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1 Introduction

In the last twenty years, neural networks have received increasing consideration because
of their applications in various fields such as signal processing, pattern recognition, op-
timization problems, associative memories, and so on [1, 9, 30, 31, 42, 43]. In particular,
the stability theory of neural networks has become an important topic in both theory and
practice, since stability is one of the major problems related to neural network dynamic be-
haviors. Besides, time-delays are frequently encountered in hardware implementation of
neural networks, since time-delays are the source of generation of instability and poor per-
formance. Hence the stability analysis of neural networks with time delay have obtained
remarkable consideration in recent years [12, 35, 42, 43].

In practice, most of the neural networks are represented by nonlinear models, so it is
important and necessary to design an appropriate neural network approach for nonlinear
systems. In this relation, the Takagi—Sugeno (T-S) fuzzy model can provide an effective
approach for complex nonlinear systems in terms of fuzzy sets and linear input—output
variables [21, 24]. The main advantage of this T-S fuzzy model is easy to analyze and
design linear systems to nonlinear systems. Thus, many authors extended the T-S fuzzy
models to describe different types of neural networks with time delays to establish the
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stability of the concerned network models [5, 25]. Very recently, Shen et al. [27] obtained
an asynchronous state estimation for fuzzy Markovian jumping neural networks with un-
certain measurements in a finite time interval. Based on the Lyapunov stability theory
and Wirtinger-based integral inequality, sufficient conditions were constructed in [4] to
ensure that the state estimation error system is robustly stable along with a guaranteed
dissipative performance of T-S fuzzy neural networks.

On the other side, Markovian jump systems (M]Ss), as a certain class of switched sys-
tems consisting of an indexed family of subsystems and a set of Markovian chains, have
received increasing attention [18, 19]. Due to the presence of sudden variation, random
component failures, and abrupt environment changes in dynamic systems, by MJSs we
can model aircraft control, solar receiver control, manufacturing systems, networked con-
trol systems, power systems, and other practical systems [15, 26, 32]. During the past few
years, MJSs have been used to various disciplines of science and engineering fields, and a
great number of results have been obtained in [2, 3, 10, 12, 13, 29]. Based on a general-
ized double integral inequality, dissipativity conditions were proposed under the consid-
eration of free-matrix-based integral inequality and Finsler’s lemma approach in [12]. In
[13] the authors studied the problem of passivity and dissipativity analysis of Markovian
jump neural networks including two types of additive time-varying delays. In [29] the re-
sults on dissipativity-based Markovian jump neural networks are established using some
generalized integral inequalities. Stability analysis of neural models with Markovian jump
limitations and delay constants are derived using reciprocally convex approach in [3].

On the other hand, dissipativity is an important concept of dynamical systems, which
is closely related with the intuitive phenomenon of loss or dissipation of energy. More-
over, dissipativity theory gives a framework for the control design and stability analysis
of practical control systems under an input—output energy-related consideration. Based
on the framework of dissipativity, many problems were investigated for continuous-time
neural networks [12, 13, 23, 35, 37, 41] and discrete-time neural networks [17], but there
appeared a few works based on the dissipativity concept of T-S fuzzy neural networks
[11, 14]. Also, it is well known that impulsive effects are used to express the dynamical
models in many areas such as medicine, biology, economics, and telecommunications.
Roughly speaking, the states of neural networks often undergo rapid disruption and sud-
den changes at certain moments of time, which leads to impulsive effects. Thus impulses
should be taken into account while studying the dissipativity of neural networks and the
corresponding issues studied in the literature [20, 22, 44]. However, up to now, the results
of dissipativity analysis of Markovian jumping T-S fuzzy neural networks together with
impulsive effects have not yet been reported, which is still an open challenge. All this mo-
tivated us to consider a new set of dissipative conditions for fuzzy Markovian jumping
neural networks with impulsive control via delay partitioning approach.

The main contributions of this paper are summarized as follows:

(i) Uncertain parameters, Markovian jumping, nonlinearities, time-delay, dissipative
conditions and impulsive perturbations are considered in the framework of stability
analysis and designing Takagi—Sugeno fuzzy neural networks.

(ii) By employing a proper Lyapunov—Krasovskii functional the asymptotic stability of
addressed neural networks is checked via some less conservative stability

conditions.
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(iii) Some novel uncertain parameters are initially handled in the Lyapunov—Krasovskii
functional, which ensures sufficient conditions for asymptotic stability of designed
neural networks.

(iv) The importance of the proposed algorithm is illustrated by numerical examples.

2 Problem formulation
Let {r(t),t > 0} be a right-continuous Markovian process taking values in the finite space
S§=1{1,2,...,s} with generator I" = (1) (i,j € S) given by

i At + o(At), i#j,
Pr{r(t+ At)=j|r(t) = i} =1 (A1) 7J
1+ m;At+o(AL), i=j,
where At > 0, lima,—o(0(At)/At) = 0, m;; > 0 for j # i is the transition rate from mode i to
mode j at time ¢ + A¢, and 7 = — Zﬁlﬁi Ty
Consider the neural networks of Markovian jumping parameters with mixed interval

time-varying delays of the following form:

vi(t) = —ai(r@))vi(t) + > wag(r@)(vi(e) + Y way (r(0)fi(vi(t - 7(2)))
i=1

i1
+ Z wa(r(£)) / fi(v(s))ds +u(t), t>0,6t, 1)
= t—d(t)

y(8) =f (vi(t),
v(ty) = I(r(®)) (v(&)), t=tkeZ,

where i = 1,2,...,n, v;(¢) is the state of the ith neuron, ;(r(¢)) > 0 denotes the rate with
which the cell i resets its potential to the resting states when isolated from the other
cells and inputs, wy;(r(£)), wa;(r(£)) and w3;(r(¢)) are the connection weights at the time ¢,
u(t) = [y (t), uz(t), ..., u,(t)]7 is the external input, y(£) = [y1(2),y2(£), ..., y.(2)] is the out-
put, Ix(r(£))(:) is a constant real matrix at the time moments #, and f;(-) stands for the
signal function of the ith neuron. In addition, we suppose that the discrete delay 7(¢) and
distributed delay d(t) satisfy

0 S 1 S T(t) <71, T(t) 5 130) 0 S d(t) S d: d(t) S "2, (2)

where 11, 7y, d, (11, |2 are constants. We consider system (1) together with the initial
condition v(s) = ¥ (s), s € [- max{t,,d},0].
Then we rewrite model (1) as

(t) = —A(r()v(e) + Wi (r@))f (v(8)) + Wa(r()f (v(t - T(9)))

+ W3 (r(t)) /z—d(:)f(V(S)) ds+u(t), t>0,t+t, )
y(2) = f (v(1)),

v(ty) = L(r®)) (v(%)), t=tokeZ,
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where V() = [v1(8),v2(2),...,va(D]T, A = diag(ay(r(2)),...,au(r(£))), Wi = (w1(r(6)mxns
Wa = (Waii (r()))msxcns W3 = Wi (r())msens and £ () = (L), o (), oo fu( DT

Let v* = (v§,v},..., V) be the equilibrium points of system (3). We can obtain from (3)
that in terms of the transformations x(-) = v(-) — v* and f (x(¢)) = f (x(¢) + v*) — f(v*), system
(3) can be written as

x(t)=-A (r(t))x(t) + W (r(t))f(x(t)) + Wy (r(t))f(x(t - T(t)))

+ Wi (r(2)) /t » S(x(s)) ds +u(t), t>0,t#t, W

y(t) = f (x(2)),
x(t) = L(r() (x(%)), t=tkeZ,,

where x(t) = [xl(t)) xZ(t)y e ;xn(t)] T)f(') = (fl ())_f2()) v 7_f;’l())T
Further, we express the Markovian jumping neural network with impulsive control by a
T-S fuzzy model. We represent the ith rule of this T-S fuzzy model in the following form:

IF Vl(t) is Mﬂ, Vz(t) is M,'z,...,Vj(t) is Mij THEN

i(t) = —Ai(r(£)x(8) + Wai(r®)f (x(9)) + Wai (r(@) ) (x( - (1))

+ Wai(r(2)) f SF(x(s)) ds + u(t), t>0,t+t, (5)

t—d(t)
y(8) = (x(2)),
x(te) = I (r@®) (2()),  t=toke€Z,i=1,2,...,r,

where Mj; are fuzzy sets, (v1(£), v2(), ..., V,-(t))T represents the premise variable vector, x(¢)
denotes the state variable, and r is the number of IF-THEN rules. It is known that system
(5) has a unique global solution on ¢ > 0 with initial values ¥, € C([- max{t,,d},0];R").
For convenience, r(t) = i, where i € s, and in the upcoming discussion, we represent the
system matrices associated together with the ith mode by A;(r(¢)) = A;, W1,(r(t)) = W,
Wai(r(t)) = Wai, Wai(r(t)) = Wi,.

Then the state equation is as follows:

x(t) =Y 2i(ve) {—A,»x(t) + Wi () + Waif (x(t — 7(0)))
i=1

+ Wy Ljd(t)f(x(s)) ds + u(t) }, t>0,t#£ty, 6)

y(8) = f (x(2)),
x(t) = Le(%(t)), t=tikeZ,i=12,...,r,

where A;(v(¢)) = Z' ‘ , Bi(v(®) = My(vi(t)), and Mj(-) is the degree of the
membership functlon of M,}. Further, we assume that B;(v(¢)) > 0, i = 1,2,...,r, and
Y Biv(®) > 0 for all v(t). Therefore A;(v(¢)) satisfy A;(v(¢)) > 0, i = 1,...,7, and
Yo Ai(v(2) = 1 for any v(¢).

Page 4 of 26
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Based on the previous simple transformation, we can equivalently rewrite model (6) as
follows:

x(t) = —Aix(t) + th(x(t)) + ng(x(t - r(t)))
t
+ ng/ f(x(s)) ds+u(t), t>0,tFt,
t—d(1)
y(t) = f (x(2)),
x(t) =Le(%(t)), t=tikeZ,i=12,...,r
The following assumptions are needed to prove the required result.

Assumption (H1) ([9]) Forallje 1,2,...,n, fj(0) = 0, and there exist constants E; and Fj+
such that

Fj_ EM <F} (8)

o] — 0y Y
for all @y, € R and o1 # 3.

Assumption (H2) Theimpulsive times #; satisfy 0 = £g < #; < - - - < tx — oo and infiez, {tx—
tk—l} > 0.

The energy function E associated with system (7) is represented by
E(u,y,T) = (9, Q)1 + 20, Su)r + (u, Ru) 7, )

where
T
(y,u) = / yludt, T=>o0.
0

The following definitions and lemmas are needed to prove our results.

Definition 1 Given some value ¥ > 0, real constant matrices Q = QT and R = R”, and
a matrix S, the considered model (7) is (Q, S, R)—¥ -dissipative for any T > 0. Under the
zero initial condition, the following condition is holds:

E(u,y,T) > 0 (u,u)r. (10)

Definition 2 The proposed neural network model (7) is called passive if there exists a
scalar y > 0 such that the following inequality holds for all Z- > 0 under the zero initial

condition:

v or _ v or
2[/(; y (s)u(s)ds]z y|:/0 u (S)u(s)d5:|. (11)

Lemma 2.1 ([7]) For any vectors t(t) > 0 and positive-definite matrix Q € R"", we have
the following inequalities:

- / t &7 (s)Qu(s)ds < T(®)¢ T (OMQ M ¢ (2) + 2 T ()M [x(2) — x(¢ - T(2)) ],

—1(t)
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t—1(¢)
, / () Qi(s) ds < (r - 1) T(ONQNTL (1)

+ 20T (ON[x(t - (1) -2t - 1)),

where M and N are free weighting matrices of appropriate dimensions, and

;(t)=|:xT(t) <I(t-1) xT<t—]TV—“) xT<t—2%> xT(t-(N-n]T—\‘;)
xL(t-1,) xT(t—r(t)) xT(t—%> xT<t—2]%)
xT(t—(N—l)%> t-m) &0 fTx0) fME-10))

[ o [ewa [ pvma [ v

) -7

t T
/ fT (x(s)) ds xT(t - d(t)) uT(t)] .
t—d(t)

3 Main results

In this section, we establish a dissipativity condition for fuzzy impulsive Markovian jump-
ing neural networks (7) with both discrete and distributed time delays. Under a Lyapunov
functional and delay fractionizing approach, in the following theorem, we provide a new
set of novel delay-dependent dissipative conditions with impulsive perturbations. For pre-

sentation convenience, we denote

Fr+Ff F; +F; F,+F;
2 T2 ’

Fy = diag(F; F},F; F},...,E,F}), F2=diag< T vty

F; = diag(F[,Fy,...,F;),  Fy=diag(F{,F},...,F}).

n
Theorem 3.1 Under Assumptions (H1) and (H2), for given scalars 11, to, d, (t1, and i,
the neural network described by (7) is strictly (Q, S, R)—0 -dissipative if there exist positive

definite matrices Py;, P; (i=2,...,4), Q, R, S; (i=1,2,...,7), T; (i = 1,2), positive diagonal
matrices U, Uy, and matrices O, L;, M;, V; (i = 1,2) of appropriate dimensions such that

the following LMIs hold:
Iijlgpljlik - Pli <0, (12)
@ ¥L JM
- 0 <0, (13)
* * =S,
@ 2L JnV
« -8 o0 |<0, (14)
* * -85
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and
Qu Qu Qv
* Qo Qv
Q= >0,
* *  Qnoin-1 Qn-n
* * * Qnn
Ri1 Ry Rin
% Ry Ron
R= >0,
* *  Ry_in-1 Rn-in
* * * Rnn
where
(&1 D1 P13 Puu Pis 0 ®y; Py O
k <p22 4723 0 0 Fz L[z 0 0 0
* * D33 0 0 0 0 0 0
* * k @44 OWU,‘ OWZI'/‘ 0 0 0
* * * * Dss 0 0 0 0
* * * * * -U, 0 0 0
D= % * * * * * -T 0 0
* * * * * * * -7, 0
* * * * * * * * =S5
* * * * * * * * *
* * * * *k k k * *
* * * * * * * * *
L * * * * * * * * *
[P1 LT Qu-IL Q13
*  P3—Py—38, —Loy 0
* * Q22-Q11 Q23-0Q12
* *k * —
@ = Q33— Q2
k k * k
| = * * *
Ry —Ri1 Ryz —Ryp Ron — Ryn-1
* R33 — Ry R3n —Ron-1
P33 =
* Ryn — Ry-1,n-1
* *
[Riz  Riz Rin =M +S57]
0 0 0 -M,
0 0 0 0
b= 0 0 0 0 )
0 0 0 0
L0 o 0 o |

0 0 0 0
0 0 0 0
0 0 0 0
0 OWsy 0 o)
0 0 0 -8
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
S 0 0 0
* —57 0 0
* x  —(1-p2)Ps 0
* * * yI-R |
Qin Vi ]
0 Vs
Qon = Q1N-1 -Qin
Q3N — Q2N-1 Qv |,
OnN - OQn-1N-1  -Qn-1N
* -QnN
—Rin
—Ron
—Rn_1n
—Rnn — 83— S4 |

Page 7 of 26
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N
@1=P2+P4+Q11+L1+L1T+R11—53—122T1+‘L'122T2—F1U1+Z.7T,‘/‘P1j,
j=1
T
@122[(—V1+M1)T (—V2+M2+S4)T 0 0 0 O] )
Dy = —(1 — )Pz — 28, — Fily,
@23=|:0 0 0 S4:|,
T
@Mz[wu—AgoﬁT 000 - 0 0],
Ta 2 2 ) 2 T
¢44:ﬁ51+T552+T253+T1254+ZT1+TS TZ—O—O ,
T
Pis=[EBU 0 0 0 0 0],
Ber = 72 2 2
55—TZS5+‘L'1256+61157—U1—Q,
T
@172[1'2T1T o o0 o0 --- 0 0] )
T
Pi5=[mTf 0 0 0 - 0 o,
T
L=[1f 1} 0 - 0 0 -~ 000 - 00 0],
T
M=[MI M{ 0 - 00 -+ 000 - 00 0,
T
V:[vf vi o -~ 00 -~ 000 --- 00 ﬂ ,
+ _ 1
a=(T12T2), T3=(T22T1), Ti2 =Ty — 11, Ts=§(T22_712)'

Proof To obtain dissipativity criteria for the fuzzy Markovian jumping impulsive neural

networks (7), we examine the Lyapunov—Krasovskii functional

V(t,x(2),i) = Vi(6,x(2), i) + Va(t,2(2), i) + Va(t,2(2), i) + Va(t,%(2), i)

+ Vs (t,2(), i) + Ve (2, %(2), i), (15)

where

t-11

Vi(t,x(2),1) = x" (£)Pyx(t) + / t x7(s)Pyx(s) ds + / 27 (s)Psx(s) ds
t-11 t—t(¢)
t T(s)Pyx(s) ds,
+/td(t)x $)Pyx(s) ds
Valexto) - [ sl0Qaedss [ dOra6ds
0 t —T4 t
Vg(t,x(t), i) =/ / #T(5)S14(s) ds do +/ / %1 (5)Sy(s) ds do,
,fﬁa 40 ) t+60

0 t -1 t
Va (t,x(t), i) = 12/ / %7 (5)S3x(s) ds do + 112/ / x7(s)Sax(s) ds db,
—19 Jt+0 -1 Jit+0
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0

Vs (6,x(2),i) = 1 f efT (%(5)) Ssf (x(s)) ds do

+ T /7 1 / QfT(x(S))Sﬁf(x(s)) dsdo

0 pt
/ 8fT( x(5))Sof (%(s)) ds b,

t x(t) /_T / / 7 (s) Ty(s) ds d db
/ / / (8)Tox(s) dsdA db

with
T
Sl(t):[xT(t) xT(t—fﬁﬂ) xT(t—(N—l)TN“)iI ,
T
£O=[x"0) -F) - Te-W-DP)] .

For t = t;, we have

Vl (tk, x(t),]) - V1 (t];, x(t), l) = xT(tk)Pljx(tk) - xT(t,:)Pl,-x(t,:)
= %! (6 [Pyl () = " (6) Prix ()

= 2" (6) [LacPyjlix = Prilxe().- (16)

Based on the assumptions and conditions, we know that I is a constant matrix at the

moment £; and in the mode i fori € S, k € N. So

Vi (6 x(2),j) = Vi (8, %(2), i) < 0. (17)

For t € [tx_1, %], by (17) we obtain that the weak infinitesimal generator LV (¢,x(¢), ) sat-

isfies
LV (t,%(2), i)
= 2xT (O)P1(t) + &7 ()[Py + Paln(t) + 27 (£ — 11)(Ps — Py)x(t — 11)
- (1 - t'(t))xT(t - r(t))ng(t - r(t)) - (1 - d(t))xT (t - d(t))P4x(t - d(t))
N
+ Z mij(t)Pljx(t),

j=1
< 2T (£)Prie(t) + x” (£)[Py + Pala(t) + &7 (£ — 11)(P3 — Po)x(t — 11)
— (1= p)x" (6= T(0)Psx(t = T(2)) = (1 — pa)x” (£ — d(t)) Pax(t — d(2))

N
+ Y ! (0)Py(t), (18)

j-1

Page 9 of 26
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LV, (8,x(t), i) = £ (0)Q&1(2) - §1T(t— ;\[_ﬂ)QSI <t— E)

N
+€§mR&G%€5(P-%)R&<P—%>, (19)

LVs(t,x(2), 1) = %xT(t)slx(t) + (12 — 2T (0)So(2)
—ﬁ;k%wMQ%i[:k%BMQa (20)

LVi(t,x(8),0) = 775" (0)S35() — 1 / [ &7 (5)S3(s) ds + t5xT (£)Sux(t)

- f T 9)Ssk(s) ds, 21)

)

LVs (t,x(t), i) :fT(x(t)) [t2255 + 112256 + d257]f(x(t)) -1 / fT (x(s))ng(x(s)) ds

_m/”ﬂwmwmm@w/ FT)Sof (e(5)) s, (22)
t—d(t)

t—1
t

‘L’4 ‘L'2 0
LVs(t,x(2),i) = Z%'cT(t)Tla'c(t) - 72 / &7 (s) T1(s) ds do

—T79 Jt+0

-T1 t
+ rsza'cT(t) Tox(t) — 1:5/ / 7 (s) Tox(s) ds db. (23)
-T2 t+60
Note that

t-14 t-1(2) -7
- / %7 (5)Sox(s) ds = — / %7 (s)Sa(s) ds — / %7 (5)Sa(s) ds.

t-1o t-19 t—(t)

Using Lemma 2.1, we obtain

_ / t #T (5)S12(s) ds < %;T(t)LS;lLTg(t) +2cT ()L [x(t) —x<t - %)] (24)

N

_ / T T )Syi(s) ds < (x() - 7)c T OVS VT (8)

—1(¢)
+20 T (O V]t - 1) —x(t - 7(1))], (25)
t-(t)
_ / i (8)Spi(s) ds < (za — T(0) ¢ T ()MS; M7 ¢ (6)

+ 2§T(t)M[x(t - ‘L'(t)) —x(t - rz)]. (26)

Applying the lemma in [8] and the Newton—-Leibniz formula

/t x(s)ds = x(t) — x(t — 2),
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we have
L /t ; 5 (5)S3i(s) ds < [ /t _:2 i(s) ds] s, [ /t _:2 i(s) ds]
< —[x(0) - x(t - 12)] " S3[x(2) — x(¢ - 2)]- (27)
Note that

t-11 t-1(t) t-11
/ %7 (5)Sa(s) ds = / &7 (s)Sak(s) ds + / %7 (5)S4k(s) ds.

t-19 t-19 t-(t)

The lemma in [6] gives

t-1(t) t—-1(t) T t-1(t)
[rz - r(t)]/ #T(5)Sase(s) ds > [/ x(s) ds:| Sy |;/ x(s) ds]

—72 -2 —72

> [x(e-1(2) —x(t - 12)] TS4[x(t -1(8) - x(t - 2)].

Since 175 — 7(t) < 19 — 171, we have

t—7(t)
[ty — 1] / &7 (5)Sak(s) ds > [x(t - T(8)) — x(t - rz)]TS4[x(t - 1(8) - x(t - ©)],

-1y

and thus

t—(t)
- (-] / &7 (5)Sak(s) ds
t-19

< —[x(t - 1(®) - x(t — )] " Su[x(t - T(8)) — x(t — )] (28)

Similarly, we have

t-11
- [ -] / &7 (5)Sak(s) ds
t—1(¢)

< —[xt - ) —x(t = 7(0) ] St — 71) — (¢ - 7(2))] (29)

and

-1 /;ZfT (%(5))Ssf (x(s)) ds < —</t_;f(x(s)) ds) T

x S5 < ft _:2 £ () ds), (30)
—T12 /t t: ST (%(5))Sef (x(s)) ds < - ( / jffl f(x(s)) ds) '

—T -1

X Ss ( / ) ds>, (31)

t—19
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t

T
F((s) ds)
—d(t)

x Sy (/ u )f(x(s)) ds), (32)
2 p0 t 0 t T
_%2 / ) /ngT(s)Tlx(s)dsdeg—( /_ ) /Mx(s)dsde)
0 ot
T x(s) ds do
x 1</r2 /t‘+0x(8) S )
t T
S—(sz(t)—/ x(s)ds>
x T ('L'zx(t) - /t x(s) ds), (33)
-T1 t -71 t T
=3 %7 (s) Toa(s) ds db —< i dd9>
§ ./:12 /t+9x (S) Zx(S) ’ = /:12 /t;@xw) ’
o[ [ i dsas
. 2(/—‘r2 /t.+9x(5) * )
t-11 T
=< —(tlzx(t) —/ x(s) ds)

x Tg(tux(t) _ / ) ds). (34)

t-19

~d /t _td(t)f T (x(5)) Sof (x(s)) ds < —( /t

For positive diagonal matrices U; and Uy, it follows from Assumption (H1) that

o[ o "T_ru, B[ 0 5)
T f(x(2) R, - ||f@)|

_[ e "T_ru, B[ at-z) 6
T fx(E=T(2) El, U ||faE-t@) ]|

On the other side, for any matrix O of appropriate dimensions, from system (7) we have
2xT ()0 x [-A,,x(t) + Wigf (x(8)) + Wayf (x(t - 7(2)))
t
+ ng// f(x(s)) ds + u(t) — x(t)] =0. (37)
t-d(z)
Combining (18)—(37), we can obtain

CV(t,x(t), i) + 0ul (B)u(t) -y (1) Qy(t) — 29T (OSu(t) — u” (£)Ru(t)

< {T(t){q§ + SLSLT + (v - T(O)MS; M+ (x(0) - ra)vs;lvT}g(t). (38)
By the conditions of Theorem 3.1, if ¢ (£) # 0, then we have

LV (t,(t),i) <0. (39)

Page 12 of 26
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For t € [t_1, tx], in view of (16) and (39), we have

V(tex(2),) < V(&,%(),i) < V(tie1,%(2), ). (40)

By a similar proof and mathematical induction we can ensure that (40) is true for all , j,
r(0)=ipeS, keN:

V(tox(2),j) < V(t,%(0),i) < V(tx(2),0) < -+ - < V(to, %(2), ip). (41)
It follows from (38) that

,CV(t,x(t), i) +9ul @u) —yT(t) Qy(t) - 2yT(t)Su(t) —uT ©ORu(z)

< ;T(t){ D+ ]TV—“LS;lLT + (12— (@) MS;'M" + ((2) - za)vszlvT}g(t). (42)
Let
M=+ %LS;ILT + (T2 - T(O)MS;'MT + (x(8) - 7,) VS; V7. (43)

Then, applying the lemma in [8] to (43), we obtain the following inequalities:

NLS LT 4 (1 — 1) MS;'MT <0, (44)
D+ ;[—“LSIILT t (2 - 1) VS VT <. (45)

Using Schur complements on (44)—(45), we obtain the LMIs of Theorem 3.1. Since @; < 0,
we easily get

yT(t) Oy(t) + 2yT(t)Su(t) +ul O)Ru(t) > l:V(t,x(t), i) + 0ul @Ou(?). (46)
Integrating this inequality from 0 to T and using the zero initial conditions, we get
E@,u, T) = Hu,u)r + V(T) = V(0) = 9 (w,u)r (47)

for all T > 0. Hence, if condition (11) holds, then the proposed model (7) is (Q, S, R)— -
dissipative in the sense of Definition 1. O

Remark 1 The LKF V3(t, x(t),i) plays a important role in reducing the conservativity
of time- varying delay system, whereas in the derivative of Vs(t,x(t), i), the cross terms
- ft g & (s)S1x(s) ds, — [_T(“t) &7 (s)Sox(s) ds, and — f %7 (s)Sy%(s) ds are defined as fol-
lows

_/tt% a'cT(S)Sl5C(S)dS§ %CT(t)LSIILTC(t)+2{T(t)L|:x(t)_ <t— %)],

t-1t4
- / x7(5)Sox(s) ds
t—7(t)

< (t(®) - )" OVS Ve (0) + 20T OV [x(t - Ta) - 2(t - T(0) ],
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t—1(¢)
- / %7 (5)So(s) ds
t

)

< (2= t®))cTOMS; M ¢ () + 2T (OOM[x(t - T(8)) — x(t - 12)].

Finally, to reduce the conservatism of the constructed dissipativity conditions, the convex-
ity of the matrix function for cross term is applied. This treatment involved in our paper
is different from the approaches used in [12, 35, 37, 41] and may ensure a better feasible
region for dissipativity conditions. Thus, using a tighter bounding of the time derivative
of LKF and a low number of slack variables, the considered dissipativity condition is less
conservative than that in [12, 35, 37, 41].

Remark 2 Very recently, many researchers endeavor to focus on how to reduce conser-
vatism of dissipativity condition for neural network delay systems. A free-matrix-based
integral inequality technique is constructed by using a set of slack variables, which can be
solved via convex optimization algorithms [37]. Therefore, some improved dissipativity
criteria for delayed neural networks are investigated in [35, 41] using the LKF approach. In
[12] the authors developed the Wirtinger double integral inequality, which was used to an-
alyze the dissipativity behavior of continuous-time neural networks involving Markovian
jumping parameters under Finsler’s lemma approach. Using a delay fractioning approach,
the designed dissipativity condition is much less conservative than those in the existing
works, and the derived results can ensure the dissipativity of the proposed delayed neural
networks. Hence the delay-partitioning method is widely applied and exposes the poten-
tial of reducing the conservatism. However, to the best of authors’ knowledge, dissipativity
analysis of fuzzy Markovian jumping neural network with discrete and distributed time
varying delays and impulses has not been investigated yet, and it shows the effectiveness
of our developed methods.

Remark 3 Consider the Markovian jumping neural network without fuzzy and impulsive
effects of the following form:

x(t) = —Aix(t) + Wuf(x(t)) + Ww’(x(t - r(t)))
+ Wi, /t f(x(s)) ds+u(t), t>0,tFt, (48)
t—d(t)

y(t) = f(%(2)).

Due to Theorem 3.1, we obtain a corollary for the dissipativity analysis of Markovian
jumping neural networks (48).

Corollary 3.2 Under Assumption (H1) and given scalars 11, Ty, d, ju1, and o, the neural
network model (48) is strictly (Q, S, R)—10 -dissipative if there exist positive definite matri-
ces Py;, P (i=2,...,4), Q,R, S; (i=1,2,...,7), T; (i = 1,2), positive diagonal matrices Uy,
Uy, and matrices O, L;, M;, V; (i = 1,2) of appropriate dimensions such that the following
LMIs hold:

& JuL oM
¥ =S5 0 <0, (49)

* * -S5
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& JuL GV

x =S 0 <0. (50)
* * =S,
Proof The proof is similar to that of Theorem 3.1 and therefore is omitted. O

Remark 4 When Markovian jumping parameters are not taken, that is, the Markov chain
{r(¢),t > 0} only takes a unique value 1 (i.e., S = 1), then system (48) becomes the following

neural network model:

x(t) = —Ax(t) + Wlf(x(t)) + sz(x(t - T(t)))

+ W; /t f(x(s)) ds+u(t), t>0,tFt, (51)

—d(t)

y(®) = f (x(2)).
For system (51), we obtain the following corollary by Theorem 3.1 and Corollary 3.2.

Corollary 3.3 Based on Assumption (H1) and given scalars ty, ta, d, L1, and |1y, the neural
network (51) is strictly (Q, S, R)-10 -dissipative if there exist positive definite matrices Py,
Pi(i=2,...,4),Q,R S; (i=1,2,...,7), T; (i = 1,2), positive diagonal matrices Uy, U,, and
matrices O, L;, M;, V; (i = 1,2) of appropriate dimensions such that the following LMIs

hold:
o [JuL /oM
k _Sl 0 < 0, (52)
* * =S,
o [JeL Jmv
- 0 <0, (53)
* * -S5
and
Qu Qn e Qv
*  Qxp e Qv
Q=| : : . >0
* *  Qnoin-1 Qnain
* * * Qnn
(R Ry oo Riy |
* Ry e Ron
R= >0,

* *  Ry_in-1 Ry-in

* * * Rnn
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where
(&1 @1 P13 P Pis 0 Py, Py O
* @22 @23 0 0 FzUZ 0 0 0
x k@3 0 0 0 0o 0 o0
* * * Dy OW; OW, 0 0 0
* * * * Dss 0 0 0 0
* * * * * -U, 0 0 0
b= x * * * * * -T; 0 0
* * * * * * * -T 0
* * * * * * * * =S5
* * * * * * * * *
* * * * ES * * * *
* * * * * * * * *
L * * * * * * * * *
(1 LT Qu-L Q13
*  P3—Py—8, —Loy 0
* * Q22—-Q11 Q23 -Q12
@y = * * Q33— Q2
Ry —Ry1 Ryz3— Ry Ron — Ry n-1
* R33 — Ry R3n — Ryn-1
D33 =
* * Ryn — Ry-1,n-1
* * *
[Ri2 Riz Rin —M; +S57]
0 0 0 M,
0 0 0 0
B=| 0 O 0 o |,
0 0 0 0
O 0 0o

(2019) 2019:140

[=NeleleNe e =R=N=}

|
* % %
&

—Rnn —S3 =S4 |

0 0

0 0

0 0

OW3 0

0 0

0 0

0 0

0 0

0 0

0 0

—S7 0
*  —=(L=po)Py

* *

QN
0
Qon - Q1N-1

Qsn - Q2N-1

QnN — Qn-1N-1
*

—Rin
—Ron

—Rn_1n

@1 =P2 +P4+Q11 +L1 +L1T+R11—Sg—1'22T1 +‘L'122T2—F1U1,

(1512 = I:(—Vl +M1)T (—Vz +M2 + S4)T 00

Dy = —(1 — p1)P3 — 28, — Fi1 Uy,

<1>23=[0 0

0 54],

<1>14=[(P1—ATOT)T 00 0

4

T
oo],

T
OO],

T, T
@44 = ]TL;SI + 'L'gSz + T22$3 + ‘L'12254 + ZZTI + ‘L’SZTz -0- OT,

®15=|:(F2U1 0 0 0

T
OO],

@55 = T2255 + ‘512256 + dZS7 - Ul - Q,

@17=[12T1T 0 0 0

T
00],

Qo oo

|
07

[Nl X=R=]

yI-R

Vi
Vo
-Qin
-QaN

-Qn-1,N

-QnN

Page 16 of 26
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T
¢w=[rmfg 000 -+ 0 O],
T
L:[LITLZTOW 00 - 000 - 000],
T
M=[MI M 0 - 00 - 000 - 00 0,
T
:[V1T V2T0 ... 000 --- 000 --- OOO:I,
(11 + 1) (ta—11)
T, = 5 T = 5 Ti2 = T2 — 11, Tszg(tzz_flz)'

Proof To prove the dissipativity criteria for the recurrent neural networks (51), we define

the following Lyapunov—Krasovskii functional:

V(6,x(2)) = Vi(t,%(0) + Va(t, x(2)) + V3 (£,x(2)) + Va(t, %(2))
+ Vs (8,%(0)) + Vo (£, x(2)), (54)

where

t—-11

Vi (t,x(t)) =xT () Prx(t) + / t x7(s)Pyx(s) ds + / 27 (s)Psx(s) ds

—7(t)

t
+ / xT (s)Pax(s) ds,
t—d(t)

t t
Va(ea) - [ eloQaedss [ eorawds

0 t -7z t
V3 (t,x(t)) = /m / , x7(5)81x(s) ds dO + / / ea'cT(s)Sza'c(s) dsdo,

t x(t -rzf / (5)S3x(s dsd9+r12/ / (8)S4x(s) dsdo,
-9 Jt+6

Vs(6,x(0) = / 9 4 (9)Sef (+(5)) ds 6 + 1o / i / 7 (+09)S4f (1(9) dsl9

0 pt
+ d/ efT(x(s))S7f(x(s)) dsdb,

tx(t) /_Z / / T(s)T14(s) dsdx do
% f _ /9 /t A OTai) dsdb.do.

Then, using the same proof as in Theorem 3.1, we get the result. 0

Remark 5 If the distributed delay is not considered in system (51), then the recurrent
neural network is rewritten as

x(t) = —Ax(t) + Wlf(x(t)) + sz( ( ))) +u(t), t>0,t#t,
y(8) = f (x(2)).

(55)

Page 17 of 26
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The dissipative condition of delayed neural network (55) is constructed as follows.

Corollary 3.4 Under Assumption (H1) and given scalars t1, Ty, and 1, the neural network
(55) is (Q, S, R)-0-dissipative if there exist positive definite matrices Py, P; (i =2,...,3),
QR S;(i=1,2,...,6), T; (i = 1,2), positive diagonal matrices U, Uy, and matrices O, L;,
M;, V; (i = 1,2) of appropriate dimensions such that the following LMIs hold:

o [uL oM
* _Sl 0 <0’ (56)

- 0 <0, (57)
* * -S,
and
Qu Qun ‘ Qin
*  Qxn Qv
Q= : >0,
* *  Qn-in-1 Qnan
* * * Qv
_Rn Ri» Tt Rin ]
*  Ro s Ron
R = Z O:
* % Ry_ina1 Rnoin
* * * Ryn
where
(&1 @1, P13 P Dis 0 ®y; P O 0 0 ]
* ¢22 ¢23 0 0 F2U2 0 0 0 0 0
* * P33 0 0 0 0 0 0 0 0
* * ¥ Dy OW; OW, 0 0 0 0 O
* * * * Dss 0 0 0 0 0 -S
D= x * * * * -U, 0 0 0 0 0 ,
* * * * * * -7 0 0 0 0
* * * * * * * -T, O 0 0
* * * * * * * * =-S5 0 0
* * * * * * * * *  —Sp 0
B * * * * * * * * x*  ylI-R |

@1 =P2+Q11 +L1 +L{+R11—Sg—l’22T1 +1122T2—F1L11,

D55 = 'L'2255 + T12256 -Uu, -9,

and the other elements are as in Corollary 3.3.
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Proof This proof is similar to that of Corollary 3.3 and therefore is omitted.

(2019) 2019:140

O

Remark 6 As a particular case of dissipativity, we get passivity criteria for system (55) by

taking Q =0, S =1, and R = 2y in Corollary 3.4. The following corollary can obtained

from Corollary 3.4 and describes the passivity conditions for system (55).

Corollary 3.5 Under Assumption (H1) and given scalars t1, 1, and |1, the neural net-

work (55) is passive if there exist positive definite matrices Py, P; (i = 2,...,3), Q, R, S;

(i=1,2,...,6), T; (i = 1,2), positive diagonal matrices U, U,, and matrices O, L;, M;, V;

(i = 1,2) of appropriate dimensions such that the following LMIs hold:

]
*
*

D

*

*

and

where

LI JTM
- 0 <0,
* =S
2L JuV
-S 0 <0,
* =S
[Qu Qu Qin
*  Qxn Qv
: >0,
* *  Qnan-1 Qnvoin
* * * Qnn
Riy Rpp Ry |
* Ry Ron
>0,
* *  Ry-in-1 Rn-in
* * * Rnn
(@11 D1y P13 P D5 0 D17 Pig
¥ Dy Dy3 0 0 kU, 0 0
« % @3 0 0 0 0 0
* * * Py OW; OW, O 0
* * * * Ds5 0 0 0
* * * * * -U, 0 0
* * * * * * =T 0
* * * * * * * =T
* * * * * * * *
* * * * * * * *
* * * * * * * *

S O O O O O © ©o

|
* ¥
1921

S O O O O O o o o

_56

L O o oo

oS O O © O

(58)

(59)
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(Dl :P2+Q11 +L1 +L{+R11—Sg—l'22T1 +'L'122T2—F1U1,

4)55 = 'L'2255 + 'L'12256 - U.
Proof The proof directly follows from Corollary 3.4. d

4 Numerical examples
In this section, we analyze several numerical examples to exploit the effectiveness of the
proposed methods.

Example 1 Consider the fuzzy impulsive neural network (7) with two-mode Markovian
jumping process with the following parameters:

Mode 1:
20 23 0 040 0.12
A = ) A = ) W; = )
H {0 2] 2 [0 2.3} m [0.22 0.72]
o _|053 010 w06 05 W | 071 041
27021 073) 702 01l 2171021 011
~03 0.1 ~031 0.1
Wi = . Wiy = .
s [0.1 0.2} 2t [0.11 0.12}
Mode 2
250 o [215 0 e |04 015
27 lo 25| 271 o 215 27001 05 |
w048 017 w06 04 w065 035
271012 03 | 27101 015 71012 014
w03 02 W | -015 021
7103 01l 2271015 012
We choose

4 0 03 O 3 0. 03 O
Q = ) S = ) R = ) Ik = .
0 4 02 1 0 3 0 03
We consider the activation functions f (x) = f5(x) = tanh(x). Assumption (H1) is satisfied
with F] =0, Ff =1, F; =0, and F; = 1. Thus

0 0 .
F - ’ Fy- 05 0 '
0 0 0 05

Let r(t) be a right-continuous Markov chain taking values in S = {1,2} with generator 7 =
[_57 _75], and let the membership functions for rules 1 and 2 be 11(6(¢)) = sin?(x; — 0.5)
and p12(0(t)) = cos?(x; — 0.5). Then via the Matlab LMI control toolbox, for N = 2, we can
see that the LMIs given in Theorem 3.1 are feasible. Thus we observe from Theorem 3.1
that the neural network (7) subject to leakage delays and impulsive effect is dissipative.
The simulation results for the state responses of system (7) with two Markovian jumping
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0.6

0.2F

0afit” "

(a) State responses of mode 1.

(b) State responses of mode 2.

Figure 1 Simulation results of the T-S fuzzy Markovian jumping neural networks

s
t

6 7

8

25

o

System mode

051

Figure 2 Mode transitions r(t)

30 35 40 45

50

Table 1 Maximum upper bound for delays t, = d with different @ (11 = w>)

Theorem 3.1

n=0 n =025 n=05 n=0.75 n=08 n=09
71 =0.1 0.4864 04531 0.4091 0.3336 03117 0.2363
71 =02 0.4931 04552 0.4298 0.3534 03312 0.2823
71=03 0.5013 0.4685 04362 0.3827 0.3564 0.3495
71 =04 0.5052 0.4852 0.4431 04316 04206 0.4062
71 =05 0.5074 0.5044 0.4835 04416 04301 04189

modes (i = 1,2) are given in Fig. 1. Also, Fig. 2 illustrates the mode transition rates. In

Table 1, we mention the maximum allowable upper bound for delays 7, = d with different

values of w1, ;.

Example 2 Consider the Markovian jumping neural network (48) with parameters

Ay =

2.1
0

0
2.3

’

2.2
0

9 =

0
2.3

’

0.3 0.6
1= )

02 04

Page 21 of 26
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Table 2 Maximum upper bound of 7, =d when w1 =0.5, iy =0.1

T 0 0.3 0.5 0.8 0.9 1.5
0.9044 0.8422 0.7512 0.7468 0.7215 0.7136

Table 3 Allowable upper bound of T, and d for different Ty and @ (1 = u2)

T n=0.1 n=03 n=05 n=07 n=09
71=0 7, =0.5806 7> =0.5369 7, =0.5324 7, =0.5296 7, =05294
d=05264 d=0.5036 d=0.5031 d=0.5028 d=0.5025
71=02 7, =0.6049 7> =0.5687 7, =0.5538 7, =0.5525 7, =0.5506
d=0.6588 d=0.6459 d=0.6426 d=06415 d=06412
71=04 7, =0.7834 7, =0.7426 7, =0.7354 7, =0.7328 7, =0.7321
d=06744 d=06703 d=0.6693 d=0.6685 d=0.6680
W 03 -0.1 W 02 0.7 W 01 08
12 = ’ 21 = 22 = )
02 05 04 03| -06 1.1

04 -0.4
W31 =
02 0.6

L 1

wo _| 03 02 o |1 O
’ 27105 04l o |
1 0 2 0 -2 2
S = ) R = ) T = )
11 0 2 3 -3
and the activation function fi (x) = f2(x) = tanh(x). Choosing N = 2, u; = 0.5, and u, = 0.1
and using Matlab LMI toolbox and Corollary 3.2, we obtained the maximum allowable

upper bound of 7, and d for various values of t; listed in Table 2. This implies that the

Markovian jumping neural network (48) is dissipative in the sense of Definition 1.

Example 3 Consider the neural network (51) with the following parameters:
4 32 -04 -22 -1.2
A = 0 , Wl = ) WZ = )
0 3 -4 3.6 -12 -4
1 -04 -0.1 0 5 0
W3 = ) Q = ) S= )
0.6 -1 0 -0.3 0 6

o= |:(2)? _0043:| » filx) =fa(x) = tanh(x).

For this neural network, we would like to have the dissipativity for the allowable maxi-
mum time delay value of 7, and d for different values of u and given 7;. We can see from
Table 3 that the condition presented in Corollary 3.3 still ensures the dissipativity of this
model. The results in [12, 35, 37, 41] are not applicable to this system as the time-varying

distributed delay is involved in this system.

Example 4 Consider the neural networks (55) with the following coefficient matrices:

2 1.2 1 . 4
A= 0 ) Wl = ) WZ = 08 0 )
0 15 -0.2 0.3 -0.2 0.1
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Table 4 Optimal dissipativity performance y for different ¢4

M1

0.2 04 06 0.8 1
[35] 1.6740 1.5871 1.4500 1.2802 1.2461
[41] 1.7186 1.7183 1.7180 1.7176 1.7174
[37] 1.8570 1.8566 1.8561 1.8559 1.8558
[12] 1.9281 19138 1.9065 1.8759 1.8613
Corollary 34 [N=2] 22436 22374 22269 2.1865 21754

Table 5 Maximum upper bound of T, for different values of w1 (Example 5)

Methods n1 =0 my =05 n =07
[39] 04528 0.3638 0.3575
[36] 0.6837 0.5285 04377
[42] 0.7340 0.6834 0.6355
[25] 0.8541 0.7438 0.6821
Corollary 3.5 [N=2] 1.1284 1.0236 0.9532

Q:[—oy 0 } 3:[0'5 0] R:[z 0]
0 -09 03 1 0 2

Here we choose F; = —0.1, F{ = 0.9, F; =-0.1, and F; = 0.9. Thus

-09 0 04 O
F = , F= .
0 -09 0 04

We assume that 73 = 0 and 7, = 0.4 for different values of 1. The optimum dissipativity
performances y are calculated by the methods in Corollary 3.4 and are listed in Table 4.
We can observe that our considered dissipativity condition provides a less conservative
result in comparison to the existing works [12, 35, 37, 41].

Example 5 Consider the neural networks (55) with the following parameters:

14 0 1.2 1 -02 05
A= ) Wi = ) W, = .
0 15 -12 1.3 03 -0.38

Moreover, the activation function is chosen as g;(x;) = 0.5(|x; + 1| — |x; — 1|), i = 1,2. The
allowable upper bounds of 7, when 7; = 0 for various values of 111 obtained by Corollary 3.5
are listed in Table 5. We easily see that the obtained passivity-based results in our work
are more general than the others [25, 36, 39, 42].

Example 6 Consider the neural networks (55), with the following parameters:

22 0 1.2 1 0.8 04
A= ) Wl = ) WZ = )
0 1.8 -0.2 03 -0.2 0.1

F; =F; =0, and F; = F; = 1. For different values of j;, the allowable upper bounds of 7,
when 7; = 0 computed by Corollary 3.5 and with the results presented in [16, 35, 37, 38,
40, 41] are listed in Table 6.
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Table 6 Maximum upper bound of 1, for different values of 1 (Example 6)

123

0.5 09 >1
[38] 1.4693 14243 1.4240
[35] 1.8450 1.7647 1.7313
[41] 22058 2.0366 2.000
[40] 3.0430 2.8428 2.8036
[37] 32019 3.0620 3.0612
[16] 34092 3.1568 3.1243
Corollary 3.5 [N=2] 3.8564 3.5586 3.5024

Table 7 Maximum upper bound of 1, for different values of w1 (Example 7)

Methods n1 =04 =045 =050 1 =055
[30] 39972 3.2760 3.0594 29814
[33] 43814 3.6008 3.3377 3.2350
[34] 52420 44301 4.1055 3.9231
[28] 5.4036 46017 43121 4.1582
[13] 6.1305 5.8231 5.6357 5.3208
Corollary 3.5 [N=2] 8.6421 7.7543 74216 7.1754

Example 7 Consider the neural networks (55) with the following parameters studied in
[13, 28, 30, 33, 34].

15 0 0.0503 0.0454 0.2381 0.9320
A= ) Wl = ) W2 = ’
0 07 0.0987 0.2075 0.0388 0.5062
fix) = 0.3 tanh(x), fo(x) = 0.8tanh(x), F; = F; =0, F{ = 0.3, and F; = 0.8. By using Corol-
lary 3.5 and solving MATLAB LMI tool box the corresponding results for the maximum
allowable upper bounds of 7, for different values of ; when 7; = 0 are computed and

listed in Table 7. We can observe from Table 7 that the passivity condition proposed in
this paper provides less conservative results than the others [13, 28, 30, 33, 34].

5 Conclusion

In this paper, we have studied the problem of dissipative conditions for Takagi—Sugeno
fuzzy Markovian jumping neural networks with impulsive perturbations using the delay
partition method. By constructing a proper LKF and LMI approach together with delay
fractioning approach, we have established a set of sufficient conditions ensuring that the
considered fuzzy Markovian neural networks are (Q, S, R)—¥ -dissipative. Finally, several
numerical examples are given to illustrate the effectiveness of the proposed dissipative
theory. Moreover, our results show that the developed method yields less conservative re-
sults than some other works. Furthermore, the problem of finite-time extended dissipative
conditions for stochastic T-S fuzzy singular Markovian jump systems with randomly oc-
curring uncertainties and time delay using the delay portioning approach is an untreated
work and will be the topic of our future work.
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