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1 Introduction
Fractional calculus and fractional differential equations describe various phenomena in
diverse areas of natural science such as physics, aerodynamics, biology, control theory,
chemistry, and so on, see [1–12]. In the last few decades, fractional-order models have
been found to be more adequate than integer order models for some real world prob-
lems as fractional derivatives provide an excellent tool for the description of memory and
hereditary properties of various materials and processes; this is the main advantage of
fractional differential equations in comparison with classical integer-order models. The
study of fractional calculus and fractional differential equations is gaining more and more
attention. Compared with classical integer-order models [13–16], fractional-order models
can describe reality more accurately.

In the past decades, results on fractional differential equations with finite domain have
been extensively investigated. Some recent results on fractional differential equations
with finite domain, for instance, can be found in papers [17–38] and the references cited
therein. Though much of the work on fractional calculus deals with finite domain, there
is a considerable development on the topic involving unbounded domain [12, 39–50].

In [40], the authors considered the existence of solutions for the following fractional
order initial value problems (IVPs):

⎧
⎨

⎩

(CDα
0,tx)(t) = f (t, x(t)), t ∈ (0, +∞),

x(0) = x0,
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where 0 < α < 1, CDα
0,t is the Caputo derivative.

In [44], the authors studied the following fractional integro-differential equations on an
infinite interval:

⎧
⎨

⎩

(Dαu)(t) + f (t, u(t), (Tu)(t), (Su)(t)) = θ , t ∈ (0,∞),

u(0) = u′(0) = u′′(0) = · · · = u(n–2) = θ , Dα–1u(∞) = u∞,

where n – 1 < α ≤ n, n ∈ N, n ≥ 2, Dα is the Riemann–Liouville fractional derivative of
order α, the existence results are obtained by using the Banach fixed point theorem.

In [26], the authors considered the fractional differential equation with the nonlinearity
depending on fractional derivatives of lower order on an infinite interval:

⎧
⎨

⎩

(Dα
0+ u)(t) + f (t, u(t), (Dα–2

0+ u)(t), (Dα–1
0+ u)(t)) = 0, t ∈ (0,∞),

u(0) = u′(0) = 0, (Dα–1
0+ u)(+∞) = ξ ,

where 2 < α ≤ 3, Dα
0+, Dα–1

0+ and Dα–2
0+ denote the Riemann–Liouville fractional derivatives.

The existence and uniqueness results of solutions were obtained by using the Schauder
fixed point theorem and Banach contraction mapping principle.

Using the fixed point index theory, the authors [17] studied the existence and multiplic-
ity of positive solutions of the following IVP:

⎧
⎨

⎩

(Dαu)(t) = f (t, u(t), (Dβu)(t)), t ∈ (0, 1],

u(k)(0) = ηk , k = 0, 1, . . . , n – 1,

where n – 1 < β < α < n, n ∈ N, Dα and Dβ are the Caputo fractional derivatives.
Inspired by the works mentioned above, in this article we aim to investigate the existence

of solutions for the following nonlinear fractional-order integro-differential equation on
a semi-infinite interval:

⎧
⎪⎪⎨

⎪⎪⎩

(Dα
a+u)(t) = f (t, u(t), (Dβ1

a+u)(t), . . . , (Dβk
a+u)(t),

(T0u)(t), (T1Dγ1
a+u)(t), . . . , (TmDγm

a+ u)(t)),

(Dα–i
a+ u)(a+) = ui, i = 1, 2, . . . , n,

(1.1)

where n = –[–α], t ∈ J = [a, +∞), f ∈ C(J × Ek+m+2, E), u1, u2, . . . , un ∈ E, (E,‖ · ‖) is a real
Banach space. 0 < β1 < β2 < · · · < βk < α, 0 < γ1 < γ2 < · · · < γm < α, Dα

a+, Dβi
a+, Dγj

a+ are the
Riemann–Liouville fractional derivatives, and

(Tju)(t) =
∫ t

a
kj(t, s)u(s) ds, j = 0, 1, . . . , m,

where kj(t, s) ∈ C[D, R], D = {(t, s)|a ≤ s ≤ t < ∞}.
In particular, if α,β1,β2, . . . ,βk ,γ1,γ2, . . . ,γm are natural numbers, then the problem in

(1.1) is reduced to the usual Cauchy problem for the ordinary differential equation:

⎧
⎨

⎩

u(n)(t) = f (t, u(t), u′(t), . . . , u(n–1)(t), (T0u)(t), (T1u′)(t), . . . , (Tn–1u(n–1))(t)),

u(i)(0) = ui, i = 1, 2, . . . , n – 1.
(1.2)



Zhang et al. Advances in Difference Equations        (2019) 2019:135 Page 3 of 10

Thus, fractional differential equation (1.1) is the continuation and development of integer-
order differential equations (1.2).

2 Preliminaries and some lemmas
In this section, we introduce notations, definitions, and some useful lemmas, which play
an important role in obtaining the main results of this paper.

Suppose that μ(t) and f0(t) = ‖f (t, θ , . . . , θ )‖ are nonnegative continuous functions on J ,
kj(t, s) are continuous on D = {(t, s)|a ≤ s ≤ t < ∞}. Set

β = min{β1,γ1}, p = α + 1, q =
p

p – 1
, p0 = β + 1, q0 =

p0

p0 – 1
,

M = max
{
β

– 2
p0 , 1

}
, N = m + k + 2,

λ(t) = t – a + 1, μ∗(t) = μ(t) + 1,

f0(t) =
∥
∥f (t, θ , . . . , θ )

∥
∥, K(t) = sup

a≤s≤t,0≤j≤m

{∣
∣kj(t, s)

∣
∣
}

+ 1,

ϕ(t) = λ
α2
p (t)

[
μ∗(t)K(t) + f0(t)

]
, Φ(t) =

(
NMΓ (α)

)q0
∫ t

a
ϕq0 (s) ds,

‖u‖Φ = sup
t∈J

{
λ

– α2
p (t)e–2Φ(t)∥∥u(t)

∥
∥
}

,

CΦ =
{‖u‖Φ < ∞|u : J → E is continuous

}
.

Then CΦ is a Banach space with the norm ‖ · ‖Φ .

Definition 2.1 The Riemann–Liouville fractional derivative of order α for a continuous
function f : [a,∞) → R is defined by

Dα
a+f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1f (s) ds, n = [α] + 1,

provided the right-hand side is defined pointwise on (a,∞).
A map u(t) ∈ C(J , E) with its Riemann–Liouville derivative of order α existing on J is

called a solution of (1.1) if it satisfies (1.1).

Lemma 2.2 (Hölder’s inequality) Suppose that p > 1, 1
p + 1

q = 1, u ∈ Lp[a, b], v ∈ Lq[a, b],
then

∫ b

a
u(t)v(t) dt ≤

(∫ b

a

∣
∣u(t)

∣
∣p dt

) 1
p
(∫ b

a

∣
∣v(t)

∣
∣q dt

) 1
q

.

Lemma 2.3 Suppose that c > 1, β ≤ � < α, p1 = �+1, q1 = p1
p1–1 , W ∈ Lp[a, b], |W (t)| ≤ ϕ(t),

then

∫ t

a
(t – s)�–1W (s)ecΦ(s) ds ≤ c– 1

q0
(
NΓ (α)

)–1
λ

α2
p (t)ecΦ(t).
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Proof

∫ t

a
(t – s)�–1W (s)ecΦ(s) ds

≤
[∫ t

a
(t – s)p1(�–1) ds

] 1
p1

[∫ t

a
ϕq1 (s)ecq1Φ(s) ds

] 1
q1

= �
– 2

p1 (t – a)
�2
p1

[∫ t

a
ϕq1 (s)ecq1Φ(s) ds

] 1
q1

≤ �
– 2

p1 (t – a)
�2
p1

[∫ t

a
ϕq0 (s)ecq1Φ(s) ds

] 1
q1

≤ �
– 2

p1 (t – a)
�2
p1

[∫ t

a

(
NMΓ (α)

)–q0 ecq1Φ(s)dΦ(s)
] 1

q1

≤ �
– 2

p1 (t – a)
�2
p1 · (cq1)– 1

q1
(
NMΓ (α)

)– q0
q1 ecΦ(t)

≤ c– 1
q1

(
NMΓ (α)

)–1
�

– 2
p1 λ

α2
p (t)ecΦ(t)

≤ c– 1
q0

(
NΓ (α)

)–1
λ

α2
p (t)ecΦ(t),

where M = max{β– 2
p0 , 1}. �

Lemma 2.4 Suppose that β ≤ � < α, p1 = � + 1, q1 = p1
p1–1 , u ∈ CΦ , let

(σ1u)(t) =
∫ t

a
(t – s)α–1μ(s)

∥
∥u(s)

∥
∥ds,

(σ2u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
k0(s, τ )

∥
∥u(τ )

∥
∥dτ ds,

(σ3u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
(s – τ )�–1∥∥u(τ )

∥
∥dτ ds,

(σ4u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
K(s)

∫ τ

a
(τ – η)�–1∥∥u(η)

∥
∥dη dτ ds,

then

(σ1u)(t) ≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ2u)(t) ≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ3u)(t) ≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ4u)(t) ≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t).



Zhang et al. Advances in Difference Equations        (2019) 2019:135 Page 5 of 10

Proof Notice that ( p
α

)
2
p > 1, and λ(t) ≥ 1, μ∗(t) ≥ 1, K(t) ≥ 1, t ∈ J , direct calculations show

that, for u ∈ CΦ , by Lemma 2.3,

(σ1u)(t) =
∫ t

a
(t – s)α–1μ(s)

∥
∥u(s)

∥
∥ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)λ

α2
p (s)e2Φ(s) ds

≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ2u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
k0(s, τ )

∥
∥u(τ )

∥
∥dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)K(s)

∫ s

a
λ

α2
p (τ )e2Φ(τ ) dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)K(s)e2Φ(s) ds

≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ3u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
(s – τ )�–1∥∥u(τ )

∥
∥dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)

∫ s

a
(s – τ )�–1λ

α2
p (τ )e2Φ(τ ) dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)λ

α2
p (s)e2Φ(s) ds

≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t),

(σ4u)(t) =
∫ t

a
(t – s)α–1μ(s)

∫ s

a
K(s)

∫ τ

a
(τ – η)�–1∥∥u(η)

∥
∥dη dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)

∫ s

a
K(s)

∫ τ

a
(τ – η)�–1λ

α2
p (η)e2Φ(η) dη dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)K(s)

∫ s

a
λ

α2
p (τ )e2Φ(τ ) dτ ds

≤ ‖u‖Φ

∫ t

a
(t – s)α–1μ(s)K(s)e2Φ(s) ds

≤ 2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t). �

Lemma 2.5 u(t) ∈ CΦ is a solution of problem (1.1) if and only if u(t) ∈ CΦ is a solution of
the integral equation

u(t) =
n∑

j=1

uj

Γ (α – j + 1)
(t – a)α–j

+
1

Γ (α)

∫ t

a
(t – s)α–1f

(
s, u(s),

(
Dβ1

a+u
)
(s), . . . ,

(
Dβk

a+u
)
(s),

(T0u)(s),
(
T1Dγ1

a+u
)
(s), . . . ,

(
TmDγm

a+ u
)
(s)

)
ds. (2.1)
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Proof We only transform (1.1) to the integral equation (2.1) as the converse follows by di-
rect computation. We know that the general solution of the fractional differential equation
in (1.1) can be written as [1]

u(t) =
n∑

j=1

vj(t – a)α–j

+
1

Γ (α)

∫ t

a
(t – s)α–1f

(
s, u(s),

(
Dβ1

a+u
)
(s), . . . ,

(
Dβk

a+u
)
(s),

(T0u)(s),
(
T1Dγ1

a+u
)
(s), . . . ,

(
TmDγm

a+ u
)
(s)

)
ds, (2.2)

where v1, v2, . . . , vn ∈ E are arbitrary elements. For every i = 1, 2, . . . , n, by (2.2), we have

(
Dα–i

a+ u
)
(a+) =

i∑

j=1

vj(t – a)i–j

+
1

(i – 1)!

∫ t

a
(t – s)i–1f

(
s, u(s),

(
Dβ1

a+u
)
(s), . . . ,

(
Dβk

a+u
)
(s), (T0u)(s),

(
T1Dγ1

a+u
)
(s), . . . ,

(
TmDγm

a+ u
)
(s)

)
ds.

Clearly, the condition (Dα–i
a+ u)(a+) = ui implies that

vi =
ui

Γ (α – i + 1)
. �

3 Main results
Theorem 3.1 Suppose that there exists μ ∈ C[J , R+] such that, for any x1, x2, . . . , xk+m+2, y1,
y2, . . . , yk+m+2 ∈ E, we have

∥
∥f (t, x1, x2, . . . , xk+m+2) – f (t, y1, y2, . . . , yk+m+2)

∥
∥

≤ μ(t)
k+m+2∑

j=1

‖xj – yj‖. (3.1)

Then IVP (1.1) has a unique solution in CΦ .

Proof Define an operator A : C(J , E) → C(J , E) by

(Au)(t) =
n∑

j=1

vj(t – a)α–j

+
1

Γ (α)

∫ t

a
(t – s)α–1f

(
s, u(s),

(
Dμ1

a+u
)
(s), . . . ,

(
Dμk

a+ u
)
(s),

(T0u)(s),
(
T1Dγ1

a+u
)
(s), . . . ,

(
TmDγm

a+ u
)
(s)

)
ds. (3.2)
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It follows from (3.1) that

∥
∥f (t, x1, x2, . . . , xk+m+2)

∥
∥ ≤ f0(t) + μ(t)

k+m+2∑

j=1

‖xj‖,

∀t ∈ J , x1, x2, . . . , xk+m+2 ∈ E. (3.3)

For any u ∈ CΦ , by (3.1)–(3.3) and Lemma 2.4, we get

∥
∥(Au)(t)

∥
∥ ≤

∥
∥
∥
∥
∥

n∑

j=1

vj(t – a)α–j

∥
∥
∥
∥
∥

+
1

Γ (α)

∫ t

0
(t – s)α–1

[

f0(s) + μ(s)

(
∥
∥u(s)

∥
∥ +

k∑

j=1

∥
∥
(
Dβj

a+u
)
(s)

∥
∥

+
∥
∥(T0u)(s)

∥
∥ +

m∑

j=1

∥
∥
(
TjD

γj
a+u

)
(s)

∥
∥

)]

ds

≤
∥
∥
∥
∥
∥

n∑

j=1

vj(t – a)α–j

∥
∥
∥
∥
∥

+
1

Γ (α)
Φ(t)

+ (k + m + 2) · 1
Γ (α)

2– 1
q0

(
NΓ (α)

)–1‖u‖Φλ
α2
p (t)e2Φ(t)

=

∥
∥
∥
∥
∥

n∑

j=1

vj(t – a)α–j

∥
∥
∥
∥
∥

+
1

Γ (α)
Φ(t) + 2– 1

q0 ‖u‖Φλ
α2
p (t)e2Φ(t), ∀t ∈ J ,

then Au ∈ CΦ , so A : CΦ → CΦ .
On the other hand, for any u, v ∈ CΦ , by (3.1) and Lemma 2.4, we have

∥
∥(Au)(t) – (Av)(t)

∥
∥

≤
∫ t

0

1
Γ (α)

∫ t

0
(t – s)α–1

[

μ(s)

(
∥
∥u(s) – v(s)

∥
∥ +

k∑

j=1

∥
∥
(
Dβj

a+(u – v)
)
(s)

∥
∥

+
∥
∥
(
T0(u – v)

)
(s)

∥
∥ +

m∑

j=1

∥
∥
(
TjD

γj
a+(u – v)

)
(s)

∥
∥

)]

ds

≤ (k + m + 2) · 1
Γ (α)

2– 1
q0

(
NΓ (α)

)–1∥∥(u – v)
∥
∥

Φ
λ

α2
p (t)e2Φ(t)

= 2– 1
q0

∥
∥(u – v)

∥
∥

Φ
λ

α2
p (t)e2Φ(t), ∀t ∈ J ,

then ‖Au – Av‖Φ ≤ 2– 1
q0 ‖u – v‖Φ . Thus the Banach contraction mapping principle implies

that A has a unique fixed point in CΦ . This completes the proof. �
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4 Example
Consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

(Dα
a+u)(t) = t2 ln(u2(t) + u(t) + 1) + sin(et(Dβ

a+u(t)) + 2t)

+ et2+1 ∫ t
a

(TDγ
a+u)(s)+s3

s2+1 ds, t ∈ J ,

(Dα–i
a+ u)(a+) = ui, i = 1, 2, . . . , n.

(4.1)

Let E = R, then (4.1) can be considered as an IVP of the form (1.1) in E, where n = –[–α],
t ∈ J = [a, +∞), u1, u2, . . . , un ∈R, 0 < β < α, 0 < γ < α, and

(Tu)(t) =
∫ t

a
k(t, s)u(s) ds,

where k(t, s) ∈ C[D, R], D = {(t, s)|a ≤ s ≤ t < ∞}.
Let

f
(
t, x1(t), x2(t), x3(t)

)
= t2 ln

(
x2

1(t) + x1(t) + 1
)

+ sin
(
etx2(t) + 2t

)

+ et2+1
∫ t

a

x3(s) + s3

s2 + 1
ds,

then, for any x1, x2, x3, y1, y2, y3 ∈ C[0, +∞), we have

∣
∣f (t, x1, x2, x3) – f (t, y1, y2, y3)

∣
∣ ≤ μ(t)

3∑

j=1

|xj – yj|,

here μ(t) = 2t2 + et + et2+1(t – a).
Obviously (3.1) holds, all the conditions of Theorem 3.1 are satisfied. Using Theorem 3.1

we can conclude that IVP (4.1) has a unique solution.

5 Concluding remarks
In this paper, we establish the conditions for the existence of a unique solution for problem
(1.1), which is indeed an important and useful contribution to the existing literature on
the topic. We emphasize that our method of proof is completely different from the ones
used in [12–32].
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