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1 Introduction
In 1920 Hardy [13] proved the discrete inequality

00 1 n P p ©
Z(; Zal) < (1%) Zaﬁ, p>1, (1.1)
n=1

n=1 i=1

where a,, > 0 for n > 1. This inequality has been discovered in his attempt to give an ele-
mentary proof of Hilbert’s inequality for double series that was known at that time. In 1925
Hardy [14] proved the continuous inequality using the calculus of variations, which states
that for f > 0 integrable over any finite interval (0,x) and f? integrable and convergent
over (0,00) and p > 1, then

[ Lrmef oGy [

The constant (p/(p — 1))? in (1.1) and (1.2) is the best possible. For generalizations, exten-
sions, and applications of these inequalities, we refer the reader to the papers [10-12, 14,
15] and the books [16, 18, 19, 23]. A systematic investigation of the (generalized) Hardy
inequality with weights that started in the late fifties and early sixties was connected with
the name of Beesack [4, Theorem 3.1.1, p. 47]. In particular, Beesack proved that the in-
equality

b x b
/ w(x)(/ f(s)ds)pdng v(x)f? (x) dx (1.3)
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with two weighted functions holds if there exists a positive solution y (with a positive
derivative y’ on (a, b)) of the differential equation

d dy\"™! o
I [V(x)(%) } + w(x)y ™ (x) = 0.

It should be mentioned that Beesack dealt not only with the case p > 1, but also with p < 0
and even with 0 < p < 1. Beesack’s approach was extended to a class of inequalities con-
taining the Hardy inequality (1.3) as a special case; see, e.g., Beesack [5, Theorem 3.1,
p. 711] or Shum [26]. Some of the restrictions on the solution y and on the weights v,
w were removed by Tomaselli [32]. He followed up the earlier paper of Talenti [28], who
considered a little more special weight functions. As usual several authors have been in-
terested in finding some discrete results analogous to continuous results, and accordingly
this subject has become a topic of ongoing research. For example, Chen [9] and [8], Liao
[20, Proposition 2.2, p. 812] investigated similar results for discrete Hardy’s inequality and
its relation with difference equations.

In recent years the study of dynamic inequalities on time scales has received a lot of
attention and has become a major field in pure and applied mathematics. All of these
disciplines are concerned with the properties of these inequalities of various types; for
more details, we refer to the books [2, 3] and the papers [1, 21, 22, 27]. The general idea
is to prove a result for an inequality where the domain of the unknown function is a so-
called time scale T, which is an arbitrary nonempty closed subset of the real numbers R.
The study of dynamic inequalities on time scales helps avoid proving results twice—once
for a differential inequality and once again for a difference inequality. For more details, we
refer the reader to [3] for recent results of Hardy-type inequalities on time scales.

Motivated by the above results, we naturally raise the question now: Is the solvability of
some nonlinear dynamic equations on time scales not only sufficient but in a certain sense
also necessary for the validity of some Hardy-type inequality?

In this paper, we try to give an affirmative answer to this question and give the new char-
acterizations of the weights in Hardy-type inequalities on time scales and their relevance
with nonlinear dynamic equations. The main results will be proved in the next section
by employing Holder’s inequality, Minkowski’s inequality, and a chain rule on time scales
for delta-integral inequalities. Since the dynamic inequalities for nabla-integral on a time
scale T have received a lot of attention, it is worth here to mention that the results in The-
orem 3.1 can be reformulated via the nabla-integral (V-integral) calculus. This also gives
us the possibility to predict the shape of our results for diamond ¢, -integral functions (see
[29-31]).

This paper is organized as follows. In Sect. 2, we present some preliminaries about the
theory of time scales and state the basic formulae that will be needed in the sequel. In
Sect. 3, we shall state and prove the main results of this paper. In particular, Theorem 3.1
gives us a clear explanation of the possibility of linking dynamic Hardy-type inequality
containing weights with half-linear dynamic equations. As a special case of Theorem 3.1,
when T = N, we will obtain the discrete result obtained by Liao [20, Proposition 2.2, p. 812].
Finally, when T = qNO, we will obtain the g-difference analogue for our results. For illus-
trations, we will give some applications of our results and get the sharp constants of well-
known inequalities.
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2 Preliminaries on time scales

In this section, we present preliminaries and the basic lemmas used in our subsequent dis-
cussions. For more details, we refer the reader to the paper by Hilger [17] and the mono-
graph by Bohner and Peterson [6]. A time scale T is an arbitrary nonempty closed subset
of the real numbers R. We assume throughout that T has the topology that it inherits
from the standard topology on the real numbers R. The forward jump operator and the

backward jump operator are defined by
o(t):=inf{seT:s>t}, and p(¢):=sup{seT:s<i}.

A point ¢ € T is said to be left-dense if p(¢) = ¢ and ¢ > inf T, right-dense if o (£) = ¢, left-
scattered if p(t) < ¢, and right-scattered if o (¢) > £. A function f : T — R is said to be right-
dense continuous (rd-continuous) provided f is continuous at right-dense points and at
left-dense points in T, left-hand limits exist and are finite. The set of all such rd-continuous
functions is denoted by C,4(T).

The graininess function u for a time scale T is defined by w(¢) := o (£) — ¢, and for any
function f : T — R, the notation f“ (¢) denotes f(o (£)). Without loss of generality, we as-
sume that sup T = 0o and define the time scale interval [a, ]t by [a, ]t := [a,b] N T.

Recall the following product and quotient rules for the derivative of the product fg and
the quotient f/g (where gg° # 0, here g° = g o o) of two (delta) differentiable functions f
and g

A Ay faA

(02 =g = v, and (L) SEE @)
g 88’

The chain rule formula on time scales [6, Theorem 1.90, p. 32] is given by (here x: T —

(0, 00) is assumed to be (delta) differentiable)
1
(@) =y / [ + (1-h)x]" " dna(¢), y eR. (2.2)
0

In this paper we will use the (delta) integral which we can be defined as follows. If G2 (¢) =
g(t), then the Cauchy (delta) integral of g is defined by

It was shown (see [6, Theorem 1.70, p. 26]) that if g € C,4(T), then the Cauchy integral
G(t) := ftg g(s)As exists, £y € T, and satisfies G*(¢) = g(¢), t € T. An infinite integral is de-
fined as follows:

00 b
/ g(t)At = lim g(t)At.
a b—o00

a

The integration on discrete time scales is defined by

b
/ gOAt= Y pu(g().

tela,b)
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Note that if T = R, then
b b
o=t  w®=0  fO-f) t/fmAhi/fmdt

IfT=N,theno(t) =¢t+1, fabf(t)At = Zf;alf(t). IfT=hN,h>0,theno(t) =t+h, u(t) = h,
and

b—a—h

h
/ ’ fOAE= " fla+khh.

k=0

IfT={t:t=qg"keNyq>1},theno(t) = g, u(t) = (g - 1)t,
[ 1= sl wherety =g
t k=ng

The integration by parts formula on time scales is given by

b b
/ u(®)v® () At = [u(t)v(t)]l; —/ u®(t)v° (£)At. (2.3)

Holder’s inequality on time scales [6, Theorem 6.13, p. 259] is given by

b b ir b 3
/|u(t)u(t)|At5[/ |u(t)|th] [/ |u(t)|"At] ) (2.4)

where a,b € T, u,v € Ciq([a,b]1,R),p>1,and 1/p + 1/g = 1.

3 Main results

Throughout the paper, we will assume that the functions in the statements of the theorems
are nonnegative and rd-continuous functions and (without mentioning) the integrals in
the statements of the theorems are assumed to exist. Now we state and prove the basic
lemmas that will be used in the proofs of our main results. The first lemma is adapted
from [25, Lemma 2.6, p. 593].

Lemma 3.1 Let T be a time scale with a,b € T and f,g € Ciq([a, b1, R). If m > 1, then

([ o[ son) se)" = ["ewo( [ rone) "o 51

From now on, we will deal with the following half-linear dynamic equation:

4
=

2 (ve () (> () 7

9
£3

)+ w(x)yr (o) =0, (32)

where p* is the conjugate of p, and the weighted dynamic Hardy-type inequality

b x 1 b 3
(/ w(x) (/ u(s) ds)qAx) <C (/ V(x)up(x)Ax> (3.3)

forl<p<g<oo.

Page 4 of 15
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Actually, the main question that we will give the affirmative answer to states that the
solvability of the dynamic equation (3.2) not only is necessary for the validity of the
weighted dynamic Hardy-type inequality (3.3) but also is sufficient. The next result will
guarantee the first direction, which emphasizes the need to achieve the equation in order
to prove the legitimacy of the inequality. In the rest of the paper, we will assume that the

function v(x) satisfies the condition

1

foo v P (x) Ax = 0. (3.4)

Lemma 3.2 Let T be a time scale with a,b € T, 1 <p < q < o0, u € Cy([a,b]lT,R) be a

nonnegative function, w, v be positive rd-continuous functions on (a, b)r,
* *
/ VP (t)At< oo forx € [a, b, (3.5)
a

and there exists a number ). > 0 such that the dynamic equation (3.2) has a positive solution

y(x). Then the following inequality

b o(x) : b 2
(/ w(x) (/ f(t)At)qAx) < C(/ V(x)fp(x)Ax> (3.6)

holds for every positive function f(x) on [a, b]t, with the constant

Q-

C=A (3.7)

Proof Suppose that y(x) is a positive solution of (3.2). By utilizing Lemma 1.2.1 in [24,
Lemma 1.2.1, p. 17] and condition (3.4), we see that y satisfies

y(x),y*(x)>0 and y*%(x)<0 forx € [a,b]r. (3.8)

For, x, t € (a, b)r denote

a
*

(%) = —A (v () (y* (%)) 7 )%, (3.9)

U (t) = PO ()7 . (3.10)

Then (3.2) yields that ¢(x) = w(x)ypi* (0 (x)) and the time scales Holder’s inequality together
with (3.8) imply that

o(x) q
( f@) At> w(x)

o(x) 1 1 q
( / OO @) (@) At> w(x)

q 4
3

v o(x) 7
(o

" (o) - @)
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o(x)

*‘“‘

< W)y (a(x))( wmm)ﬁ

o) i
- <p(x)( / wmt) .

Integrating from a to b with respect to x and denoting that r = g/p, we get that

(/ b( / U(x)f(t)m)qw(xmx)i <(/ o (/ " w(t)At)rAx)i,

Applying the time scales Minkowski’s inequality (3.1), we have that

b o(x) q % b b %
( / ( / f(t)At) w(x)Ax) < / W)( / w(x)Ax) At. (3.11)

Using (3.9) to estimate the inner integral on the right-hand side yields that

4
¥

b b
/go(x)Ax:—)L/ (Vp(x)(y (x)) ) Ax

t

t
b

‘m*‘g

= ( A(x

*‘“‘

)
)i 5

a4
F

(V,, @ (> ()

<P ()2 (®) 7,

—vi ()" (1))

which leads directly to

b r » ya
( / <p(x)Ax) <Aiv(B) (Y2 (1)) ¥".

Substituting this estimate in (3.11) and using (3.10), we have that

(/ (/ st At) ")Ax> /WMV A0)7

5] WO O 0)F (7 (1) At

a

*l'“

At

b
Y f WP () At.

Finally, taking 1/p power to both sides, we get the required inequality (3.6) with constant
C asin (3.7). The proof is complete. g

Now the remaining part, which ensures that our answer to the main question is fully
covered, is to prove the other direction, i.e., the sufficient condition, which is the main
job of the next Lemmas 3.4-3.5. To prove these lemmas, we need the following auxiliary
result, in which we will make use of Riccati-like inequality to get a useful integral inequality

in the sequel.
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Lemma 3.3 Suppose that y(x) is a positive solution of (3.2) and set

_ y(x)
¥4 (x)

i (x) forx e [a,b]r.

z(x)
Then z(x) > 0 and satisfies the dynamic inequality
* a, .
260> Swwzr ) + v @) (3.12)
q

Proof For convenience, we sometimes skip the argument x in the computations. By using
the quotient rule to differentiate

1—p*
»w T

z(x)
we get that

5 _ PPEEDE)A +y ] -yt A [y

) y2 @)y~ (o (%))
YA [y(o ®) (1 — p*)v?" + 2yl - yA8 [yl
) Y @)
y(o @)y (L=p " +y y vt —yhlplr”
) y2 @)y~ (o (%))

_ o +(1- *)y(“(x))"'p* _yhee

y2 (o (%)) yAo®)  yryA(o()

From (3.8) it follows that y*(x) > y* (o (x)), and then we get that

.
ADI-p

o Y e@p (1- *)y(a(x))V“’* o
y2(o (%) ¥4 (o (%)) yeye
(g YE@VT oy
)@y T o
AP (1 g yo®) | eylo@)yns

o) -V 7@A)2 . (3.13)

"
AA1-p

For the last inequality, we have used the fact that y(x) < y(o (x)) since y*(x) > 0. But, since

T 4, AL

wy?” (o)) = =2 (vP ()7,

it follows by using the chain rule (noting that y*#(x) < 0) that

q a4
F

i (069) = -2(vF (()7)" + () 0 (0 ) F)



Saker and Mahmoud Advances in Difference Equations (2019) 2019:129 Page 8 of 15

which leads to

7o ()
W—————
(),A)IT*“
g (190 an P i (2 (0 (1))
<—Ap* (v (yA)z yAA+ P yr 1)/( ) (yA)p*u >
4 g (YO s P 0" (0 () %)
< )‘p*v (V ’ (y2)? oy Y +p ( ) (yA)”*H ’

and hence,

y(o (x))v " Fas
W( ye )

<Ai< 1”*}/((IA(X))J/AA+(1—!9*)1/ (o )—UA(G(x)))p )
(y ()/A)p*+1

and then we get that
q

AW Tt
rq ye

(yA(U 7 1 *J/(U( )) AA
( ) ()/A)i* v (yA)Z :

<(1 —p*)v

Since y(x) > y* (0 (x)) and (1 — p*) is always negative, we obtain that

EwchWW)*“
rq yo

- (VA(G(x ))1’ L V(o) an
<(1=p W y(ox) ——L— —y' P
(- st 2O
oy Vo (%)) «y(o (%))
=(1-p J’J}A(Uofx)) v y(yA)z ye (319

Since y*(x) > 0, it follows that y(x) < y(c (x)), and hence

o
Aq yh Aq ye

* a,
- f%;vvzp* ! (3.15)

Finally, assembling (3.13), (3.14), and (3.15), we get that

* a,
x) > p—w(x)zp* !

A
(kq

z (@) + V' (), (3.16)

which is the desired inequality (3.12). The proof is complete. d
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Lemma 3.4 Let T be a time scale with a,b € T, 1 <p < q < o0, u € Cy([a,b]T,R) is a
nonnegative function, and let w, v be positive rd-continuous functions on [a, b]t. Denote

k=Lt sup o [T 10 [0 ons) 617

where the infimum is taken for every positive function f(t) defined on [a, b]T.
(i) Ifthere exists a positive constant k. such that the dynamic equation (3.2) has a
positive solution y(x), then

K <A <oo0. (3.18)

(ii) IfK < oo, then the dynamic equation (3.2) has a positive solution y(x) satisfying (3.8)
forevery x> K.

Proof (i) Suppose that y(x) is a positive solution of (3.2) which satisfies (3.8) and set

_ Y&
2 = 5"

which leads directly to that z(x) is a positive solution on [4, b]t for the following dynamic
inequality:

*

) > f—qw(x)zpl* ) + V17 (). (3.19)
Since
)= f Y

then we have that

k

o) > f—q f ") AL+ / "V AL,

Now, assume that

then we get that f(x) > 0 for x € [a, b]T, and

1

p_*i " tl—p* )'%Jr
> 7@ ), w(t)(f(t)+/a VP (s)As At,

which gives the validity of (3.18) according to the definition of K (3.17).
(ii) Assume that A > K. In view of definition (3.17), there is a positive function f(x) such
that

®pX t }%Jrl
f(x)z‘;’—q / w(t)(f(t)+ / vl-P*(s)As> At. (3.20)

Page 9 of 15
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We will formulate a solution for problem (3.2)—(3.8) as follows. First, define for n € N the
following sequence {z,(x)} of functions:

zo(x) = f(x) + /-x WP ()AL,

(3.21)
p* X i*+1 X - «
Zp1() = — | w®)zk ()At+ v P (P AL
A Ja a
It is obvious that z,(x) > 0 for x € [a, b]r, and using (3.20) we get that
x 441
/ w(t)zy (£)At<oo (3.22)

and

>k

x 441
20(6) - 21(6) =) - - [ wieg M warso
which leads us to
p* x 441 441
) 20 = 2 [ 0 - 0)aes0

Thus the sequence {z,(x)} is decreasing on [a, b]r and asserts with the positivity of z,(x)
to the existence of a nonnegative function z(x) on [a, b]1 such that

z(x) = nll)rgo Zq(%).

Now, we obtain from (3.21) that

*

z(x)=‘;9—q / "Wt (AL + / eI

Actually, this formula asserts that z(x) > 0 belong to C.4([a, ], R) and satisfies the dy-
namic inequality (3.19). The proof is complete. d

Remark 3.1 According to Lemma 3.4, we have shown that the number K from (3.17) is fi-
nite if and only if there is A € (0, 00) such that problem (3.2), (3.8) is solvable. Consequently,
using in addition Lemma 3.2, Theorem 3.1 will be proved if we show that the validity of
Hardy’s inequality implies the finiteness of the number K. This will follow from the next
assertion.

Lemma 3.5 Let T be a time scale with a,b e T, 1 <p < g <00, u € Cyy([a, b]T,R) is a
nonnegative function, and let w, v be positive on [a, blt. Suppose that K is defined by (3.17)

1 1
b 7 o(x) ) 7
B = sup </ w(t)At) (/ T (t)At) ,
a<x<b \Jx a

and let C;, be the best possible constant in (3.3). Then

C =K 1 <k(p,q)B1, (3.23)
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where

k(p, q) = (1 + 1) ! (1 + p—*)p*. (3.24)
p q

Proof First, we prove the left inequality on (3.23) by contradiction. For this purpose, sup-

1
pose that K4 < C; and assume that there exists a constant Ay such that
1
Ki <)< Cp, (3.25)

which gives that K < A{ and problem (3.2)—(3.8) is solvable for A = A% (due to Lemma 3.4).

Now, Lemma 3.2 implies that

Q-

CL = AT = )\'01
which contradicts (3.25). Next, we prove the right inequality on (3.23). Suppose that By <

00, then we have that

b
0</ w(y)Ay<oo fort € (a,b)r,
t

and the function

P*

b ra t y
f(t) =sB], < / W(y)Ay) - / Vi (y)Ay

a

is finite for every s € (1,00). Moreover, we get that

s

p*

b T t
st* >B€* > </ w(y)Ay) </ v @)Ay),

which gives directly that f(¢) > O for ¢ € (a, b)1. From (3.17), we can write that

* (@) v b RN
Kfp— sup [T w@)sB] (f; wy)Ay) 417" At

9 acxch g7 (P W(y)Ay)’% - [Ivir () Ay
(sB2)7 " sup )

as<h 5B _ ([P w(y) Ay) T ([*v1r" (5) Ay)
6B ) s “

asx<h 5B _ ([P w(y) Ay)'T ([T vir" (3) Ay)

*

QS

*

S

=

= |

IA

P B )P
o h(), (3.26)

(S - 1)312* a<x<b
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where

* p*

h(x) = /aa(x) w(t) (/t‘b w@)Ay>_Z(;+1) (/xbw(y)Ay>th
[ (o) ([ o)

[

IA

]

IA

S s

(3.27)

If we set

s \4 L
g(s)z(—l) sP* fors e (1,00),
S_

then, using (3.26) and (3.27), we obtain that
K7 < g(s)By.
But, we know that (see [25, Theorem 3.1, p. 594])
k(p,q) = inf g(s),
which claims the second inequality in (3.23). This completes the proof. d

By combining the above results together (necessary and sufficient conditions), we are
ready to state our main result in this paper.

Theorem 3.1 Let T be a time scale with a,b € T, 1 <p < g < o0, u € Cuy(la,b]1,R) is a
nonnegative function, and let w, v be positive rd-continuous functions on (a, b)r. If

/x VP () At < 00 forx € [a,b], (3.28)

then inequality (3.3) holds with a finite constant Cy, if and only if there is a number A > 0
such that the half-linear dynamic equation (3.2) has a solution y(x) satisfying (3.8).

Remark 3.2 As a special case of Theorem 3.1 (when T = N), we get the following result
which connects the discrete Hardy-type inequality with the half-linear difference equa-
tion. It is worth to mention here that the next result coincides with the one obtained by
Liao [20, Proposition 2.2, p. 812], while there are some parts of Liao’s proof that were es-
sentially based on the idea of the variational principle presented in [7] and [16, p. 181]
which we did not rely on in our proof.

Corollary 3.1 Suppose that 1 <p < q < 0o, w and v are positive sequences on the discrete
interval I ={1,2,...,N} with N < oo. If

© N
-1 _p¥*
E Vi =00 and E VP <00 formel,

n=1 n=1
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then the following discrete weighted Hardy-type inequality

(Sr(3ze)) =0 )

holds for an arbitrary non-negative sequence u on I, with a finite constant Cy, if and only
if there is a number ). > 0 such that the difference equation

q

% *
) +WnYya = 0

q
AA (v (Ayn)P
has a positive solution y, for n € I.

Remark 3.3 As a special case of Theorem 3.1 (when T = ™), we get the following result
which connects the discrete Hardy-type inequality with the half-linear difference equa-
tion. It is worth to mention here that the next result is entirely new and has not been dealt
with before to the knowledge of the authors. Assume that

S dx(d"); n=12,...,N,

Hx(q") =
@) 0; n=0.

Corollary 3.2 Suppose that 1 < p < q < 00, w and v are positive sequences defined on T =
No i
q°.If

N N
quv—l/(p—l) (4) =00 and quvl—p* (¢) <oo forneq™,
k=1 k=1

then the following discrete weighted Hardy-type inequality

q

»

holds for an arbitrary non-negative sequence u on g0, with a finite constant C,, if and only
if there is a number ). > 0 such that the following second-order q-difference equation

a q 4 q 4
w(gVHy?" (") + 2w (¢ )y (d) - v (47 (4] =0
has a positive solution y, for n € I.

Now, let us conclude this section with some applications that illustrate and clarify the
main ideas of the paper. Specifically, we consider the special case T = R.

Example 1 By setting a =0, b = 00, p = q, v(x) = ¥ %, w(x) = ('kr%l‘)px‘k with k£ > 1 and
F(0) =0, then the general weighted inequality (3.6) reduces to the following inequality:

</ooox—k</:f(t)dt)pdx> < (ﬁ)pfowx‘k(xf(x))pdx
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due to Hardy [16, Theorem 330, p. 245]. In this case, for the corresponding differential
k-1

equation of (3.2), we have y(x) =x 7 which satisfies the corresponding conditions (3.8).

Example?2 Bysettinga =0,b=o00,p=q,v(x) =1, w(x) = (1%1 YxP with p > 1 and F(0) =0,
then the general weighted inequality (3.6) reduces to the following inequality:

(/ow(?yd") < (ﬁ)p /0 " s,

where fox f(t)dt, due to Hardy [16, Theorem 327, p. 240]. In this case, for the correspond-

-1
ing differential equation of (3.2), we have y(x) = xpT which satisfies the corresponding
conditions (3.8).

As another application for our main results, we could get the following inequality (see
[16, Theorem 256, p. 182]).

Example3 Ifp>1,y >0,and y(x) = foxy’(t) dt, then

([ ra) Gty [Toran

where y(x) is the solution of the equation

y -1
le—asinlz‘/(l—tp)l’ dt, 0<y<L
2
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