

∫ t

t–τ2

xT (s) ds
∫ t–τ1

t–τ2

xT (s) ds
∫ t

t–τ2

f T(x(s)
)

ds
∫ t–τ1

t–τ2

f T(x(s)
)

ds

∫ t

t–d(t)
f T(x(s)

)
ds xT(t – d(t)

)
uT (t)

]T

.

3 Main results
In this section, we establish a dissipativity condition for fuzzy impulsive Markovian jump-
ing neural networks (7) with both discrete and distributed time delays. Under a Lyapunov
functional and delay fractionizing approach, in the following theorem, we provide a new
set of novel delay-dependent dissipative conditions with impulsive perturbations. For pre-
sentation convenience, we denote

F1 = diag
(
F–

1 F+
1 , F–

2 F+
2 , . . . , F–

n F+
n
)
, F2 = diag

(
F–

1 + F+
1

2
,

F–
2 + F+

2
2

, . . . ,
F–

n + F+
n

2

)
,

F3 = diag
(
F–

1 , F–
2 , . . . , F–

n
)
, F4 = diag

(
F+

1 , F+
2 , . . . , F+

n
)
.

Theorem 3.1 Under Assumptions (H1) and (H2), for given scalars τ1, τ2, d, μ1, and μ2,
the neural network described by (7) is strictly (Q,S ,R)–ϑ-dissipative if there exist positive
definite matrices P1i, Pi (i = 2, . . . , 4), Q, R, Si (i = 1, 2, . . . , 7), Ti (i = 1, 2), positive diagonal
matrices U1, U2, and matrices O, Li, Mi, Vi (i = 1, 2) of appropriate dimensions such that
the following LMIs hold:

IT
ikP1jIik – P1i < 0, (12)
⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδM

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (13)

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδV

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (14)
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and

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N
...

...
. . .

...
∗ ∗ QN–1,N–1 QN–1,N

∗ ∗ ∗ QNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

R =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R11 R12 · · · R1N

∗ R22 · · · R2N
...

...
. . .

...
∗ ∗ RN–1,N–1 RN–1,N

∗ ∗ ∗ RNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

where

Φ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15 0 Φ17 Φ18 0 0 0 0 0
∗ Φ22 Φ23 0 0 F2U2 0 0 0 0 0 0 0
∗ ∗ Φ33 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φ44 OW 1ij OW 2ij 0 0 0 0 OW 3ij 0 O
∗ ∗ ∗ ∗ Φ55 0 0 0 0 0 0 0 –S
∗ ∗ ∗ ∗ ∗ –U2 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –T1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –T2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S5 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S6 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S7 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –(1 – μ2)P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ γ I – R

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ1 LT
2 Q12 – L1 Q13 · · · Q1N V1

∗ P3 – P2 – S4 –L2 0 · · · 0 V2
∗ ∗ Q22 – Q11 Q23 – Q12 · · · Q2N – Q1,N–1 –Q1N
∗ ∗ ∗ Q33 – Q22 · · · Q3N – Q2,N–1 –Q2N
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · QNN – QN–1,N–1 –QN–1,N
∗ ∗ ∗ ∗ · · · ∗ –QNN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ33 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R22 – R11 R23 – R12 · · · R2N – R1,N–1 –R1N

∗ R33 – R22 · · · R3N – R2,N–1 –R2N
...

...
. . .

...
...

∗ ∗ · · · RNN – RN–1,N–1 –RN–1,N

∗ ∗ · · · ∗ –RNN – S3 – S4

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ13 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

R12 R13 · · · R1N –M1 + S3

0 0 · · · 0 –M2

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,
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Φ1 = P2 + P4 + Q11 + L1 + LT
1 + R11 – S3 – τ 2

2 T1 + τ 2
12T2 – F1U1 +

N∑

j=1

πijP1j,

Φ12 =
[

(–V1 + M1)T (–V2 + M2 + S4)T 0 0 · · · 0 0
]T

,

Φ22 = –(1 – μ1)P3 – 2S4 – F1U2,

Φ23 =
[

0 0 · · · 0 S4

]
,

Φ14 =
[

(P1i – AT
ij OT )T 0 0 0 · · · 0 0

]T
,

Φ44 =
τa

N
S1 + τδS2 + τ 2

2 S3 + τ 2
12S4 +

τ 4
2
4

T1 + τ 2
s T2 – O – OT ,

Φ15 =
[

(F2U1 0 0 0 · · · 0 0
]T

,

Φ55 = τ 2
2 S5 + τ 2

12S6 + d2S7 – U1 – Q,

Φ17 =
[
τ2TT

1 0 0 0 · · · 0 0
]T

,

Φ18 =
[
τ12TT

2 0 0 0 · · · 0 0
]T

,

L =
[
LT

1 LT
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

M =
[
MT

1 MT
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

V =
[
V T

1 V T
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

τa =
(τ1 + τ2)

2
, τδ =

(τ2 – τ1)
2

, τ12 = τ2 – τ1, τs =
1
2
(
τ 2

2 – τ 2
1
)
.

Proof To obtain dissipativity criteria for the fuzzy Markovian jumping impulsive neural
networks (7), we examine the Lyapunov–Krasovskii functional

V
(
t, x(t), i

)
= V1

(
t, x(t), i

)
+ V2

(
t, x(t), i

)
+ V3

(
t, x(t), i

)
+ V4

(
t, x(t), i

)

+ V5
(
t, x(t), i

)
+ V6

(
t, x(t), i

)
, (15)

where

V1
(
t, x(t), i

)
= xT (t)P1ix(t) +

∫ t

t–τ1

xT (s)P2x(s) ds +
∫ t–τ1

t–τ (t)
xT (s)P3x(s) ds

+
∫ t

t–d(t)
xT (s)P4x(s) ds,

V2
(
t, x(t), i

)
=
∫ t

t– τa
N

ξT
1 (s)Qξ1(s) ds +

∫ t

t– τ2
N

ξT
2 (s)Rξ2(s) ds,

V3
(
t, x(t), i

)
=
∫ 0

– τa
N

∫ t

t+θ

ẋT (s)S1ẋ(s) ds dθ +
∫ –τa

–τ2

∫ t

t+θ

ẋT (s)S2ẋ(s) ds dθ ,

V4
(
t, x(t), i

)
= τ2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)S3ẋ(s) ds dθ + τ12

∫ –τ1

–τ2

∫ t

t+θ

ẋT (s)S4ẋ(s) ds dθ ,
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V5
(
t, x(t), i

)
= τ2

∫ 0

–τ2

∫ t

t+θ

f T(x(s)
)
S5f

(
x(s)

)
ds dθ

+ τ12

∫ –τ1

–τ2

∫ t

t+θ

f T(x(s)
)
S6f

(
x(s)

)
ds dθ

+ d
∫ 0

–d

∫ t

t+θ

f T(x(s)
)
S7f

(
x(s)

)
ds dθ ,

V6
(
t, x(t), i

)
=

τ 2
2
2

∫ 0

–τ2

∫ 0

θ

∫ t

t+λ

ẋT (s)T1ẋ(s) ds dλdθ

+ τs

∫ –τ1

–τ2

∫ 0

θ

∫ t

t+λ

ẋT (s)T2ẋ(s) ds dλdθ

with

ξ1(t) =
[
xT (t) xT (t – τa

N ) · · · xT (t – (N – 1) τa
N )

]T
,

ξ2(t) =
[
xT (t) xT (t – τ2

N ) · · · xT (t – (N – 1) τ2
N )

]T
.

For t = tk , we have

V1
(
tk , x(t), j

)
– V1

(
t–
k , x(t), i

)
= xT (tk)P1jx(tk) – xT(t–

k
)
P1ix

(
t–
k
)

= xT(t–
k
)
IT

ikP1jIikx
(
t–
k
)

– xT(t–
k
)
P1ix

(
t–
k
)

= xT(t–
k
)[

IT
ikP1jIik – P1i

]
x
(
t–
k
)
. (16)

Based on the assumptions and conditions, we know that Iik is a constant matrix at the
moment tk and in the mode i for i ∈ S, k ∈ N . So

V1
(
tk , x(t), j

)
– V1

(
t–
k , x(t), i

)
< 0. (17)

For t ∈ [tk–1, tk], by (17) we obtain that the weak infinitesimal generator LV (t, x(t), i) sat-
isfies

LV1
(
t, x(t), i

)

= 2xT (t)P1iẋ(t) + xT (t)[P2 + P4]x(t) + xT (t – τ1)(P3 – P2)x(t – τ1)

–
(
1 – τ̇ (t)

)
xT(t – τ (t)

)
P3x

(
t – τ (t)

)
–
(
1 – ḋ(t)

)
xT(t – d(t)

)
P4x

(
t – d(t)

)

+
N∑

j=1

πijxT (t)P1jx(t),

≤ 2xT (t)P1iẋ(t) + xT (t)[P2 + P4]x(t) + xT (t – τ1)(P3 – P2)x(t – τ1)

– (1 – μ1)xT(t – τ (t)
)
P3x

(
t – τ (t)

)
– (1 – μ2)xT(t – d(t)

)
P4x

(
t – d(t)

)

+
N∑

j=1

πijxT (t)P1jx(t), (18)
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LV2
(
t, x(t), i

)
= ξT

1 (t)Qξ1(t) – ξT
1

(
t –

τa

N

)
Qξ1

(
t –

τa

N

)

+ ξT
2 (t)Rξ2(t) – ξT

2

(
t –

τ2

N

)
Rξ2

(
t –

τ2

N

)
, (19)

LV3
(
t, x(t), i

)
=

τa

N
ẋT (t)S1ẋ(t) + (τ2 – τa)ẋT (t)S2ẋ(t)

–
∫ t

t– τa
N

ẋT (s)S1ẋ(s) ds –
∫ t–τa

t–τ2

ẋT (s)S2ẋ(s) ds, (20)

LV4
(
t, x(t), i

)
= τ 2

2 ẋT (t)S3ẋ(t) – τ2

∫ t

t–τ2

ẋT (s)S3ẋ(s) ds + τ 2
12ẋT (t)S4ẋ(t)

– τ12

∫ t–τ1

t–τ2

ẋT (s)S4ẋ(s) ds, (21)

LV5
(
t, x(t), i

)
= f T(x(t)

)[
τ 2

2 S5 + τ 2
12S6 + d2S7

]
f
(
x(t)

)
– τ2

∫ t

t–τ2

f T(x(s)
)
S5f

(
x(s)

)
ds

– τ12

∫ t–τ1

t–τ2

f T(x(s)
)
S6f

(
x(s)

)
ds – d

∫ t

t–d(t)
f T(x(s)

)
S7f

(
x(s)

)
ds, (22)

LV6
(
t, x(t), i

)
=

τ 4
2
4

ẋT (t)T1ẋ(t) –
τ 2

2
2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)T1ẋ(s) ds dθ

+ τ 2
s ẋT (t)T2ẋ(t) – τs

∫ –τ1

–τ2

∫ t

t+θ

ẋT (s)T2ẋ(s) ds dθ . (23)

Note that

–
∫ t–τa

t–τ2

ẋT (s)S2ẋ(s) ds = –
∫ t–τ (t)

t–τ2

ẋT (s)S2ẋ(s) ds –
∫ t–τa

t–τ (t)
ẋT (s)S2ẋ(s) ds.

Using Lemma 2.1, we obtain

–
∫ t

t– τa
N

ẋT (s)S1ẋ(s) ds ≤ τa

N
ζ T (t)LS–1

1 LTζ (t) + 2ζ T (t)L
[

x(t) – x
(

t –
τa

N

)]
, (24)

–
∫ t–τa

t–τ (t)
ẋT (s)S2ẋ(s) ds ≤ (

τ (t) – τa
)
ζ T (t)VS–1

2 V Tζ (t)

+ 2ζ T (t)V
[
x(t – τa) – x

(
t – τ (t)

)]
, (25)

–
∫ t–τ (t)

t–τ2

ẋT (s)S2ẋ(s) ds ≤ (
τ2 – τ (t)

)
ζ T (t)MS–1

2 MTζ (t)

+ 2ζ T (t)M
[
x
(
t – τ (t)

)
– x(t – τ2)

]
. (26)

Applying the lemma in [8] and the Newton–Leibniz formula

∫ t

t–τ2

ẋ(s) ds = x(t) – x(t – τ2),
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we have

–τ2

∫ t

t–τ2

ẋT (s)S3ẋ(s) ds ≤ –
[∫ t

t–τ2

ẋ(s) ds
]T

S3

[∫ t

t–τ2

ẋ(s) ds
]

≤ –
[
x(t) – x(t – τ2)

]T S3
[
x(t) – x(t – τ2)

]
. (27)

Note that

∫ t–τ1

t–τ2

ẋT (s)S4ẋ(s) ds =
∫ t–τ (t)

t–τ2

ẋT (s)S4ẋ(s) ds +
∫ t–τ1

t–τ (t)
ẋT (s)S4ẋ(s) ds.

The lemma in [6] gives

[
τ2 – τ (t)

] ∫ t–τ (t)

t–τ2

ẋT (s)S4ẋ(s) ds ≥
[∫ t–τ (t)

t–τ2

ẋ(s) ds
]T

S4

[∫ t–τ (t)

t–τ2

ẋ(s) ds
]

≥ [
x
(
t – τ (t)

)
– x(t – τ2)

]T S4
[
x
(
t – τ (t)

)
– x(t – τ2)

]
.

Since τ2 – τ (t) ≤ τ2 – τ1, we have

[τ2 – τ1]
∫ t–τ (t)

t–τ2

ẋT (s)S4ẋ(s) ds ≥ [
x
(
t – τ (t)

)
– x(t – τ2)

]T S4
[
x
(
t – τ (t)

)
– x(t – τ2)

]
,

and thus

– [τ2 – τ1]
∫ t–τ (t)

t–τ2

ẋT (s)S4ẋ(s) ds

≤ –
[
x
(
t – τ (t)

)
– x(t – τ2)

]T S4
[
x
(
t – τ (t)

)
– x(t – τ2)

]
. (28)

Similarly, we have

– [τ2 – τ1]
∫ t–τ1

t–τ (t)
ẋT (s)S4ẋ(s) ds

≤ –
[
x(t – τ1) – x

(
t – τ (t)

)]T S4
[
x(t – τ1) – x

(
t – τ (t)

)]
(29)

and

–τ2

∫ t

t–τ2

f T(x(s)
)
S5f

(
x(s)

)
ds ≤ –

(∫ t

t–τ2

f
(
x(s)

)
ds
)T

× S5

(∫ t

t–τ2

f
(
x(s)

)
ds
)

, (30)

–τ12

∫ t–τ1

t–τ2

f T(x(s)
)
S6f

(
x(s)

)
ds ≤ –

(∫ t–τ1

t–τ2

f
(
x(s)

)
ds
)T

× S6

(∫ t–τ1

t–τ2

f
(
x(s)

)
ds
)

, (31)
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–d
∫ t

t–d(t)
f T(x(s)

)
S7f

(
x(s)

)
ds ≤ –

(∫ t

t–d(t)
f
(
x(s)

)
ds
)T

× S7

(∫ t

t–d(t)
f
(
x(s)

)
ds
)

, (32)

–
τ 2

2
2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)T1ẋ(s) ds dθ ≤ –
(∫ 0

–τ2

∫ t

t+θ

ẋ(s) ds dθ

)T

× T1

(∫ 0

–τ2

∫ t

t+θ

ẋ(s) ds dθ

)

≤ –
(

τ2x(t) –
∫ t

t–τ2

x(s) ds
)T

× T1

(
τ2x(t) –

∫ t

t–τ2

x(s) ds
)

, (33)

–τs

∫ –τ1

–τ2

∫ t

t+θ

ẋT (s)T2ẋ(s) ds dθ ≤ –
(∫ –τ1

–τ2

∫ t

t+θ

ẋ(s) ds dθ

)T

× T2

(∫ –τ1

–τ2

∫ t

t+θ

ẋ(s) ds dθ

)

≤ –
(

τ12x(t) –
∫ t–τ1

t–τ2

x(s) ds
)T

× T2

(
τ12x(t) –

∫ t–τ1

t–τ2

x(s) ds
)

. (34)

For positive diagonal matrices U1 and U2, it follows from Assumption (H1) that

0 ≤
[

x(t)
f (x(t))

]T [
–F1U1 F2U1

F2U1 –U1

][
x(t)

f (x(t))

]

, (35)

0 ≤
[

x(t – τ (t))
f (x(t – τ (t)))

]T [
–F1U2 F2U2

F2U2 –U2

][
x(t – τ (t))

f (x(t – τ (t)))

]

. (36)

On the other side, for any matrix O of appropriate dimensions, from system (7) we have

2ẋT (t)O ×
[

–Aijx(t) + W1ijf
(
x(t)

)
+ W2ijf

(
x
(
t – τ (t)

))

+ W3ij

∫ t

t–d(t)
f
(
x(s)

)
ds + u(t) – ẋ(t)

]
= 0. (37)

Combining (18)–(37), we can obtain

LV
(
t, x(t), i

)
+ ϑuT (t)u(t) – yT (t)Qy(t) – 2yT (t)Su(t) – uT (t)Ru(t)

≤ ζ T (t)
{
Φ +

τa

N
LS–1

1 LT +
(
τ2 – τ (t)

)
MS–1

2 MT +
(
τ (t) – τa

)
VS–1

2 V T
}
ζ (t). (38)

By the conditions of Theorem 3.1, if ζ (t) �= 0, then we have

LV
(
t, x(t), i

)
< 0. (39)
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For t ∈ [tk–1, tk], in view of (16) and (39), we have

V
(
tk , x(t), j

)
< V

(
t–
k , x(t), i

)
< V

(
tk–1, x(t), i

)
. (40)

By a similar proof and mathematical induction we can ensure that (40) is true for all i, j,
r(0) = i0 ∈ S, k ∈ N :

V
(
tk , x(t), j

)
< V

(
t–
k , x(t), i

)
< V

(
tk , x(t), i

)
< · · · < V

(
t0, x(t), i0

)
. (41)

It follows from (38) that

LV
(
t, x(t), i

)
+ ϑuT (t)u(t) – yT (t)Qy(t) – 2yT (t)Su(t) – uT (t)Ru(t)

≤ ζ T (t)
{
Φ +

τa

N
LS–1

1 LT +
(
τ2 – τ (t)

)
MS–1

2 MT +
(
τ (t) – τa

)
VS–1

2 V T
}
ζ (t). (42)

Let

Π = Φ +
τa

N
LS–1

1 LT +
(
τ2 – τ (t)

)
MS–1

2 MT +
(
τ (t) – τa

)
VS–1

2 V T . (43)

Then, applying the lemma in [8] to (43), we obtain the following inequalities:

Φ +
τa

N
LS–1

1 LT + (τ2 – τa)MS–1
2 MT < 0, (44)

Φ +
τa

N
LS–1

1 LT + (τ2 – τa)VS–1
2 V T < 0. (45)

Using Schur complements on (44)–(45), we obtain the LMIs of Theorem 3.1. Since Φi < 0,
we easily get

yT (t)Qy(t) + 2yT (t)Su(t) + uT (t)Ru(t) > LV
(
t, x(t), i

)
+ ϑuT (t)u(t). (46)

Integrating this inequality from 0 to T and using the zero initial conditions, we get

E(y, u, T) ≥ ϑ〈u, u〉T + V (T) – V (0) ≥ ϑ〈u, u〉T (47)

for all T ≥ 0. Hence, if condition (11) holds, then the proposed model (7) is (Q,S ,R)–ϑ-
dissipative in the sense of Definition 1. �

Remark 1 The LKF V3(t, x(t), i) plays a important role in reducing the conservativity
of time-varying delay system, whereas in the derivative of V̇3(t, x(t), i), the cross terms
–
∫ t

t– τa
N

ẋT (s)S1ẋ(s) ds, –
∫ t–τa

t–τ (t) ẋT (s)S2ẋ(s) ds, and –
∫ t–τ (t)

t–τ2
ẋT (s)S2ẋ(s) ds are defined as fol-

lows:

–
∫ t

t– τa
N

ẋT (s)S1ẋ(s) ds ≤ τa

N
ζ T (t)LS–1

1 LTζ (t) + 2ζ T (t)L
[

x(t) – x
(

t –
τa

N

)]
,

–
∫ t–τa

t–τ (t)
ẋT (s)S2ẋ(s) ds

≤ (
τ (t) – τa

)
ζ T (t)VS–1

2 V Tζ (t) + 2ζ T (t)V
[
x(t – τa) – x

(
t – τ (t)

)]
,
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–
∫ t–τ (t)

t–τ2

ẋT (s)S2ẋ(s) ds

≤ (
τ2 – τ (t)

)
ζ T (t)MS–1

2 MTζ (t) + 2ζ T (t)M
[
x
(
t – τ (t)

)
– x(t – τ2)

]
.

Finally, to reduce the conservatism of the constructed dissipativity conditions, the convex-
ity of the matrix function for cross term is applied. This treatment involved in our paper
is different from the approaches used in [12, 35, 37, 41] and may ensure a better feasible
region for dissipativity conditions. Thus, using a tighter bounding of the time derivative
of LKF and a low number of slack variables, the considered dissipativity condition is less
conservative than that in [12, 35, 37, 41].

Remark 2 Very recently, many researchers endeavor to focus on how to reduce conser-
vatism of dissipativity condition for neural network delay systems. A free-matrix-based
integral inequality technique is constructed by using a set of slack variables, which can be
solved via convex optimization algorithms [37]. Therefore, some improved dissipativity
criteria for delayed neural networks are investigated in [35, 41] using the LKF approach. In
[12] the authors developed the Wirtinger double integral inequality, which was used to an-
alyze the dissipativity behavior of continuous-time neural networks involving Markovian
jumping parameters under Finsler’s lemma approach. Using a delay fractioning approach,
the designed dissipativity condition is much less conservative than those in the existing
works, and the derived results can ensure the dissipativity of the proposed delayed neural
networks. Hence the delay-partitioning method is widely applied and exposes the poten-
tial of reducing the conservatism. However, to the best of authors’ knowledge, dissipativity
analysis of fuzzy Markovian jumping neural network with discrete and distributed time
varying delays and impulses has not been investigated yet, and it shows the effectiveness
of our developed methods.

Remark 3 Consider the Markovian jumping neural network without fuzzy and impulsive
effects of the following form:

ẋ(t) = –Aix(t) + W1if
(
x(t)

)
+ W2if

(
x
(
t – τ (t)

))

+ W3i

∫ t

t–d(t)
f
(
x(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
.

(48)

Due to Theorem 3.1, we obtain a corollary for the dissipativity analysis of Markovian
jumping neural networks (48).

Corollary 3.2 Under Assumption (H1) and given scalars τ1, τ2, d, μ1, and μ2, the neural
network model (48) is strictly (Q,S ,R)–ϑ-dissipative if there exist positive definite matri-
ces P1i, Pi (i = 2, . . . , 4), Q, R, Si (i = 1, 2, . . . , 7), Ti (i = 1, 2), positive diagonal matrices U1,
U2, and matrices O, Li, Mi, Vi (i = 1, 2) of appropriate dimensions such that the following
LMIs hold:

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδM

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (49)
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⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδV

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0. (50)

Proof The proof is similar to that of Theorem 3.1 and therefore is omitted. �

Remark 4 When Markovian jumping parameters are not taken, that is, the Markov chain
{r(t), t ≥ 0} only takes a unique value 1 (i.e., S = 1), then system (48) becomes the following
neural network model:

ẋ(t) = –Ax(t) + W1f
(
x(t)

)
+ W2f

(
x
(
t – τ (t)

))

+ W3

∫ t

t–d(t)
f
(
x(s)

)
ds + u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
.

(51)

For system (51), we obtain the following corollary by Theorem 3.1 and Corollary 3.2.

Corollary 3.3 Based on Assumption (H1) and given scalars τ1, τ2, d, μ1, and μ2, the neural
network (51) is strictly (Q,S ,R)–ϑ-dissipative if there exist positive definite matrices P1,
Pi (i = 2, . . . , 4), Q, R, Si (i = 1, 2, . . . , 7), Ti (i = 1, 2), positive diagonal matrices U1, U2, and
matrices O, Li, Mi, Vi (i = 1, 2) of appropriate dimensions such that the following LMIs
hold:

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδM

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (52)

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδV

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (53)

and

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N
...

...
. . .

...
∗ ∗ QN–1,N–1 QN–1,N

∗ ∗ ∗ QNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

R =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R11 R12 · · · R1N

∗ R22 · · · R2N
...

...
. . .

...
∗ ∗ RN–1,N–1 RN–1,N

∗ ∗ ∗ RNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,
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where

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15 0 Φ17 Φ18 0 0 0 0 0
∗ Φ22 Φ23 0 0 F2U2 0 0 0 0 0 0 0
∗ ∗ Φ33 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φ44 OW 1 OW 2 0 0 0 0 OW 3 0 O
∗ ∗ ∗ ∗ Φ55 0 0 0 0 0 0 0 –S
∗ ∗ ∗ ∗ ∗ –U2 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –T1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –T2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S5 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S6 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S7 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –(1 – μ2)P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ γ I – R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

,

Φ11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ1 LT
2 Q12 – L1 Q13 · · · Q1N V1

∗ P3 – P2 – S4 –L2 0 · · · 0 V2
∗ ∗ Q22 – Q11 Q23 – Q12 · · · Q2N – Q1,N–1 –Q1N
∗ ∗ ∗ Q33 – Q22 · · · Q3N – Q2,N–1 –Q2N
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · QNN – QN–1,N–1 –QN–1,N
∗ ∗ ∗ ∗ · · · ∗ –QNN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ33 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R22 – R11 R23 – R12 · · · R2N – R1,N–1 –R1N

∗ R33 – R22 · · · R3N – R2,N–1 –R2N
...

...
. . .

...
...

∗ ∗ · · · RNN – RN–1,N–1 –RN–1,N

∗ ∗ · · · ∗ –RNN – S3 – S4

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ13 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

R12 R13 · · · R1N –M1 + S3

0 0 · · · 0 –M2

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ1 = P2 + P4 + Q11 + L1 + LT
1 + R11 – S3 – τ 2

2 T1 + τ 2
12T2 – F1U1,

Φ12 =
[

(–V1 + M1)T (–V2 + M2 + S4)T 0 0 · · · 0 0
]T

,

Φ22 = –(1 – μ1)P3 – 2S4 – F1U2,

Φ23 =
[

0 0 · · · 0 S4

]
,

Φ14 =
[

(P1 – AT OT )T 0 0 0 · · · 0 0
]T

,

Φ44 =
τa

N
S1 + τδS2 + τ 2

2 S3 + τ 2
12S4 +

τ 4
2
4

T1 + τ 2
s T2 – O – OT ,

Φ15 =
[

(F2U1 0 0 0 · · · 0 0
]T

,

Φ55 = τ 2
2 S5 + τ 2

12S6 + d2S7 – U1 – Q,

Φ17 =
[
τ2TT

1 0 0 0 · · · 0 0
]T

,
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Φ18 =
[
τ12TT

2 0 0 0 · · · 0 0
]T

,

L =
[
LT

1 LT
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

M =
[
MT

1 MT
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

V =
[
V T

1 V T
2 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0

]T
,

τa =
(τ1 + τ2)

2
, τδ =

(τ2 – τ1)
2

, τ12 = τ2 – τ1, τs =
1
2
(
τ 2

2 – τ 2
1
)
.

Proof To prove the dissipativity criteria for the recurrent neural networks (51), we define
the following Lyapunov–Krasovskii functional:

V
(
t, x(t)

)
= V1

(
t, x(t)

)
+ V2

(
t, x(t)

)
+ V3

(
t, x(t)

)
+ V4

(
t, x(t)

)

+ V5
(
t, x(t)

)
+ V6

(
t, x(t)

)
, (54)

where

V1
(
t, x(t)

)
= xT (t)P1x(t) +

∫ t

t–τ1

xT (s)P2x(s) ds +
∫ t–τ1

t–τ (t)
xT (s)P3x(s) ds

+
∫ t

t–d(t)
xT (s)P4x(s) ds,

V2
(
t, x(t)

)
=
∫ t

t– τa
N

ξT
1 (s)Qξ1(s) ds +

∫ t

t– τ2
N

ξT
2 (s)Rξ2(s) ds,

V3
(
t, x(t)

)
=
∫ 0

– τa
N

∫ t

t+θ

ẋT (s)S1ẋ(s) ds dθ +
∫ –τa

–τ2

∫ t

t+θ

ẋT (s)S2ẋ(s) ds dθ ,

V4
(
t, x(t)

)
= τ2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)S3ẋ(s) ds dθ + τ12

∫ –τ1

–τ2

∫ t

t+θ

ẋT (s)S4ẋ(s) ds dθ ,

V5
(
t, x(t)

)
= τ2

∫ 0

–τ2

∫ t

t+θ

f T(x(s)
)
S5f

(
x(s)

)
ds dθ + τ12

∫ –τ1

–τ2

∫ t

t+θ

f T(x(s)
)
S6f

(
x(s)

)
ds dθ

+ d
∫ 0

–d

∫ t

t+θ

f T(x(s)
)
S7f

(
x(s)

)
ds dθ ,

V6
(
t, x(t)

)
=

τ 2
2
2

∫ 0

–τ2

∫ 0

θ

∫ t

t+λ

ẋT (s)T1ẋ(s) ds dλdθ

+ τs

∫ –τ1

–τ2

∫ 0

θ

∫ t

t+λ

ẋT (s)T2ẋ(s) ds dλdθ .

Then, using the same proof as in Theorem 3.1, we get the result. �

Remark 5 If the distributed delay is not considered in system (51), then the recurrent
neural network is rewritten as

ẋ(t) = –Ax(t) + W1f
(
x(t)

)
+ W2f

(
x
(
t – τ (t)

))
+ u(t), t > 0, t �= tk ,

y(t) = f
(
x(t)

)
.

(55)
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The dissipative condition of delayed neural network (55) is constructed as follows.

Corollary 3.4 Under Assumption (H1) and given scalars τ1, τ2, and μ1, the neural network
(55) is (Q,S ,R)–ϑ-dissipative if there exist positive definite matrices P1, Pi (i = 2, . . . , 3),
Q, R, Si (i = 1, 2, . . . , 6), Ti (i = 1, 2), positive diagonal matrices U1, U2, and matrices O, Li,
Mi, Vi (i = 1, 2) of appropriate dimensions such that the following LMIs hold:

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδM

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (56)

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδV

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (57)

and

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N
...

...
. . .

...
∗ ∗ QN–1,N–1 QN–1,N

∗ ∗ ∗ QNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

R =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R11 R12 · · · R1N

∗ R22 · · · R2N
...

...
. . .

...
∗ ∗ RN–1,N–1 RN–1,N

∗ ∗ ∗ RNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

where

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15 0 Φ17 Φ18 0 0 0
∗ Φ22 Φ23 0 0 F2U2 0 0 0 0 0
∗ ∗ Φ33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φ44 OW 1 OW 2 0 0 0 0 O
∗ ∗ ∗ ∗ Φ55 0 0 0 0 0 –S
∗ ∗ ∗ ∗ ∗ –U2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –T1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –T2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S5 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ γ I – R

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Φ1 = P2 + Q11 + L1 + LT
1 + R11 – S3 – τ 2

2 T1 + τ 2
12T2 – F1U1,

Φ55 = τ 2
2 S5 + τ 2

12S6 – U1 – Q,

and the other elements are as in Corollary 3.3.
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Proof This proof is similar to that of Corollary 3.3 and therefore is omitted. �

Remark 6 As a particular case of dissipativity, we get passivity criteria for system (55) by
taking Q = 0, S = I , and R = 2γ I in Corollary 3.4. The following corollary can obtained
from Corollary 3.4 and describes the passivity conditions for system (55).

Corollary 3.5 Under Assumption (H1) and given scalars τ1, τ2, and μ1, the neural net-
work (55) is passive if there exist positive definite matrices P1, Pi (i = 2, . . . , 3), Q, R, Si

(i = 1, 2, . . . , 6), Ti (i = 1, 2), positive diagonal matrices U1, U2, and matrices O, Li, Mi, Vi

(i = 1, 2) of appropriate dimensions such that the following LMIs hold:

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδM

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (58)

⎡

⎢⎢
⎣

Φ
√

τa
N L √

τδV

∗ –S1 0
∗ ∗ –S2

⎤

⎥⎥
⎦ < 0, (59)

and

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Q11 Q12 · · · Q1N

∗ Q22 · · · Q2N
...

...
. . .

...
∗ ∗ QN–1,N–1 QN–1,N

∗ ∗ ∗ QNN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

≥ 0,

R =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

R11 R12 · · · R1N

∗ R22 · · · R2N
...

...
. . .

...
∗ ∗ RN–1,N–1 RN–1,N

∗ ∗ ∗ RNN

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

≥ 0,

where

Φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15 0 Φ17 Φ18 0 0 0
∗ Φ22 Φ23 0 0 F2U2 0 0 0 0 0
∗ ∗ Φ33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φ44 OW 1 OW 2 0 0 0 0 O
∗ ∗ ∗ ∗ Φ55 0 0 0 0 0 –I
∗ ∗ ∗ ∗ ∗ –U2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –T1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –T2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S5 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –S6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –γ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,
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Φ1 = P2 + Q11 + L1 + LT
1 + R11 – S3 – τ 2

2 T1 + τ 2
12T2 – F1U1,

Φ55 = τ 2
2 S5 + τ 2

12S6 – U1.

Proof The proof directly follows from Corollary 3.4. �

4 Numerical examples
In this section, we analyze several numerical examples to exploit the effectiveness of the
proposed methods.

Example 1 Consider the fuzzy impulsive neural network (7) with two-mode Markovian
jumping process with the following parameters:

Mode 1:

A11 =

[
2 0
0 2

]

, A21 =

[
2.3 0
0 2.3

]

, W111 =

[
0.40 0.12
0.22 0.72

]

,

W121 =

[
0.53 0.10
0.21 0.73

]

, W211 =

[
0.6 0.5
0.2 0.1

]

, W221 =

[
0.71 0.41
0.21 0.11

]

,

W311 =

[
–0.3 0.1
0.1 0.2

]

, W321 =

[
–0.31 0.11
0.11 0.12

]

.

Mode 2:

A12 =

[
2.5 0
0 2.5

]

, A22 =

[
2.15 0

0 2.15

]

, W112 =

[
0.4 0.15
0.1 0.5

]

,

W122 =

[
0.48 0.17
0.12 0.3

]

, W212 =

[
0.6 0.4
0.1 0.15

]

, W222 =

[
0.65 0.35
0.12 0.14

]

,

W312 =

[
–0.3 0.2
0.3 0.1

]

, W322 =

[
–0.15 0.21
0.15 0.12

]

.

We choose

Q =

[
4 0
0 4

]

, S =

[
0.3 0
0.2 1

]

, R =

[
3 0.
0 3

]

, Ik =

[
0.3 0
0 0.3

]

.

We consider the activation functions f1(x) = f2(x) = tanh(x). Assumption (H1) is satisfied
with F–

1 = 0, F+
1 = 1, F–

2 = 0, and F+
2 = 1. Thus

F1 =

[
0 0
0 0

]

, F2 =

[
0.5 0
0 0.5

]

.

Let r(t) be a right-continuous Markov chain taking values in S = {1, 2} with generator π =
[ –7 7

5 –5], and let the membership functions for rules 1 and 2 be μ1(θ (t)) = sin2(x1 – 0.5)
and μ2(θ (t)) = cos2(x1 – 0.5). Then via the Matlab LMI control toolbox, for N = 2, we can
see that the LMIs given in Theorem 3.1 are feasible. Thus we observe from Theorem 3.1
that the neural network (7) subject to leakage delays and impulsive effect is dissipative.
The simulation results for the state responses of system (7) with two Markovian jumping
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Figure 1 Simulation results of the T–S fuzzy Markovian jumping neural networks

Figure 2 Mode transitions r(t)

Table 1 Maximum upper bound for delays τ2 = d with different μ (μ1 =μ2)

Theorem 3.1

μ = 0 μ = 0.25 μ = 0.5 μ = 0.75 μ = 0.8 μ = 0.9

τ1 = 0.1 0.4864 0.4531 0.4091 0.3336 0.3117 0.2363
τ1 = 0.2 0.4931 0.4552 0.4298 0.3534 0.3312 0.2823
τ1 = 0.3 0.5013 0.4685 0.4362 0.3827 0.3564 0.3495
τ1 = 0.4 0.5052 0.4852 0.4431 0.4316 0.4206 0.4062
τ1 = 0.5 0.5074 0.5044 0.4835 0.4416 0.4301 0.4189

modes (i = 1, 2) are given in Fig. 1. Also, Fig. 2 illustrates the mode transition rates. In
Table 1, we mention the maximum allowable upper bound for delays τ2 = d with different
values of μ1, μ2.

Example 2 Consider the Markovian jumping neural network (48) with parameters

A1 =

[
2.1 0
0 2.3

]

, A2 =

[
2.2 0
0 2.3

]

, W11 =

[
0.3 0.6
0.2 0.4

]

,
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Table 2 Maximum upper bound of τ2 = d when μ1 = 0.5, μ2 = 0.1

τ1: 0 0.3 0.5 0.8 0.9 1.5
0.9044 0.8422 0.7512 0.7468 0.7215 0.7136

Table 3 Allowable upper bound of τ2 and d for different τ1 and μ (μ1 =μ2)

τ1 μ = 0.1 μ = 0.3 μ = 0.5 μ = 0.7 μ = 0.9

τ1 = 0 τ2 = 0.5806 τ2 = 0.5369 τ2 = 0.5324 τ2 = 0.5296 τ2 = 0.5294
d = 0.5264 d = 0.5036 d = 0.5031 d = 0.5028 d = 0.5025

τ1 = 0.2 τ2 = 0.6049 τ2 = 0.5687 τ2 = 0.5538 τ2 = 0.5525 τ2 = 0.5506
d = 0.6588 d = 0.6459 d = 0.6426 d = 0.6415 d = 0.6412

τ1 = 0.4 τ2 = 0.7834 τ2 = 0.7426 τ2 = 0.7354 τ2 = 0.7328 τ2 = 0.7321
d = 0.6744 d = 0.6703 d = 0.6693 d = 0.6685 d = 0.6680

W12 =

[
0.3 –0.1
0.2 0.5

]

, W21 =

[
0.2 0.7
0.4 0.3

]

, W22 =

[
0.1 0.8

–0.6 1.1

]

,

W31 =

[
0.4 –0.4
0.2 0.6

]

, W32 =

[
0.3 0.2

–0.5 0.4

]

, Q =

[
–1 0
0 –1

]

,

S =

[
1 0
1 1

]

, R =

[
2 0.
0 2

]

, π =

[
–2 2
3 –3

]

,

and the activation function f1(x) = f2(x) = tanh(x). Choosing N = 2, μ1 = 0.5, and μ2 = 0.1
and using Matlab LMI toolbox and Corollary 3.2, we obtained the maximum allowable
upper bound of τ2 and d for various values of τ1 listed in Table 2. This implies that the
Markovian jumping neural network (48) is dissipative in the sense of Definition 1.

Example 3 Consider the neural network (51) with the following parameters:

A =

[
4 0
0 3

]

, W1 =

[
3.2 –0.4
–4 3.6

]

, W2 =

[
–2.2 –1.2
–1.2 –4

]

,

W3 =

[
1 –0.4

0.6 –1

]

, Q =

[
–0.1 0

0 –0.3

]

, S =

[
5 0
0 6

]

,

R =

[
0.6 0.4
2.1 –0.3

]

, f1(x) = f2(x) = tanh(x).

For this neural network, we would like to have the dissipativity for the allowable maxi-
mum time delay value of τ2 and d for different values of μ and given τ1. We can see from
Table 3 that the condition presented in Corollary 3.3 still ensures the dissipativity of this
model. The results in [12, 35, 37, 41] are not applicable to this system as the time-varying
distributed delay is involved in this system.

Example 4 Consider the neural networks (55) with the following coefficient matrices:

A =

[
2 0
0 1.5

]

, W1 =

[
1.2 1

–0.2 0.3

]

, W2 =

[
0.8 0.4

–0.2 0.1

]

,
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Table 4 Optimal dissipativity performance γ for different μ1

μ1

0.2 0.4 0.6 0.8 1

[35] 1.6740 1.5871 1.4500 1.2802 1.2461
[41] 1.7186 1.7183 1.7180 1.7176 1.7174
[37] 1.8570 1.8566 1.8561 1.8559 1.8558
[12] 1.9281 1.9138 1.9065 1.8759 1.8613
Corollary 3.4 [N = 2] 2.2436 2.2374 2.2269 2.1865 2.1754

Table 5 Maximum upper bound of τ2 for different values of μ1 (Example 5)

Methods μ1 = 0 μ1 = 0.5 μ1 = 0.7

[39] 0.4528 0.3638 0.3575
[36] 0.6837 0.5285 0.4377
[42] 0.7340 0.6834 0.6355
[25] 0.8541 0.7438 0.6821
Corollary 3.5 [N = 2] 1.1284 1.0236 0.9532

Q =

[
–0.9 0

0 –0.9

]

, S =

[
0.5 0
0.3 1

]

, R =

[
2 0
0 2

]

.

Here we choose F–
1 = –0.1, F+

1 = 0.9, F–
2 = –0.1, and F+

2 = 0.9. Thus

F1 =

[
–0.9 0

0 –0.9

]

, F2 =

[
0.4 0
0 0.4

]

.

We assume that τ1 = 0 and τ2 = 0.4 for different values of μ1. The optimum dissipativity
performances γ are calculated by the methods in Corollary 3.4 and are listed in Table 4.
We can observe that our considered dissipativity condition provides a less conservative
result in comparison to the existing works [12, 35, 37, 41].

Example 5 Consider the neural networks (55) with the following parameters:

A =

[
1.4 0
0 1.5

]

, W1 =

[
1.2 1

–1.2 1.3

]

, W2 =

[
–0.2 0.5
0.3 –0.8

]

.

Moreover, the activation function is chosen as gi(xi) = 0.5(|xi + 1| – |xi – 1|), i = 1, 2. The
allowable upper bounds of τ2 when τ1 = 0 for various values of μ1 obtained by Corollary 3.5
are listed in Table 5. We easily see that the obtained passivity-based results in our work
are more general than the others [25, 36, 39, 42].

Example 6 Consider the neural networks (55), with the following parameters:

A =

[
2.2 0
0 1.8

]

, W1 =

[
1.2 1

–0.2 0.3

]

, W2 =

[
0.8 0.4

–0.2 0.1

]

,

F–
1 = F–

2 = 0, and F+
1 = F+

2 = 1. For different values of μ1, the allowable upper bounds of τ2

when τ1 = 0 computed by Corollary 3.5 and with the results presented in [16, 35, 37, 38,
40, 41] are listed in Table 6.
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Table 6 Maximum upper bound of τ2 for different values of μ1 (Example 6)

μ1

0.5 0.9 ≥1

[38] 1.4693 1.4243 1.4240
[35] 1.8450 1.7647 1.7313
[41] 2.2058 2.0366 2.000
[40] 3.0430 2.8428 2.8036
[37] 3.2019 3.0620 3.0612
[16] 3.4092 3.1568 3.1243
Corollary 3.5 [N = 2] 3.8564 3.5586 3.5024

Table 7 Maximum upper bound of τ2 for different values of μ1 (Example 7)

Methods μ1 = 0.4 μ1 = 0.45 μ1 = 0.50 μ1 = 0.55

[30] 3.9972 3.2760 3.0594 2.9814
[33] 4.3814 3.6008 3.3377 3.2350
[34] 5.2420 4.4301 4.1055 3.9231
[28] 5.4036 4.6017 4.3121 4.1582
[13] 6.1305 5.8231 5.6357 5.3208
Corollary 3.5 [N = 2] 8.6421 7.7543 7.4216 7.1754

Example 7 Consider the neural networks (55) with the following parameters studied in
[13, 28, 30, 33, 34].

A =

[
1.5 0
0 0.7

]

, W1 =

[
0.0503 0.0454
0.0987 0.2075

]

, W2 =

[
0.2381 0.9320
0.0388 0.5062

]

,

f1(x) = 0.3 tanh(x), f2(x) = 0.8 tanh(x), F–
1 = F–

2 = 0, F+
1 = 0.3, and F+

2 = 0.8. By using Corol-
lary 3.5 and solving MATLAB LMI tool box the corresponding results for the maximum
allowable upper bounds of τ2 for different values of μ1 when τ1 = 0 are computed and
listed in Table 7. We can observe from Table 7 that the passivity condition proposed in
this paper provides less conservative results than the others [13, 28, 30, 33, 34].

5 Conclusion
In this paper, we have studied the problem of dissipative conditions for Takagi–Sugeno
fuzzy Markovian jumping neural networks with impulsive perturbations using the delay
partition method. By constructing a proper LKF and LMI approach together with delay
fractioning approach, we have established a set of sufficient conditions ensuring that the
considered fuzzy Markovian neural networks are (Q,S ,R)–ϑ-dissipative. Finally, several
numerical examples are given to illustrate the effectiveness of the proposed dissipative
theory. Moreover, our results show that the developed method yields less conservative re-
sults than some other works. Furthermore, the problem of finite-time extended dissipative
conditions for stochastic T–S fuzzy singular Markovian jump systems with randomly oc-
curring uncertainties and time delay using the delay portioning approach is an untreated
work and will be the topic of our future work.
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