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Abstract
A new approximate technique is introduced to find a solution of FVFIDE with mixed
boundary conditions. This paper started from the meaning of Caputo fractional
differential operator. The fractional derivatives are replaced by the Caputo operator,
and the solution is demonstrated by the hybrid orthonormal Bernstein and
block-pulse functions wavelet method (HOBW). We demonstrate the convergence
analysis for this technique to emphasize its reliability. The applicability of the HOBW is
demonstrated using three examples. The approximate results of this technique are
compared with the correct solutions, which shows that this technique has approval
with the correct solutions to the problems.
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1 Introduction
The applications of fractional calculus can be observed in many fields of physics and en-
gineering such as fluid dynamic traffic [1] and signal processing [2]. Due to the invalu-
able contribution of fractional calculus in various fields of engineering, the researchers
have shown high interest in studying fractional calculus. In this regard as in many
cases, it is very difficult to find the correct analytical solutions of fractional differen-
tial and integral equations. The approximate methods have gained importance to pre-
vent this difficulty. Initially the authors used different approximate techniques to find the
approximate solution of fractional differential and integral equations such as spline col-
location method (SCM) [3], fractional transform method (FTM) [4], homotopy perturba-
tion method (HPM) [5], operational Tau method (OTM) [6], rationalized Haar functions
method (RHFM) [7], reproducing kernel Hilbert space method (RKHSM) [8], Adomian
decomposition method (ADM) [9], and B-spline method [10].

In this paper, we derive the approximate solution of FVFIDE using HOBW. The approxi-
mate consequence found by the introduced method is compared with the correct solution
of the problem, showing the greatest degree of accuracy.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2044-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2044-1&domain=pdf
http://orcid.org/0000-0002-0795-0709
mailto:mohamed.reda@bhit.bu.edu.eg
mailto:mohamedredaabhit@yahoo.com


Ali et al. Advances in Difference Equations        (2019) 2019:115 Page 2 of 14

2 Preliminaries of fractional calculus
In this segment, we first survey some fundamental definitions of the fractional calculus
theory which are required for building up our outcomes. The broadly utilized definitions
of fractional integral and fractional derivative are the definitions of Riemann–Liouville
and Caputo [11–14].

Definition 2.1 A real function y(x), x > 0, is said to be in the space Cσ , σ ∈ R, if there is
a genuine number ρ with ρ > σ to such an extent that y(x) = xρy0(x), y0(x) ∈ C[0,∞), and
y(x) ∈ Cn

σ if yn(x) ∈ Cσ , n ∈ N .

Definition 2.2 ([15]) The Riemann fractional integral of order α > 0 of a function f is
given by

(
Jαf

)
(t) =

1
Γ (α)

∫ t

0
(t – τ )α–1f (τ ) dτ , t > 0,α ∈ R+

(
J0f

)
(t) = f (t).

(2.1)

This integral operator J has the following properties:
(a) JαJβ = Jβ Jα ;
(b) JαJβ = Jα+β ;
(c) Jα(t – a)ξ = Γ (ξ+1)

Γ (ξ+α+1) (t – a)α+ξ ,α,β > 0, ξ > –1.

Definition 2.3 The Riemann–Liouville fractional derivative is defined by [16]

Dα
∗ f (t) =

⎧
⎨

⎩
Dm 1

Γ (m–α)
∫ t

0 (t – τ )m–α–1f (τ ) dτ , m – 1 < α < m,

f (m)(t), α = m.
(2.2)

In fact Dα∗ Jαf (t) = DmJm–αJαf (t) = DmJmf (t) = f (t). The effect of the operator Dα on the
power functions:

Dα
∗ tγ =

Γ (γ + 1)
Γ (γ + 1 – α)

tγ –α , γ > –1, t > 0, (2.3)

where the fractional derivative Dα∗ f (t) is not zero for constant function when α /∈ N , from
(2.3) when γ = 0, then Dα∗1 = t–α

Γ (–1+α) , but Dα∗ tα–j = 0, j : 1(1)m. Figure 1 shows the effect
of Riemann–Liouville fractional derivative (Dα) on tγ . It is illustrated that when γ = 0,
the Riemann–Liouville derivative is not zero and it is zero when γ = –0.5. Therefore, this
definition does not agree with the principles of integer order calculus.

Definition 2.4 The fractional derivative of f (t) in the Caputo sense is given by [16]

Dα
t f (t) = DmJm–αf (t)

=

⎧
⎨

⎩

dmf (t)
dtm , m = α,

1
Γ (m–α)

dm

dtm
∫ t

0 (t – s)m–α–1f (s, x) ds, 0 ≤ m – 1 < α < m.
(2.4)
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Figure 1 The Riemann–Liouville fractional derivative D0.5∗ tγ for different values of γ

We demonstrate the following form of FVFIDE that we will solve by the HOBW tech-
nique.

(
Dαyi

)
(x) = gi(x) +

m∑

j=1

∫ x

0
k1i(x, t)F1i

[
t, y(t)

]
dt +

∫ 1

0
k2i(x, t)F2i

[
t, yi(t)

]
dt (2.5)

with MBC:
∑d

j=1[ai,jy(j–1)(0) + bi,jy(j–1)(1)] = ri, i = 1, 2, . . . , d, where y : [0, 1] → R, i = 1, 2,
are continuous functions. g : [0, 1] → R and ki : [0, 1] × [0, 1] → R, i = 1, 2, are continu-
ous functions. Fi : [0, 1] × R → R, i = 1, 2, are nonlinear terms and Lipschitz continuous
functions. Here Dα is understood as Caputo fractional derivative. Using HOBW this FV-
FIDE is converted into a system of algebraic equations that can be disbanded by New-
ton’s method. We applied the Gauss–Legendre quadrature technique for calculating the
integration on nonlinear terms. The obtained consequence is compared with that by the
Nystrom method.

3 The HOBW method and the operational matrix of the integration
3.1 Wavelets and the HOBW methods
Wavelets constitute a group of functions constructed from dilation and translation of a
single function ψ(x) called the mother wavelet, in which the parameter of dilation a and
the parameter of translation b vary continuously:

ψa,b(t) = |a| –1
2 ψ

(
t – b

a

)
, a, b ∈ R, a �= 0. (3.1)

By letting a and b be discrete values such as a = a–k
0 , b = nb0a–k

0 , a0 > 1, b0 > 0, where n
and k are positive integers, we attain the family of discrete wavelets:

ψk,n(t) = |a0| k
2 ψ

(
ak

0t – nb0
)
, n, k ∈ Z+. (3.2)

Then ψk,n(t) shape a wavelet basis for L2(R). In particular, when a0 = 2, b0 = 1, then
ψk,n(t) shape an orthonormal basis. Here, HOBWi,j(t) = HOBW(k, i, j, t) involves four ar-
guments, i = 1, . . . , 2k–1, k is any positive integer, j is the degree of Bernstein polynomials,
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and t is the normalized time. HOBWi,j(t) are defined on [0, 1) as in [17]:

HOBWi,j(t) =

⎧
⎨

⎩
2 k–1

2
(n

j
)
(2k–1x – i + 1)j(1 – (2k–1x – i + 1))n–j i–1

2k–1 ≤ t < i
2k–1 ,

0 otherwise,
(3.3)

where i = 1, 2, . . . , 2k–1, j = 0, 1, . . . , M – 1 and k is a positive integer. Thus, we attain our
new basis as {HOBW1,0, HOBW1,1, . . . , HOBW2k–1,M–1} and any function is truncated with
them.

The HOBW are orthonormal basis that is given by

(
HOBWij(x), HOBWi′j′ (x)

)
=

⎧
⎨

⎩
1, (i, j) = (i′, j′),

0, (i, j) �= (i′, j′),
(3.4)

where (·, ·) is called the inner product in L2[0, 1). The HOBW has compact support
[ i–1

2k–1 , i
2k–1 ], i = 1, . . . , 2k–1.

3.2 Function approximation by the HOBW functions
Any function y(t), which is integrable in [0, 1), is truncated by the HOBW method as fol-
lows:

y(t) =
∞∑

i=1

∞∑

j=0

cijHOBWij(t), i = 1, 2, . . . ,∞, j = 0, 1, 2, . . . ,∞, t ∈ [0, 1), (3.5)

where the HOBW coefficients cij can be calculated as given below:

cij =
(y(t), HOBWij(t))

(HOBWij(t), HOBWij(t))
.

We approximate y(t) by a truncated series as follows:

y(t) =
2k–1∑

i=1

M–1∑

j=0

cijHOBWij(t) = CT HOBW(t), (3.6)

where HOBW(t) and C are 2k–1M × 1 vectors given by

HOBW(t) = [HOBW10, HOBW11, . . . , HOBW1(M–1), HOBW20, HOBW21, . . . ,

HOBW2(M–1), . . . , HOBW2k–10, . . . , HOBW2k–1(M–1)]T

and

C = [c10, c11, . . . , c1(M–1), c20, c21, . . . , c2(M–1), . . . , c2k–10, . . . , c2k–1(M–1)]T . (3.7)

4 Solution of FVFIDE via the HOBW method
Consider the nonlinear FVFIDE with MBC given in Eq. (2.5), and we approximate the
unknown function y(x) ∈ [0, 1] by the HOBW method as y(x) = CT HOBW(x).
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We assume

F1i
[
y(x)

]
= ui(x), F2i

[
y(x)

]
= vi(x), (4.1)

we approximate ui(x) and vi(x) as:

ui(x) = AT
i HOBW(xi), vi(x) = BT

i HOBW(xi),

where A and B are like C.
First, applying J to both sides of Eq. (2.5) and using the approximation above, we have

(
JαDαyi

)
(x) = Jα

[
gi(x)

]
+ Jα

[ m∑

j=1

∫ x

0
k1i(x, t)F1i

[
y(t)

]
dt

]

+ Jα

[∫ 1

0
k2i(x, t)F2i

[
yi(t)

]
dt

]
, (4.2)

yi(x) –
d–1∑

l=0

xl

l!
y(l)

i (0+) =
1

Γ (α)

∫ xi

0
(xi – τ )α–1gi(τ ) dτ

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ τ

0
k1i(τ , t)ui(t) dt dτ

]

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ 1

0
k2i(τ , t)vi(t) dt dτ

]
. (4.3)

yi(x) of Eq. (4.3) is replaced with the approximate solution CT
i HOBW(x) as follows:

CT
i HOBW(xi) –

d–1∑

l=0

xl

l!
CT

i HOBWl(0+)

=
1

Γ (α)

∫ xi

0
(xi – τ )α–1gi(τ ) dτ

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ τ

0
k1i(τ , t)AT

i HOBW(t) dt dτ

]

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ 1

0
k2i(τ , t)BT

i HOBW(t) dt dτ

]
. (4.4)

We collocate Eq. (4.4) in 2k–1M nodal points of Newton–Cotes as xi = 2i–1
2k M . We have

CT
i HOBW(xi) –

d–1∑

l=0

xl
i

l!
CT

i HOBWl(0+)

=
1

Γ (α)

∫ xi

0
(xi – τ )α–1gi(τ ) dτ

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ τ

0
k1i(τ , t)AT

i HOBW(t) dt dτ

]

+
[

1
Γ (α)

∫ xi

0
(xi – τ )α–1

∫ 1

0
k2i(τ , t)BT

i HOBW(t) dt dτ

]
. (4.5)
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Applying the Gauss–Legendre quadrature method for evaluating the integrals in
Eq. (4.5), we change the domain of integration from [0, xi] to [–1, 1]. Using the trans-
formation τ = xi

2 (s + 1) and then applying the Gauss–Legendre method yields

CT
i HOBW(xi) –

d–1∑

l=0

xl
i

l!
CT

i HOBW(0+)

=
1

Γ (α)

∫ xi

0
(xi – τ )α–1gi(τ ) dτ

+

[
1

Γ (α)
xi

2

M1∑

j=1

wj

(
xi

2
(1 – sj)α–1

)∫ xi
2 (1+sj)

0
k1i

(
xi

2
(1 + sj)α–1, t

)
AT

i HOBW(t) dt

]

+

[
1

Γ (α)
xi

2

M2∑

j=1

wj

(
xi

2
(1 – sj)α–1

)

×
∫ 1

0
k2i

(
xi

2
(1 + sj), t

)
BT

i HOBW(t) dt

]

, (4.6)

where M1 and M2 are the orders of Bernstein polynomial used in the Gauss–Legendre
quadrature rule

F1i
[
CT

i HOBW(x)
]

= AT
i HOBW(x), F2i

[
CT

i HOBW(x)
]

= BT
i HOBW(x). (4.7)

From (4.6) give a system of 2k–1M × 2k–1M nonlinear algebraic equations with the same
number of unknowns in the vectors C, A, and B. Numerically disbanding this system by
Newton’s technique, we get the solutions for the unknown vectors C, A, and B.

5 Existence and uniqueness
Consider FVIDE (2.5) that can be rewritten in the operator form as follows:

(
Dαyi

)
(x) = gi(x) + K1iF1iy + K2iF2iy, (5.1)

where

K1iF1iy =
∫ x

0
K1i(x, t)F1i

[
y(t)

]
dt, K2iF2iy =

∫ 1

0
K2i(x, t)F2i

[
y(t)

]
dt. (5.2)

Applying Jα to both sides of Eq. (5.1), we have

(yi)(x) = hi(x) + Jα
[
gi(x) + K1iF1iy + K2iF2iy

]
, (5.3)

where hi(x) =
∑n–1

k=0
tk

k! y
k
i (0+), n – 1 < α < n, n ∈ N . Equation (5.3) is written in a form of

fixed point equation Ayi = yi, where A is defined as

Ayi(x) = hi(x) + Jα
[
gi(x) + K1iF1iyi + K2iF2iyi

]
. (5.4)

Let (C[0, 1],‖ · ‖∞) be the Banach space of all continuous functions with the norm
‖f ‖∞ = maxt |f (t)|. Also, the operators F1i and F2i satisfy the Lipschitz condition on [0, 1]
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as follows:

∣∣F1iỹim(x) – F1iyi(x)
∣∣ ≤ L1

∣∣ỹim(x) – yi(x)
∣∣,

∣∣F2iỹim(x) – F2iyi(x)
∣∣ ≤ L1

∣∣ỹim(x) – yi(x)
∣∣,

(5.5)

where L1 and L2 are Lipschitz constants. So, we achieve the uniqueness of the solution of
Eq. (2.5).

Theorem 5.1 If L1‖K1i‖∞ +L1‖K2i‖∞ < Γ (α+1), then problem (2.5) has a unique solution
y ∈ [0, 1].

Proof Let A : C[0, 1] → C[0, 1] such that

Aiyi(x) = hi(x) +
1

Γ (α)

∫ x

0
(x – t)α–1[gi(t) + K1iF1iyi(t) + K2iF2iyi(t)

]
dt. (5.6)

Let ỹi, yi ∈ C[0, 1] and

Aiỹi(x) – Aiyi(x) =
1

Γ (α)

∫ x

0
(x – t)α–1 × [[

K1iF1iỹi(t) – K1iF1iyi(t)
]

+
[
K2iF2iỹi(t) – K2iF2iyi(t)

]]
dt. (5.7)

Then for x > 0, we have

∣
∣Aiỹi(x) – Aiyi(x)

∣
∣

≤ 1
Γ (α)

∫ x

0

∣∣(x – t)α–1∣∣[|K1i|
∣∣F1iỹi(t) – F1iyi(t)

∣∣

+ |K2i|
∣
∣F2iỹi(t) – K2iF2iyi(t)

∣
∣]dt

≤ 1
Γ (α)

∫ x

0

∣∣(x – t)α–1∣∣[|K1i|L1
∣∣ỹi(t) – yi(t)

∣∣ + |K1i|L2
∣∣ỹi(t) – yi(t)

∣∣]dt

≤ 1
Γ (α)

∫ x

0

∣
∣(x – t)α–1∣∣(L1‖K1i‖∞ + L2‖K2i‖∞

)‖ỹi – yi‖∞ dt

≤ (
L1‖K1i‖∞ + L2‖K2i‖∞

)‖ỹi – yi‖∞
|x|α

Γ (α + 1)

≤ (
L1‖K1i‖∞ + L2‖K2i‖∞

)‖ỹi – yi‖∞
1

Γ (α + 1)
.

Therefore,

∥∥Aỹi(x) – Ayi(x)
∥∥∞ ≤ ΩL1,L2,K1,K2,α‖ỹi – yi‖∞,

ΩL1,L2,K1,K2,α =
(
L1‖K1i‖∞ + L2‖K2i‖∞

) 1
Γ (α + 1)

.
(5.8)

Since ΩL1,L2,K1,K2,α < 1 by contraction mapping theorem, problem (2.5) has a unique so-
lution in C[0, 1]. �
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6 Convergence analysis
Theorem 6.1 Let y(x) be a function defined on [0, 1) and |y(x)| ≤ My, then the sum of
absolute values of HOBW coefficients of y(x) defined in Eq. (10) converges absolutely on the
interval [0, 1] if |cn,m| ≤ 2 1–k

2 My.

Proof Any function y(x) ∈ L2[0, 1] can be approximated by HOBW as follows:

y(x) =
2k–1∑

n=1

M–1∑

m=0

cn,mHOBWn,m(x),

where the coefficients cm,n can be determined as follows:

cm,n =
〈
y(x), HOBWn,m(x)

〉
.

At m ≥ 0,

|cn,m| =
∣∣〈y(x), HOBWn,m

〉∣∣,
∣∣∣
∣

∫ 1

0
y(x)HOBWn,m(x) dx

∣∣∣
∣

≤
∫ 1

0

∣∣y(x)
∣∣∣∣HOBWn,m(x)

∣∣dx

≤ My

∫ 1

0

∣∣HOBWn,m(x)
∣∣dx

= My

∫

Ink

∣∣HOBWn,m(x)
∣∣dx

= My

√

m +
1
2

2
k
2

∫

Ink

∣
∣Pm

(
2kx – 2n + 1

)∣∣dx,

Ink =
[

n – 1
2k–1 ,

n
2k–1

)
.

By putting the variable 2kx – 2n + 1 = t, we have

|cn,m| = My

√

m +
1
2

2
–k
2

∫ 1

–1

∣
∣Pm(t)

∣
∣dt.

Applying Holder’s inequality,

(∫ 1

–1

∣
∣Pm(t)

∣
∣dt

)2

≤
(∫ 1

–1
12 dt

)(∫ 1

–1

∣
∣Pm(t)

∣
∣2 dt

)

= 2 × 2
m + 1

=
4

m + 1
.

This proves that

∫ 1

–1

∣∣Pm(t)
∣∣dt ≤ 2√

2m + 1
.
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Hence,

cn,m ≤ 2
1–k

2 My.

This means that the series
∑M

i=1
∑n

j=0 cijHOBW(x) is convergent as k → ∞. �

Theorem 6.2 If the sum of absolute values of the HOBW coefficients of a continuous func-
tion y(x) shape convergent series, then the HOBW expansion

∑M
i=1

∑n
j=0 cijHOBW(x) con-

verges with respect to L2-norm on [0, 1].

Proof Let L2(R) be the Hilbert space and

ỹ(x) =
2k–1∑

n=1

M–1∑

m=0

cn,mHOBWn,m(x),

where cn,m = 〈ỹ(x), HOBWn,m(x)〉 for fixed n.
Let us denote HOBWn,m(x) = χl and let αl = 〈ỹ(x),χl(x)〉.
We define the sequence of partial sums {Sn}, where

Sn(x) =
n∑

l=0

αlχl(x).

For every ε > 0, there exists a positive number N(ε) such that, for every n > m > N(ε),

∥
∥Sn(x) – Sm(x)

∥
∥2

2 =
∫ 1

0

n∑

k=m+1

∣
∣αkχk(x)

∣
∣2

≤
n∑

k=m+1

|αk|2
∫ 1

0

∣∣χk(x)
∣∣2 dx

=
n∑

k=m+1

|αk|2.

From Theorem 5.1,
∑∞

k=0 |αk|2 is absolutely convergent.
According to the Cauchy criterion, for every ε > 0, there exists a positive number such

that

n∑

k=m+1

|αk|2 < ε

whenever n > m > N(ε).
Hence ‖Sn(x) – Sm(x)‖2

2 <
∑n

k=m+1 |αk|2 < ε.
This implies that ‖Sn(x) – Sm(x)‖2 ≤ √

ε < ε.
So, the sequence of a partial sum of the series converges with respect to L2-norm and

hence it completes the proof. �
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Table 1 The absolute error for Example 7.1 for different estimations of k,M at α = 1

x k = 3,M = 4 k = 4,M = 5 k = 5,M = 6 k = 6,M = 7 k = 7,M = 8

0.1 1.6403× 10–7 1.4281× 10–9 2.0695× 10–10 1.574× 10–12 4.2461× 10–14

0.2 2.5018× 10–7 2.7054× 10–9 4.1957× 10–10 2.1255× 10–12 5.0451× 10–14

0.3 1.4102× 10–7 4.7082× 10–9 1.4795× 10–10 2.1443× 10–12 2.6821× 10–14

0.4 2.1512× 10–7 6.5014× 10–9 3.1759× 10–10 3.1682× 10–12 3.5171× 10–14

0.5 1.9018× 10–7 2.7802× 10–9 5.6087× 10–10 4.6833× 10–12 2.6417× 10–14

0.6 4.4186× 10–7 2.3081× 10–9 2.2781× 10–10 3.6951× 10–12 1.7129× 10–13

0.7 3.1042× 10–6 4.2721× 10–8 1.7309× 10–9 1.2071× 10–11 2.6357× 10–13

0.8 4.3051× 10–6 1.3062× 10–8 2.9053× 10–9 2.2721× 10–11 3.6457× 10–13

0.9 3.2101× 10–6 2.3775× 10–8 2.0941× 10–9 3.2974× 10–11 1.6864× 10–13

7 Numerical examples
Example 7.1 Consider the following fractional nonlinear Volterra integro-differential
equation:

Dα+1y(x) =
∫ 1

0
xty2(t) dt +

∫ x

0

(
et – 1

)
y2(t) dt + ex

– x
(

e2

4
– 2e +

11
3

)
–

(ex – x – 1)3

3
, (7.1)

with mixed conditions

y(0) + y′(0) = 0,

y(1) + y′(1) = –3 + 2e.
(7.2)

y(x) = –1 – x – ex is the exact solution at α = 1.
Table 1 demonstrates the absolute errors acquired by the present strategy for different

estimations of k, M at α = 1. The examination of numerical results for α = 0.75, α = 0.85,
α = 0.95, α = 1 and the exact solution for α = 1 is shown in Fig. 2. It is clear from Fig. 2 that
as α is near to 1, the related numerical solution converges to the exact solution.

Example 7.2 We consider the nonlinear FVFIDE

(
D

√
3y

)
(x) =

2(2 +
√

3)x2–
√

3

Γ (2 –
√

3)
–

15x8

56
–

x2

6
+

∫ 1

0
x2ty2(t) dt +

∫ x

0
(x + t)y3(t) dt (7.3)

with the MBC

y(0) + y′(0) = 0,

y(1) + y′(1) = 3,
(7.4)

with the correct solution y(x) = x. This problem has been disbanded by HOBW for M =
4, k = 3, which reduces the integral equation to a system of algebraic equations that is
disbanded by Newton’s method. The consequence obtained by the introduced method is
compared with that by the Nystrom method (for N = 20). The approximate solutions and
absolute errors (Abs. Error) for Example 7.2 are introduced in Table 2.
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Figure 2 Numerical and exact solutions for different a for Example 7.1

Table 2 Comparison of HOBW results and Abs. Error for Example 7.2

x Exact HOBW atM = 4, k = 3 Nystrom method (N = 20)

y(x) y(x) Abs. Error y(x) Abs. Error

0 0 0.000766339 0.0000766339 0 0
0.1 0.01 0.0106897 0.00006897 0.0100005 0.00000487
0.2 0.04 0.040613 0.0000613 0.0400065 0.0000065
0.3 0.09 0.0905364 0.00005364 0.0900304 0.0000304128
0.4 0.16 0.16046 0.000046 0.160101 0.00010141
0.5 0.25 0.250372 0.0000372 0.250329 0.000329115
0.6 0.36 0.360307 0.0000307 0.361156 0.00115625
0.7 0.49 0.490222 0.0000222 0.494128 0.00412784
0.8 0.64 0.640136 0.0000136 0.653945 0.0139455
0.9 0.81 0.810069 0.000069 0.85402 0.0440196

Example 7.3 We consider the nonlinear FVFIDE

(
D1.7y

)
(x) = –4.19453 – x –

x5

3
+

1
Γ (1.3)

exx0.3
1F1[0.3, 1.3; –x] +

∫ 1

0
x2ty2(t) dt

+
∫ x

0
(x + t)y3(t) dt, (7.5)

where 1F1[0.3, 1.3; –x] is the Kummer confluent hypergeometric function defined as

1F1[a, b; z] =
∞∑

n=0

(a)n

(b)n

zn

n!

with (a)n = a(a + 1)(a + 2) · · · (a + n – 1) and (a)0 = 1, subject to the MBC y(0) = 1, y(1) = e.
The correct solution to this problem is given as y(x) = e. This problem is disbanded by

HOBW at M = 4, k = 3, which reduces the integral equation to a system of algebraic equa-
tions that is disbanded by Newton’s method. The consequence obtained by the introduced
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Table 3 Comparison of HOBW results and the Nystrom method for Example 7.3

x Exact HOBW atM = 4, k = 3 Nystrom method

y(x) Abs. Error y(x) Abs. Error

0 1 1 0 1 0
0.1 1.10517 1.105167 0.000003 1.10393 0.00123938
0.2 1.2214 1.22138 0.00002 1.21842 0.00297924
0.3 1.34986 1.349857 0.000003 1.34476 0.00510241
0.4 1.49182 1.491816 0.000004 1.4843 0.00752611
0.5 1.64872 1.648718 0.000002 1.63862 0.0101061
0.6 1.82212 1.822119 0.000001 1.80958 0.0125403
0.7 2.01375 2.013747 0.000003 1.99952 0.0142327
0.8 2.22554 2.225538 0.000002 2.21144 0.0141018
0.9 2.4596 2.45956 0.00004 2.44928 0.0103248

Table 4 Comparison of HOBW results and [18] for Example 7.4

x Error by HOBW Error by [18]

forM = 8, k = 4 for n = 320

0.1 2.6455× 10–8 1.92× 10–6

0.3 3.5312× 10–8 3.84× 10–6

0.5 1.1546× 10–7 4.1× 10–6

0.7 3.4162× 10–6 3.15× 10–6

0.9 2.6057× 10–6 1.25× 10–6

Table 5 Maximum absolute errors at different values of M and k for Example 7.4 via HOBW

M k

4 6 8 10

8 4.59× 10–7 8.02× 10–9 4.19× 10–10 7.38× 10–11

12 5.47× 10–10 2.49× 10–12 3.17× 10–14 2.12× 10–15

16 3.39× 10–11 2.95× 10–14 1.21× 10–15 4.24× 10–16

20 1.02× 10–14 4.18× 10–15 2.88× 10–16 3.05× 10–17

method is compared with that by the Nystrom method (for N = 20). The numerical solu-
tions and Abs. Errors for Example 7.3 are introduced in Table 3.

Example 7.4 Let us consider the nonlinear FVFIDE

(
D

√
7

2 y
)
(x) = 1 – e2 – log

(
1 + x + x2) –

4x2+
√

7
2

(
√

7 – 4)Γ (2 –
√

7
2 )

+
∫ 1

0
(1 + 2t)ey(t) dt

+
∫ x

0

(1 + 2t)
1 + y(t)

dt

with boundary conditions y(0) = 1, y(1) = e.
The correct solution is y(x) = x2 + x.
This problem is disbanded by HOBW which reduces the integral equation to a system

of algebraic equations that is disbanded by Newton’s method. The consequence obtained
by the method is compared with that by the Nystrom method [18]. The numerical conse-
quence and Abs. Error for Example 7.4 are introduced in Table 4.

Maximum absolute errors at different values of M and k have been presented in Table 5.
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8 Conclusion
In this work, we have fully attempted to find the numerical solution of the fractional sys-
tem of Volterra integro differential equations by using the HOBW method. The numerical
procedure and methodology are done in a very straightforward and effective manner. The
numerical accuracy is also a point of interest. Through the numerical calculation, we con-
firmed that the HOBW method has the highest degree of accuracy. On the basis of this
work, the researchers can extend this technique to some other fractional systems of ordi-
nary and partial differential equations.
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