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1 Introduction
Let q ≥ 3 be an integer, and let χ be a nonprincipal character mod q. Then for any integral
coefficient polynomial f (x), we define the character sum of the polynomial as

N(χ , f ; q) =
q∑

a=1

χ
(
f (a)

)
.

This sum plays an extremely significant role in analytic number theory, so they have
aroused the interest and favor of a great deal of number theorists. A lot of works con-
nected with N(χ , f ; q) can be found in [1–9] and [10–12]. In fact, the sums N(χ , f ; q) are
a particular case of the general character sums of the polynomials

N+M∑

a=N+1

χ
(
f (a)

)
,

where M and N are any positive integers. If q = p is an odd prime, then Weil (see [2] and
[6]) obtained following significant conclusion:

Suppose that χ is a qth-order character mod p and f (x) is not a perfect qth power mod

p. Then we have the estimate

N+M∑

x=N+1

χ
(
f (x)

) � p
1
2 ln p, (1)

where the constant in “�” depends only on the degree of f (x). The estimate in (1) is the
best possible.
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Now for any odd prime p and any nonprincipal character χ mod p, we consider the
following problem: for any positive integers k and h, let

Mk(h,χ ; p) =
p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

ak =0

χ
(
ah

1 + ah
2 + · · · + ah

k
)

and

Nk(h,χ ; p) = Mk(h,χ ; p) + Mk(h,χ ; p).

We inquire if there exists an accurate computational formula for Nk(h,χ ; p)?
About this contents, from our personal perspective, it appears that none had researched

it yet; at least so far, we have not seen any related results before. The problem is meaningful,
since it can help scholars to find out more exact information of the character sums.

In our paper, applying analytic methods and the properties of the classical Gauss sums,
we researched the problem of calculating Nk(h,χ ; p) and obtained a significant linear re-
currence formula for it. We will prove the following:

Theorem 1 Let p be an odd prime, let h be a positive integer, and let χ be any Dirichlet
character mod p such that χh �= χ0, the principal character mod p. Then for any positive
integer k, we obtain the identity

Nk(h,χ ; p) = Mk(h,χ ; p) =
p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

ak =0

χ
(
ah

1 + ah
2 + · · · + ah

k
)

= 0.

Theorem 2 Let p be an odd prime with p ≡ 1 mod 3, and let χ be any third-order char-
acter mod p. Then we have the identities

N1(3,χ ; p) = 2(p – 1); N2(3,χ ; p) = (p – 1)d; N3(3,χ ; p) = 6p(p – 1)

and

Nk(3,χ ; p) = 3p · Nk–2(3,χ ; p) + dp · Nk–3(3,χ ; p)

for all integers k ≥ 4, where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Theorem 3 Let p = 8h + 5 be a prime, and let χ be any fourth-order character mod p.
Then we have the identities

N1(4,χ ; p) = 2(p – 1), N2(4,χ ; p) = –4(p – 1)α,

N3(4,χ ; p) = 2(p – 1)
(
p – 2α2)

and

Nk+4(4,χ ; p) = –2pNk+2(4,χ ; p) + 8pαNk+1(4,χ ; p) – p
(
9p – 4α2)Nk(4,χ ; p)
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for all k ≥ 0, where N0(4,χ ; p) = 0, α =
∑ p–1

2
a=1 ( a+a

p ), ( ∗
p ) denotes the Legendre symbol mod p,

and aa ≡ 1 mod p.

Theorem 4 Let p = 8h + 1 be a prime, and let χ be a fourth-order character mod p. Then
we have the identities

N1(4,χ ; p) = 2(p – 1), N2(4,χ ; p) = 4(p – 1)α, N3(4,χ ; p) = 2(p – 1)
(
2α2 – p

)

and

Nk+4(4,χ ; p) = 6pNk+2(4,χ ; p) + 8pαNk+1(4,χ ; p) + p
(
4α2 – p

)
Nk(4,χ ; p)

for all integers k ≥ 0, where N0(4,χ ; p) = 0.

From the methods of proving the theorems, we can also infer the following:

Corollary 1 Let p be a prime with p ≡ 1 mod 3, and let χ be a third-order character
mod p. Then for any integer k ≥ 0, we have the identity

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

p–1∑

c=0

p–1∑

d=0

χ
(
a3 + b3 + c3 + d3)

∣∣∣∣∣ = (p – 1)p · √9p + 4d2.

Corollary 2 Let p = 4k + 1 be an odd prime, and let χ be a fourth-order character mod p.
Then we have the identity

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

χ
(
a4 + b4)

∣∣∣∣∣ = 2(p – 1)
√

p.

Corollary 3 Let p = 4k + 1 be an odd prime, and let χ be a fourth-order character mod p.
Then we have the identity

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

p–1∑

c=0

χ
(
a4 + b4 + c4)

∣∣∣∣∣ = (p – 1)p.

Corollary 4 Let p = 8k + 5 be an odd prime, and let χ be a fourth-order character mod p.
Then we have the identity

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

p–1∑

c=0

p–1∑

d=0

χ
(
a4 + b4 + c4 + d4)

∣∣∣∣∣ = 4(p – 1)p · √p + 8α2.

Corollary 5 Let p = 8k + 1 be an odd prime, and let χ be a fourth-order character mod p.
Then we have the identity

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

p–1∑

c=0

p–1∑

d=0

χ
(
a4 + b4 + c4 + d4)

∣∣∣∣∣ = 4(p – 1)p · √9p + 16α2.
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2 Several lemmas
In this section, we give several lemmas, which are essential in the proofs of our theorems.
Hereinafter, we are going to use some properties of the classical Gauss sums, which can be
found in some analytic number theory books, such as [13]; so we will not repeat them here.
For convenience, first, we give the definition of the classical Gauss sums τ (χ ) as follows:
for any integer q > 1, let χ be any Dirichlet character mod q. Then the famous Gauss sum
τ (χ ) is defined as

τ (χ ) =
q∑

a=1

χ (a)e
(

a
q

)
,

where e(y) = e2π iy. With this mark, we have the following:

Lemma 1 Given p be an odd prime with p ≡ 1 mod 3, and let ψ be any third-order char-
acter mod p. Then we have the identity

τ 3(ψ) + τ 3(ψ) = dp,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof See Lemma 3 of [9] or references [14] and [10]. �

Lemma 2 Given p be an odd prime with p ≡ 1 mod 3, and for any integer b with (b, p) = 1,
let U(b, p) =

∑p–1
a=0 e( ba3

p ). Then we have the identity

U3(b, p) = dp + 3p · U(b, p),

where d is the same as in Lemma 1.

Proof Let χ be any third-order character mod p. Then χ2 = χ , and from Lemma 1 and
the properties of Gauss sums we have

U(b, p) =
p–1∑

a=0

e
(

ba3

p

)
= 1 +

p–1∑

a=1

e
(

ba3

p

)

= 1 +
p–1∑

a=1

(
1 + χ (a) + χ (a)

)
e
(

ba
p

)

=
p–1∑

a=0

e
(

ba
p

)
+

p–1∑

a=1

χ (a)e
(

ba
p

)
+

p–1∑

a=1

χ (a)e
(

ba
p

)

= χ (b)τ (χ ) + χ (b)τ (χ). (2)

Note that χ3 = χ0 and τ (χ )τ (χ) = p, so from (2) we immediately infer that

U3(b, p) =
(
χ (b)τ (χ ) + χ (b)τ (χ )

)3

= τ 3(χ ) + 3τ (χ )τ (χ )
(
χ (b)τ (χ ) + χ (b)τ (χ )

)
+ τ 3(χ )
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= τ 3(χ ) + τ 3(χ ) + 3p · U(b, p) = dp + 3p · U(b, p).

This proves Lemma 2. �

Lemma 3 Given p be an odd prime with p ≡ 1 mod 4, and let ψ be any fourth-order
character mod p. Then we have the identity

τ 2(ψ) + τ 2(ψ) =
√

p ·
p–1∑

a=1

(
a + a

p

)
= 2

√
p · α,

where α =
∑ p–1

2
a=1 ( a+a

p ), ( ∗
p ) denotes the Legendre symbol mod p, and a denotes the multi-

plicative inverse of a mod p, that is, aa ≡ 1 mod p.

Proof In fact, this is Lemma 2.2 in [15]. Therefore we omit its proof. �

Lemma 4 Let p be an odd prime with p ≡ 1 mod 4, and for any integer b with (b, p) = 1,
let A(b, p) =

∑p–1
a=0 e( ba4

p ). Then we have the identities

A4(b, p) = 2p
(
C(p) + 2

)
A2(b, p) + 8pαA(b, p) + 4pα2 – C2(p)p2,

where C(p) = –3 if p = 8k + 5 and C(p) = 1 if p = 8k + 1.

Proof Let ψ be a fourth-order character mod p. Then ψ2 = χ2 (the Legendre symbol mod

p), and by the properties of Gauss sums we get

A(b, p) =
p–1∑

a=0

e
(

ba4

p

)
= 1 +

p–1∑

a=1

e
(

ba4

p

)

= 1 +
p–1∑

a=1

(
1 + ψ(a) + χ2(a) + ψ(a)

)
e
(

ba
p

)

=
p–1∑

a=0

e
(

ba
p

)
+

p–1∑

a=1

ψ(a)e
(

ba
p

)
+

p–1∑

a=1

χ2(a)e
(

ba
p

)
+

p–1∑

a=1

ψ(a)e
(

ba
p

)

= χ2(b)τ (χ2) + ψ(b)τ (ψ) + ψ(b)τ (ψ). (3)

Note that ψ2 = ψ
2 = χ2, τ (ψ)τ (ψ) = ψ(–1)τ (ψ)τ (ψ) = ψ(–1)p, and τ (χ2) = √p. Combin-

ing (3) and Lemma 2, we have

A2(b, p) =
(
χ2(b)τ (χ2) + ψ(b)τ (ψ) + ψ(b)τ (ψ)

)2

= p + 2χ2(b)
√

p
(
ψ(b)τ (ψ) + ψ(b)τ (ψ)

)
+ χ2(b)

(
τ 2(ψ) + τ 2(ψ)

)

+ 2τ (ψ)τ (ψ)

= p + 2χ2(b)
√

pA(b, p) – 2p + χ2(b)2
√

p · α + ψ(–1)2p

= C(p)p + 2χ2(b)
√

pA(b, p) + χ2(b)2
√

p · α, (4)

where C(p) = –3 if p = 8k + 5 and C(p) = 1 if p = 8k + 1.
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Now, according to (4), we have

(
A2(b, p) – C(p)p

)2 = A4(b, p) – 2C(p)pA2(b, p) + C2(p)p2

=
(
2
√

pA(b, p) + 2
√

p · α)2 = 4p
(
A2(b, p) + 2αA(b, p) + α2). (5)

Applying (5), we immediately deduce that

A4(b, p) = 2p
(
C(p) + 2

)
A2(b, p) + 8pαA(b, p) + 4pα2 – C2(p)p2.

This proves Lemma 4. �

Lemma 5 Let p be an odd prime with p ≡ 1 mod 3, and let χ be any third-order character
mod p. Then we have the identities

M1(3,χ ; p) = p – 1; M2(3,χ ; p) =
p – 1

p
· τ 3(χ ); M3(3,χ ; p) = 3p(p – 1)

and

Mk(3,χ ; p) = 3p · Mk–2(3,χ ; p) + dp · Mk–3(3,χ ; p)

for all integers k ≥ 4, where d is the same as in Lemma 1.

Proof It is obvious that M1(3,χ ; p) = p – 1. According to (2) and the properties of Gauss
sums, we get

M2(3,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)
p–1∑

c=0

p–1∑

d=0

e
(

b(c3 + d3)
p

)

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
χ (b)τ (χ ) + χ (b)τ (χ)

)2

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
χ2(b)τ 2(χ ) + 2p + χ2(b)τ 2(χ )

)

=
τ 2(χ )
τ (χ )

· (p – 1) =
p – 1

p
· τ 3(χ ), (6)

M3(3,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)
p–1∑

c=0

p–1∑

d=0

p–1∑

e=0

e
(

b(c3 + d3 + e3)
p

)

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
χ (b)τ (χ ) + χ (b)τ (χ)

)3

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
τ 3(χ ) + 3pU(b, p) + τ 3(χ )

)
= 3p(p – 1). (7)
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For any integer k ≥ 4, according to Lemma 1, we have

Mk(3,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

a=0

e
(

ba3

p

))k

=
1

τ (χ )

p–1∑

b=1

χ (b)Uk–3(b, p)
(
τ 3(χ ) + τ 3(χ ) + 3pU(b, p)

)

=
3p

τ (χ )

p–1∑

b=1

χ (b)Uk–2(b, p) +
dp

τ (χ )

p–1∑

b=1

χ (b)Uk–3(b, p)

= 3pMk–2(3,χ ; p) + dp · Mk–3(3,χ ; p). (8)

Now Lemma 5 follows from (6), (7), and (8). �

Lemma 6 Let p = 8h + 5 be a prime, and let χ be any fourth-order character mod p. Then
we have the identities

M1(4,χ ; p) = p – 1;

M2(4,χ ; p) = 2(p – 1)
√

p · τ (χ )
τ (χ )

= –
2(p – 1)√p

· τ 2(χ );

M3(4,χ ; p) = (p – 1)
τ 3(χ )
τ (χ )

= –
p – 1

p
· τ 4(χ ).

For every integer k ≥ 0, we obtain the fourth-order linear recurrence formula

Mk+4(4,χ ; p) = –2pMk+2(4,χ ; p) + 8pαMk+1(4,χ ; p) – p
(
9p – 4α2)Mk(4,χ ; p),

where M0(4,χ ; p) = 0, and α is the same as in Lemma 3.

Proof Let p be an odd prime with p = 8h + 5, and let χ be any fourth-order character mod

p. Then this time we obtain C(p) = –3. For any integer k ≥ 0, according to the properties
of Gauss sums and Lemma 4, we get

Mk+4(4,χ ; p) =
1

τ (χ )

p–1∑

x1=0

p–1∑

x2=0

· · ·
p–1∑

xk+4=0

p–1∑

b=1

χ (b)e
(

b(x4
1 + x2

2 + · · · + x4
k+4)

p

)

=
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

x=0

e
(

bx4

p

))k+4

=
1

τ (χ )

p–1∑

b=1

χ (b)Ak+4(b, p)

=
1

τ (χ )

p–1∑

b=1

χ (b)Ak(b, p)
(
–2pA2(b, p) + 8pαA(b, p) – p

(
9p – 4α2))

= –2pMk+2(4,χ ; p) + 8pαMk+1(4,χ ; p) – p
(
9p – 4α2)Mk(4,χ ; p), (9)

where M0(4,χ ; p) = 0.



Zhang and Chen Advances in Difference Equations        (2019) 2019:133 Page 8 of 12

Suppose that χ is a fourth-order character mod p. Then we get

M1(4,χ , p) =
p–1∑

a=0

χ
(
a4) =

p–1∑

a=0

χ4(a) = p – 1. (10)

Note that χ (b)( b
p ) = χ (b), so from (4) and (3) we get

M2(4,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

x=0

e
(

bx4

p

))2

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
–3p + χ2(b)2

√
pA(b, p) + χ2(b)2

√
pα

)

=
2√p
τ (χ )

p–1∑

b=1

χ (b)A(b, p)

=
2√p
τ (χ )

p–1∑

b=1

χ (b)
(
χ2(b)

√
p + χ (b)τ (χ ) + χ (b)τ (χ )

)

= –
2(p – 1)√p

· τ 2(χ ). (11)

In the same way, applying (3) and the orthogonality of the characters mod p, we also have

M3(4,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

x=0

e
(

bx4

p

))3

=
1

τ (χ )

p–1∑

b=1

χ (b)
(
χ2(b)

√
p + χ (b)τ (χ ) + χ (b)τ (χ )

)3

=
3p

τ (χ )

p–1∑

b=1

χ (b)χ (b)τ (χ) +
1

τ (χ)

p–1∑

b=1

τ 3(χ ) +
3

τ (χ )

p–1∑

b=1

τ (χ )τ 2(χ )

= –
p – 1

p
· τ 4(χ ). (12)

Combining (9)–(12), we immediately obtain Lemma 6. �

Lemma 7 Let p = 8h + 1 be a prime, and let χ be any fourth-order character mod p. Then
we have the identities

M1(4,χ ; p) = p – 1;

M2(4,χ ; p) = 2(p – 1)
√

p · τ (χ )
τ (χ )

=
2(p – 1)√p

· τ 2(χ );

M3(4,χ ; p) =
p – 1

p
· τ 4(χ ).

For every integer k ≥ 0, we have the fourth-order linear recurrence formula

Mk+4(4,χ ; p) = 6pMk+2(4,χ ; p) + 8pαMk+1(4,χ ; p) + p
(
4α2 – p

)
Mk(4,χ ; p).
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Proof If p = 8h + 1, then from Lemma 4 we have

Mk+4(4,χ ; p) =
1

τ (χ )

p–1∑

x1=0

p–1∑

x2=0

· · ·
p–1∑

xk+4=0

p–1∑

b=1

χ (b)e
(

b(x4
1 + x2

2 + · · · + x4
k+4)

p

)

=
1

τ (χ )

p–1∑

b=1

χ (b)Ak(b, p)
(
6pA2(b, p) + 8pαA(b, p) + p

(
4α2 – p

))

= 6pMk+2(4,χ ; p) + 8pαMk+1(4,χ ; p) + p
(
4α2 – p

)
Mk(4,χ ; p). (13)

It is not complicated to prove that

M1(4,χ ; p) =
p–1∑

x=0

χ
(
x4) =

p–1∑

x=0

χ4(x) = p – 1. (14)

Note that χ (b)( b
p ) = χ (b), τ (χ )τ (χ ) = p. By the method of proving (11) we have

M2(4,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

x=0

e
(

bx4

p

))2

=
2√p · τ (χ )

τ (χ)

p–1∑

a=1

1 =
2(p – 1)√p

· τ 2(χ ). (15)

Similarly, combined with the method of proving (12), we also get

M3(4,χ ; p) =
1

τ (χ )

p–1∑

b=1

χ (b)

( p–1∑

x=0

e
(

bx4

p

))3

= (p – 1) · τ 3(χ )
τ (χ )

=
p – 1

p
· τ 4(χ ). (16)

Now Lemma 7 follows from (13)–(16). �

3 Proofs of the theorems
In this section, we complete the proofs of our theorems. First of all, we prove Theorem 1
by mathematical induction. If k = 1, then note that χh �= χ0. According to the properties
of character sums mod p, we obtain the identity

p–1∑

a=0

χ
(
ah) =

p–1∑

a=1

χh(a) = 0. (17)

Suppose that the conclusion holds for an integer k = m ≥ 1, that is,

p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

am=0

χ
(
ah

1 + ah
2 + · · · + ah

m
)

= 0. (18)
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Then for k = m + 1, combining (17) and (18) with the properties of the complete residue
system mod p, we have

p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

am=0

p–1∑

am+1=0

χ
(
ah

1 + ah
2 + · · · + ah

m + ah
m+1

)

=
p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

am=0

χ
(
ah

1 + ah
2 + · · · + ah

m
)

+
p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

am=0

p–1∑

am+1=1

χ
(
ah

1 + ah
2 + · · · + ah

m + ah
m+1

)

=
p–1∑

a1=0

p–1∑

a2=0

· · ·
p–1∑

am=0

χ
(
ah

1 + ah
2 + · · · + ah

m + 1
) p–1∑

am+1=1

χh(am+1)

= 0.

Thus the conclusion is also correct for k = m + 1. This proves Theorem 1.
Now, we are going to prove Theorem 2. From Lemmas 1 and 5, noting that by definition

Nk(h,χ ; p) = Mk(h,χ ; p) + Mk(h,χ ; p), we get

N1(3,χ ; p) = 2(p – 1), N3(3,χ ; p) = 6p(p – 1),

N2(3,χ ; p) =
p – 1

p
· τ 3(χ ) +

p – 1
p

· τ 3(χ ) = d(p – 1)

and

Nk(3,χ ; p) = 3p · Nk–2(3,χ ; p) + dp · Nk–3(3,χ ; p)

for all integers k ≥ 4. This proves Theorem 2.
Suppose that p is an odd prime with p = 8h + 5 and that χ is a fourth-order character

mod p. Then applying Lemmas 3 and 6, we have

N1(4,χ ; p) = 2(p – 1); (19)

N2(4,χ ; p) = –
2(p – 1)√p

· τ 2(χ ) –
2(p – 1)√p

· τ 2(χ ) = –4(p – 1) · α. (20)

By the identities τ (χ )
2

= τ 2(χ ), τ 2(χ )τ 2(χ ) = τ 2(χ )τ (χ )
2

= p2, and

τ 4(χ ) + τ 4(χ ) =
(
τ 2(χ ) + τ 2(χ )

)2 – 2τ 2(χ )τ 2(χ ) = 4pα2 – 2p2,

we have

N3(4,χ ; p) = –
p – 1

p
· τ 4(χ ) –

p – 1
p

· τ 4(χ )

= –
p – 1

p
(
4pα2 – 2p2) = 2

(
p – 2α2)(p – 1). (21)
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For every integer k ≥ 0, we get the fourth-order linear recurrence formula

Nk+4(4,χ ; p)

= –2pNk+2(4,χ ; p) + 8pαNk+1(4,χ ; p) – p
(
9p – 4α2)Nk(4,χ ; p), (22)

where N0(4,χ ; p) = 0, and α is the same as in Lemma 3.
Now Theorem 3 follows from (19)–(22).
In the same way, using Lemmas 3 and 7, we can also deduce Theorem 4.
To prove Corollary 1, applying Lemma 5, we get

M4(3,χ ; p) = 3(p – 1)τ 3(χ ) + dp(p – 1).

Then from this formula and Lemma 1, by the identities |τ (χ )| = √p and τ 3(χ ) = τ 3(χ ) we
have

∣∣∣∣∣

p–1∑

a=0

p–1∑

b=0

p–1∑

c=0

p–1∑

c=0

χ
(
a3 + b3 + c3 + d3)

∣∣∣∣∣

=
∣∣3(p – 1)τ 3(χ ) + dp(p – 1)

∣∣

= (p – 1)
∣∣3τ 3(χ ) + dp

∣∣ = (p – 1)
[
9p3 + 3dp

(
τ 3(χ ) + τ 3(χ )

)
+ d2p2] 1

2

= (p – 1)
[
9p3 + 3d2p2 + d2p2] 1

2 = (p – 1)p · √9p + 4d2.

This proves Corollary 1.
Corollaries 2 and 3 follow from Lemma 6 and the identity |τ (χ )| = √p.
Next, we are going to prove Corollary 4. If p = 8k + 5, then noting that τ (χ )

2
= τ 2(χ ) and

|α + β|2 = |α|2 + αβ + αβ + |β|2, from Lemmas 6 and 3 we have

∣∣M4(4,χ ; p)
∣∣ =

∣∣4√
p(p – 1)τ 2(χ ) + 8pα(p – 1)

∣∣

= 4
√

p(p – 1)
∣∣τ 2(χ ) + 2

√
pα

∣∣

= 4
√

p(p – 1)
∣∣p2 + 4pα2 + 2

√
pα

(
τ 2(χ ) + τ 2(χ )

)∣∣ 1
2

= 4
√

p(p – 1)
∣∣p2 + 8pα2∣∣ 1

2 = 4p(p – 1) · √p + 8α2. (23)

In the same way, if p = 8k + 1, then from Lemmas 7 and 3, by the method of proving (23)
we have

∣∣M4(4,χ ; p)
∣∣ =

∣∣12
√

p(p – 1)τ 2(χ ) + 8pα(p – 1)
∣∣

= 4
√

p(p – 1)
∣∣3τ 2(χ ) + 2

√
pα

∣∣

= 4
√

p(p – 1)
∣∣9p2 + 4pα2 + 6

√
pα

(
τ 2(χ ) + τ 2(χ )

)∣∣ 1
2

= 4
√

p(p – 1)
∣∣9p2 + 16pα2∣∣ 1

2 = 4p(p – 1) · √9p + 16α2. (24)

Combining (23) and (24), we complete the proofs of Corollaries 4 and 5.
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