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1 Introduction
In last few years, some physical phenomena were described through fractional differen-
tial equations and compared with integer order differential equations which have better
results, which is why researchers of different areas have paid great attention to study frac-
tional differential equation. Fractional differential equations arise in the mathematical
modeling of systems and processes occurring in many engineering and scientific disci-
plines such as physics, chemistry, polymer rheology, control theory, diffusive transport
akin to diffusion, electrical networks, probability, etc. For details, see [14–16, 22, 23, 27,
29, 37]. In the last few decades, fractional-order differential equations equipped with a
variety of boundary conditions have been studied. The literature on the topic includes
the existence and uniqueness results related to classical, periodic/anti-periodic, nonlocal,
multi-point, and integral boundary conditions; for instance, see [1, 3, 6, 7, 9, 11, 17, 19, 24,
26, 28, 30, 34, 36] and the references therein.

The existence and uniqueness of positive solutions for such problems have become an
important area of investigation in recent years. Ahmad and Nieto [6] investigated the exis-
tence and uniqueness of solutions for an anti-periodic fractional boundary value problem

cDqx(t) = f
(
t, x(t)

)
, t ∈ [0, T], 1 < q ≤ 2, T > 0,

x(0) = –x(T), cDpx(0) = –cDpx(T), 0 < p < 1,

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function.
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Liu and Liu [24] investigated the existence and uniqueness of solutions for fractional
differential equations with fractional non-separated boundary conditions in the form of

cDαx(t) = f
(
t, x(t)

)
, t ∈ [0, T], 1 < α ≤ 2, T > 0,

a1x(0) + b1x(T) = c1, a2
(cDγ x(0)

)
+ b2

(cDγ x(T)
)

= c2, 0 < γ < 1,

where cDα denotes the Caputo fractional derivative of order α, f is a continuous function
on [0, T] ×R and ai, bi, ci, i = 1, 2 are real constants such that a1 + b1 �= 0 and b2 �= 0.

The system of fractional differential equations boundary value problems has also re-
ceived much attention and its research has developed very rapidly; see [2, 4, 5, 8, 10, 12,
13, 20, 21, 25, 31–33, 35]. Recently, Alsulalt et al. [13] established the existence and unique-
ness results for a nonlinear coupled system of Caputo type fractional differential equations
supplemented with non-separated coupled boundary conditions.

In this paper, motivated by the aforementioned work, we consider the existence and
uniqueness of solutions for a coupled system of fractional differential equation

⎧
⎨

⎩

cDα
0+ u(t) = f (t, u(t), v(t)), 0 < t < 1,

cDβ

0+ v(t) = g(t, u(t), v(t)), 0 < t < 1,
(1)

subject to the fractional non-separated coupled boundary conditions

⎧
⎨

⎩
u(0) = λ1v(1), cDγ

0+ u(1) = λ2
cDγ

0+ v(ξ ), 0 < γ < 1,

v(0) = μ1u(1), cDγ

0+ v(1) = μ2
cDγ

0+ u(ξ ), 0 < γ < 1,
(2)

where α,β ∈ (1, 2], ξ ∈ (0, 1), cDα
0+ and cDβ

0+ are the Caputo fractional derivatives of order
α and β , respectively, f , g ∈ C([0, 1] × [0, +∞) × [0, +∞), [0, +∞)) and λi, μi, i = 1, 2 real
constants with μ1λ1 �= 1 and μ2λ2ξ

2(1–γ ) �= 1.
This paper is organized as follows. In Sect. 2, we recall some basic definitions of frac-

tional calculus and present an auxiliary lemma, which plays a major role in obtaining the
main result. In Sect. 3, we established the existence and uniqueness results for a nonlin-
ear coupled system of fractional differential equation (1)–(2). Finally, as an application, we
give two examples to illustrate our results.

2 Preliminaries
Let us now recall some basic definitions of fractional derivative [37] and prove a lemma
before stating our main results.

Definition 2.1 The fractional integral of order q with the lower limit zero for a function
f : [0,∞) →R is defined as

Iqf (t) =
1

Γ (q)

∫ t

0

f (s)
(t – s)1–q ds, t > 0, q > 0,

provided the right hand side is point-wise defined on [0,∞), where Γ (·) is the gamma
function, which is defined by Γ (q) =

∫ ∞
0 tq–1e–t dt.
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Definition 2.2 The Riemann–Liouville fractional derivative of order q > 0, n – 1 < q < n,
n ∈N, is defined as

Dq
0+ f (t) =

1
Γ (n – q)

(
d
dt

)n ∫ t

0
(t – s)n–q–1f (s) ds,

where the function f (t) has an absolutely continuous derivative up to order (n – 1).

Definition 2.3 The Caputo derivative of order q for a function f : [0,∞) →R with f (t) ∈
Cn[0,∞) is defined by

cDqf (t) =
1

Γ (n – q)

∫ t

0

f (n)(s)
(t – s)q+1–n ds = In–qf (n)(t), t > 0, n – 1 < q < n.

Furthermore, we noted that the Riemann–Liouville fractional derivative of a constant is
usually nonzero which can cause serious problems in real world applications. We have

cDqf (t) =
1

Γ (n – q)

∫ t

0

f n(s)
(t – s)q+1–n ds

= Dqf (t) –
n–1∑

k=0

f (k)(0)
Γ (k – q + 1)

tk–q

= Dq

[

f (t) –
n–1∑

k=0

f (k)(0)
k!

tk

]

, t > 0, n – 1 < q < n.

So, we preferred to use Caputo’s definition which gives better results than those of
Riemann–Liouville.

Lemma 2.1 Let � = 1 – λ2μ2ξ
2(1–γ ) �= 0 and λ1μ1 �= 1. Let φ,ψ ∈ C([0, 1],R). Then the

solution of the linear fractional differential equations:

⎧
⎨

⎩

cDα
0+ u(t) = φ(t), t ∈ [0, 1], 1 < α ≤ 2,

cDβ

0+ v(t) = ψ(t), t ∈ [0, 1], 1 < β ≤ 2,
(3)

supplemented with the boundary conditions (2) is given by

u(t) =
μ2Γ (2 – γ )

�

[
λ1(μ1λ2ξ

1–γ + 1)
1 – λ1μ1

+ λ2ξ
1–γ t

]
A3

–
Γ (2 – γ )

�

[
λ1(μ1λ2ξ

1–γ + 1)
1 – λ1μ1

+ λ2ξ
1–γ t

]
B3

+
λ2Γ (2 – γ )

�

[
λ1(μ1 + μ2ξ

1–γ )
1 – λ1μ1

+ t
]

B2

–
Γ (2 – γ )

�

[
λ1(μ1 + μ2ξ

1–γ )
1 – λ1μ1

+ t
]

A2

+
λ1

1 – μ1λ1
(μ1A1 + B1) +

∫ t

0

(t – s)α–1

Γ (α)
φ(s) ds (4)
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and

v(t) =
μ2Γ (2 – γ )

�

[
μ1(λ1 + λ2ξ

1–γ )
1 – λ1μ1

+ t
]

A3

–
Γ (2 – γ )

�

[
μ1(λ1 + λ2ξ

1–γ )
1 – λ1μ1

+ t
]

B3

+
λ2Γ (2 – γ )

�

[
μ1(λ1μ2ξ

1–γ + 1)
1 – λ1μ1

+ μ2ξ
1–γ t

]
B2

–
Γ (2 – γ )

�

[
μ1(λ1μ2ξ

1–γ + 1)
1 – λ1μ1

+ μ2ξ
1–γ t

]
A2

+
μ1

1 – μ1λ1
(A1 + λ1B1) +

∫ t

0

(t – s)β–1

Γ (β)
ψ(s) ds, (5)

where

A1 =
∫ 1

0

(1 – s)α–1

Γ (α)
φ(s) ds, B1 =

∫ 1

0

(1 – s)β–1

Γ (β)
ψ(s) ds,

A2 =
∫ 1

0

(1 – s)α–γ –1

Γ (α – γ )
φ(s) ds, B2 =

∫ ξ

0

(ξ – s)β–γ –1

Γ (β – γ )
ψ(s) ds,

A3 =
∫ ξ

0

(ξ – s)α–γ –1

Γ (α – γ )
φ(s) ds, B3 =

∫ 1

0

(1 – s)β–γ –1

Γ (β – γ )
ψ(s) ds.

Proof It is well know [22] that the general solution of the fractional differential equations
in (3) can be written by

u(t) = c0 + c1t +
∫ t

0

(t – s)α–1

Γ (α)
φ(s) ds, (6)

v(t) = d0 + d1t +
∫ t

0

(t – s)β–1

Γ (β)
ψ(s) ds, (7)

where ci, di, i = 0, 1 are arbitrary constants. Since

cDγ k = 0 (k is a constant), cDγ t =
t1–γ

Γ (2 – γ )
, cDγ Iαy(t) = Iα–γ y(t),

from (6) and (7), we have

cDγ u(t) = c1
t1–γ

Γ (2 – γ )
+

∫ t

0

(t – s)α–γ –1

Γ (α – γ )
φ(s) ds,

cDγ v(t) = d1
t1–γ

Γ (2 – γ )
+

∫ t

0

(t – s)β–γ –1

Γ (β – γ )
ψ(s) ds.

Using the boundary conditions in (6), we have

u(0) = λ1v(1) ⇒ c0 = λ1(d0 + d1 + B1),

v(0) = μ1u(1) ⇒ d0 = μ1(c0 + c1 + A1).
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Using the boundary conditions in (7), we have

cDγ u(1) = λ2
cDγ v(ξ ) ⇒ c1 = λ2ξ

1–γ d1 + Γ (2 – γ )[λ2B2 – A2],
cDγ v(1) = μ2

cDγ u(ξ ) ⇒ d1 = μ2ξ
1–γ c1 – Γ (2 – γ )[μ2A3 – B3].

From the last two relations we find

c1 =
Γ (2 – γ )

�

[
λ2μ2ξ

1–γ A3 – λ2ξ
1–γ B3 + λ2B2 – A2

]
,

d1 =
Γ (2 – γ )

�

[
μ2A3 – B3 – μ2ξ

1–γ A2 + μ2λ2ξ
1–γ B2

]
.

Substituting c1 and d1 in the first two relations, we find

c0 =
λ1

1 – λ1μ1
[μ1c1 + μ1A1 + d1 + B1]

=
λ1

1 – λ1μ1

[
Γ (2 – γ )μ2(μ1λ2ξ

1–γ + 1)
�

A3 –
Γ (2 – γ )(μ1λ2ξ

1–γ + 1)
�

B3

–
Γ (2 – γ )(μ1 + μ2ξ

1–γ )
�

A2 +
Γ (2 – γ )λ2(μ1 + μ2ξ

1–γ )
�

B2 + μ1A1 + B1

]

and

d0 =
μ1

1 – λ1μ1
[λ1d1 + λ1B1 + c1 + A1]

=
μ1

1 – λ1μ1

[
Γ (2 – γ )μ2(λ1 + λ2ξ

1–γ )
�

A3 –
Γ (2 – γ )(λ1 + λ2ξ

1–γ )
�

B3

–
Γ (2 – γ )(λ1μ2ξ

1–γ + 1)
�

A2 +
Γ (2 – γ )λ2(μ2λ1ξ

1–γ + 1)
�

B2 + λ1B1 + A1

]
.

Inserting the values of ci, di, i = 0, 1 in (6) and (7), we get solutions (4) and (5). The converse
of the above proof is as follows.

For any t ∈ [0, 1], taking the γ -fractional derivative for (4) and (5) yields

cDγ u(t) =
t1–γ

�

[
μ2λ2ξ

1–γ A3 – λ2ξ
1–γ B3 + λ2B2 – A2

]

+
∫ t

0

(t – s)α–γ –1

Γ (α – γ )
φ(s) ds

and

cDγ v(t) =
t1–γ

�

[
μ2A3 – B3 + λ2μ2ξ

1–γ B2 – μ2ξ
1–γ A2

]

+
∫ t

0

(t – s)β–γ –1

Γ (β – γ )
ψ(s) ds.

Checking the first boundary condition, we see that

u(0) = λ1v(1), cDγ

0+ u(1) = λ2
cDγ

0+ v(ξ ).
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Moreover, in checking the second boundary condition we get

v(0) = μ1u(1), cDγ

0+ v(1) = μ2
cDγ

0+ u(ξ ).

Taking the α-fractional derivative and β-fractional derivative yields

cDα
0+ u(t) = φ(t); cDβ

0+ v(t) = ψ(t),

which is what we set out to prove. �

3 Main results
Let X = {u(t)|u(t) ∈ C([0, 1],R)} denote the Banach space of all continuous functions from
[0, 1] into R equipped with the norm ‖u‖ = sup{|u(t)|, t ∈ [0, 1]}. Obviously, (X,‖ · ‖) is a
Banach space. Then the product space (X × X,‖(u, v)‖) is also a Banach space equipped
with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖.

In view of Lemma 2.1, we define the operator Q : X × X → X × X by

Q(u, v) =
(
Q1(u, v), Q2(u, v)

)
.

Here

Q1(u, v)(t) =
μ2Γ (2 – γ )

�

[
λ1(μ1λ2ξ

1–γ + 1)
1 – λ1μ1

+ λ2ξ
1–γ t

]
A3f

–
Γ (2 – γ )

�

[
λ1(μ1λ2ξ

1–γ + 1)
1 – λ1μ1

+ λ2ξ
1–γ t

]
B3g

–
Γ (2 – γ )

�

[
λ1(μ1 + μ2ξ

1–γ )
1 – λ1μ1

+ t
]

A2f

+
λ2Γ (2 – γ )

�

[
λ1(μ1 + μ2ξ

1–γ )
1 – λ1μ1

+ t
]

B2g

+
λ1

1 – μ1λ1
(μ1A1f + B1g) +

∫ t

0

(t – s)α–1

Γ (α)
f
(
s, u(s), v(s)

)
ds

and

Q2(u, v)(t) =
μ2Γ (2 – γ )

�

[
μ1(λ1 + λ2ξ

1–γ )
1 – λ1μ1

+ t
]

A3f

–
Γ (2 – γ )

�

[
μ1(λ1 + λ2ξ

1–γ )
1 – λ1μ1

+ t
]

B3g

–
Γ (2 – γ )

�

[
μ1(λ1μ2ξ

1–γ + 1)
1 – λ1μ1

+ μ2ξ
1–γ t

]
A2f

+
λ2Γ (2 – γ )

�

[
μ1(λ1μ2ξ

1–γ + 1)
1 – λ1μ1

+ μ2ξ
1–γ t

]
B2g

+
μ1

1 – μ1λ1
(λ1B1g + A1f ) +

∫ t

0

(t – s)β–1

Γ (β)
g
(
s, u(s), v(s)

)
ds.

Here

A1f =
∫ 1

0

(1 – s)α–1

Γ (α)
f
(
s, u(s), v(s)

)
ds, B1g =

∫ 1

0

(1 – s)β–1

Γ (β)
g
(
s, u(s), v(s)

)
ds,
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A2f =
∫ 1

0

(1 – s)α–γ –1

Γ (α – γ )
f
(
s, u(s), v(s)

)
ds, B2g =

∫ ξ

0

(ξ – s)β–γ –1

Γ (β – γ )
g
(
s, u(s), v(s)

)
ds,

A3f =
∫ ξ

0

(ξ – s)α–γ –1

Γ (α – γ )
f
(
s, u(s), v(s)

)
ds, B3g =

∫ 1

0

(1 – s)β–γ –1

Γ (β – γ )
g
(
s, u(s), v(s)

)
ds.

We use the following notations for convenience:

σ1 =
|μ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1||λ2|ξ 1–γ + 1)

|1 – λ1μ1| + |λ2|ξ 1–γ

]
ξα–γ

Γ (α – γ + 1)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

1
Γ (α – γ + 1)

+
[ |λ1||μ1|

|1 – μ1λ1| + 1
]

1
Γ (α + 1)

,

σ2 =
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

ξβ–γ

Γ (β – γ + 1)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1||λ2|ξ 1–γ + 1)

|1 – λ1μ1| + |λ2|ξ 1–γ

]
1

Γ (β – γ + 1)

+
|λ1|

|1 – μ1λ1|
1

Γ (β + 1)
,

σ3 =
|μ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |μ1|(|λ1| + |λ2|)ξ 1–γ )

|1 – λ1μ1| + 1
]

ξα–γ

Γ (α – γ + 1)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |μ1|(|λ1||μ2|ξ 1–γ + 1)

|1 – λ1μ1| + |μ2|ξ 1–γ

]
1

Γ (α – γ + 1)

+
|μ1|

|1 – μ1λ1|
1

Γ (α + 1)
,

σ4 =
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |μ1|(|λ1||μ2|ξ 1–γ + 1)

|1 – λ1μ1| + |μ2|ξ 1–γ

]
ξβ–γ

Γ (β – γ + 1)

+
Γ (2 – γ )

1 – λ2μ2ξ 2(1–γ )

[ |μ1|(|λ1| + |λ2|ξ 1–γ )
|1 – λ1μ1

| + 1
]

1
Γ (β – γ + 1)

+
[ |λ1||μ1|

|1 – μ1λ1| + 1
]

1
Γ (β + 1)

.

Now we are in a position to present our main results. The methods used to prove the
existence and uniqueness solutions of boundary value problem (1)–(2) go via Banach’s
contraction principle.

Theorem 3.1 Assume that:
(H1) f , g : [0, 1] × R × R → R are functions and there exist positive constants l1 and l2

such that, for all t ∈ [0, 1] and xi, yi ∈R, i = 1, 2, we have

∣∣f (t, x1, x2) – f (t, y1, y2)
∣∣ ≤ l1

(|x1 – y1| + |x2 – y2|
)
,

∣∣g(t, x1, x2) – g(t, y1, y2)
∣∣ ≤ l2

(|x1 – y1| + |x2 – y2|
)
.

If (σ1 + σ3)l1 + (σ2 + σ4)l2 < 1 then system (1)–(2) has a unique solution on [0, 1].
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Proof Define supt∈[0,1] f (t, 0, 0) = ρ1 < ∞ and supt∈[0,1] g(t, 0, 0) = ρ2 < ∞ and r > 0 such that

r >
(σ1 + σ3)ρ1 + (σ2 + σ4)ρ2

1 – (σ1 + σ3)l1 – (σ2 + σ4)l2
.

We show that Q(Br) ⊂ Br , where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}.
By assumption (H1), for (u, v) ∈ Br , t ∈ [0, 1], we have

∣∣f
(
t, u(t), v(t)

)∣∣ ≤ ∣∣f
(
t, u(t), v(t)

)
– f (t, 0, 0)

∣∣ +
∣∣f (t, 0, 0)

∣∣

≤ l1
(∣∣u(t)

∣∣ +
∣∣v(t)

∣∣) + ρ1

≤ l1
(‖u‖ + ‖v‖) + ρ1 ≤ l1r + ρ1,

and |g(t, u(t), v(t))| ≤ l2(‖u‖ + ‖v‖) + ρ2 ≤ l2r + ρ2, which leads to

∣
∣Q1(u, v)(t)

∣
∣

≤ |μ2|Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )|

[ |λ1|(|μ1||λ2|ξ 1–γ + 1)
|1 – λ1μ1| + |λ2|ξ 1–γ

]
ξα–γ

Γ (α – γ + 1)
(l1r + ρ1)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1||λ2|ξ 1–γ + 1)

|1 – λ1μ1| + |λ2|ξ 1–γ

]
1

Γ (β – γ + 1)
(l2r + ρ2)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

1
Γ (α – γ + 1)

(l1r + ρ1)

+
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

ξβ–γ

Γ (β – γ + 1)
(l2r + ρ2)

+
|λ1|

|1 – μ1λ1|
[ |μ1|

Γ (α + 1)
(l1r + ρ1) +

1
Γ (β + 1)

(l2r + ρ2)
]

+
1

Γ (α + 1)
(l1r + ρ1).

Hence,

∥
∥Q1(u, v)

∥
∥ ≤ (σ1l1 + σ2l2)r + σ1ρ1 + σ2ρ2.

In the same way, we obtain

∥∥Q2(u, v)
∥∥ ≤ (σ3l1 + σ4l2)r + σ3ρ1 + σ4ρ2.

Consequently,

∥∥Q(u, v)
∥∥ ≤ [

(σ1 + σ3)l1 + (σ2 + σ4)l2
]
r + (σ1 + σ3)ρ1 + (σ2 + σ4)ρ2 ≤ r.

Now, for (u2, v2), (u1, v1) ∈ X × X and for any t ∈ [0, 1], we get

∣
∣Q1(u2, v2)(t) – Q1(u1, v1)(t)

∣
∣

≤ |μ2|Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )|

[ |λ1|(|μ1||λ2|ξ 1–γ + 1)
|1 – λ1μ1| + |λ2|ξ 1–γ

]

× ξα–γ

Γ (α – γ + 1)
l1

(‖u2 – u1‖ + ‖v2 – v1‖
)
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+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1||λ2|ξ 1–γ + 1)

|1 – λ1μ1| + |λ2|ξ 1–γ

]

× 1
Γ (β – γ + 1)

l2
(‖u2 – u1‖ + ‖v2 – v1‖

)

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

× 1
Γ (α – γ + 1)

l1
(‖u2 – u1‖ + ‖v2 – v1‖

)

+
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

× ξβ–γ

Γ (β – γ + 1)
l2

(‖u2 – u1‖ + ‖v2 – v1‖
)

+
|λ1|

|1 – μ1λ1|
1

Γ (β + 1)
l2

(‖u2 – u1‖ + ‖v2 – v1‖
)

+
|λ1||μ1|

|1 – μ1λ1|
1

Γ (α + 1)
l1

(‖u2 – u1‖ + ‖v2 – v1‖
)

+
1

Γ (α + 1)
l1

(‖u2 – u1‖ + ‖v2 – v1‖
)

= (σ1l1 + σ2l2)
(‖u2 – u1‖ + ‖v2 – v1‖

)
,

and consequently we obtain

∥
∥Q1(u2, v2)(t) – Q1(u1, v1)(t)

∥
∥ ≤ (σ1l1 + σ1l2)

(‖u2 – u1‖ + ‖v2 – v1‖
)
. (8)

Similarly,

∥∥Q2(u2, v2)(t) – Q2(u1, v1)(t)
∥∥ ≤ (σ3l1 + σ4l2)

(‖u2 – u1‖ + ‖v2 – v1‖
)
. (9)

It follows from (8) and (9) that

∥∥Q(u2, v2)(t) – Q(u1, v1)
∥∥ ≤ [

(σ1 + σ3)l1 + (σ2 + σ4)l2
](‖u2 – u1‖ + ‖v2 – v1‖

)
.

Since (σ1 + σ3)l1 + (σ2 + σ4)l2 < 1, Q is a contraction operator. So, by Banach’s fixed point
theorem, the operator Q has a unique fixed point, which is the unique solution of problem
(1)–(2). �

The second result is based on the Leray–Schauder alternative.

Lemma 3.2 (Leray–Schauder alternative [18]) Let F : E → E be a completely continuous
operator (i.e., a map restricted to any bounded set in E is compact). Let

ε(F) =
{

x ∈ E : x = λF(x) for some 0 < λ < 1
}

.

Then either the set ε(F) is unbounded or F has at least one fixed point.
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Theorem 3.3 Assume that:
(H2) f , g : [0, 1] × R × R → R are continuous functions and there exist real constants

ki,γi ≥ 0 (i = 0, 1, 2) and k0 > 0, γ0 > 0 such that ∀xi ∈R (i = 1, 2), we have

∣∣f (t, x1, x2)
∣∣ ≤ k0 + k1|x1| + k2|x2|,

∣∣g(t, x1, x2)
∣∣ ≤ γ0 + γ1|x1| + γ2|x2|.

If (σ1 + σ3)κ1 + (σ2 + σ4)γ1 < 1 and (σ1 + σ3)κ2 + (σ2 + σ4)γ2 < 1 then system (1)–(2) has at
least one solution on [0, 1].

Proof First we show that the operator Q : X × X → X × X is completely continuous. By
the continuity of functions f and g , the operator Q is continuous.

Let Ω ⊂ X × X be bounded. Then there exist positive constants K1 and K2 such that
|f (t, u(t).v(t))| ≤ K1, |g(t, u(t).v(t))| ≤ K2, ∀(u, v) ∈ Ω . Then, for any (u, v) ∈ Ω , we have

∣
∣Q1(u, v)(t)

∣
∣

≤ |μ2|Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )|

[ |λ1|(|μ1||λ2|ξ 1–γ + 1)
|1 – λ1μ1| + |λ2|ξ 1–γ

]
ξα–γ

Γ (α – γ + 1)
K1

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1||λ2|ξ 1–γ + 1)

|1 – λ1μ1| + |λ2|ξ 1–γ

]
1

Γ (β – γ + 1)
K2

+
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

1
Γ (α – γ + 1)

K1

+
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )|
[ |λ1|(|μ1| + |μ2|ξ 1–γ )

|1 – λ1μ1| + 1
]

ξβ–γ

Γ (β – γ + 1)
K2

+
|λ1|

|1 – μ1λ1|
[ |μ1|

Γ (α + 1)
K1 +

1
Γ (β + 1)

K2

]
+

1
Γ (α + 1)

K1,

which implies that ‖Q1(u, v)‖ ≤ σ1K1 + σ2K2. Similarly, we get ‖Q2(u, v)‖ ≤ σ3K1 + σ4K2.
Thus, it follows from the above inequalities that the operator Q is uniformly bounded,
since ‖Q(u, v)‖ ≤ (σ1 + σ3)K1 + (σ2 + σ4)K2.

Next, we show that Q is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

∣
∣Q1

(
u(t2), v(t2)

)
– Q1

(
u(t1), v(t1)

)∣∣

≤ K1
ξα–γ

Γ (α – γ + 1)
|μ2||λ2|ξ 1–γ Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
1

Γ (β – γ + 1)
|λ2|ξ 1–γ Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1
1

Γ (α – γ + 1)
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
ξβ–γ

Γ (β – γ + 1)
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1

∣
∣∣∣

1
Γ (α)

∫ t2

0
(t2 – s)α–1 ds –

1
Γ (α)

∫ t1

0
(t1 – s)α–1 ds

∣
∣∣∣

≤ K1
ξα–γ

Γ (α – γ + 1)
|μ2||λ2|ξ 1–γ Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)
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+ K2
1

Γ (β – γ + 1)
|λ2|ξ 1–γ Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1
1

Γ (α – γ + 1)
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
ξβ–γ

Γ (β – γ + 1)
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1

∣
∣∣
∣

∫ t2

t1

(t2 – s)α–1

Γ (α)
ds

∣
∣∣
∣ + K1

∣
∣∣
∣

∫ t1

0

(t2 – s)α–1 – (t1 – s)α–1

Γ (α)
ds

∣
∣∣
∣

≤ K1
ξα–γ

Γ (α – γ + 1)
|μ2||λ2|ξ 1–γ Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
1

Γ (β – γ + 1)
|λ2|ξ 1–γ Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1
1

Γ (α – γ + 1)
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
ξβ–γ

Γ (β – γ + 1)
|λ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1) + K1
(tα

2 – tα
1 )

Γ (α + 1)
.

Analogously, we can obtain

∣∣Q2
(
u(t2), v(t2)

)
– Q2

(
u(t1), v(t1)

)∣∣

≤ K1
ξα–γ

Γ (α – γ + 1)
|μ2|Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
1

Γ (β – γ + 1)
Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K1
1

Γ (α – γ + 1)
|μ2|ξ 1–γ Γ (2 – γ )
|1 – λ2μ2ξ 2(1–γ )| (t2 – t1)

+ K2
ξβ–γ

Γ (β – γ + 1)
|μ2||λ2|ξ 1–γ Γ (2 – γ )

|1 – λ2μ2ξ 2(1–γ )| (t2 – t1) + K2
(tβ

2 – tβ
1 )

Γ (β + 1)
.

Then we can easily show that the operator Q(u, v) is equicontinuous. As a consequence of
steps together with the Arzela–Ascoli theorem, we find that the operator Q(u, v) is com-
pletely continuous.

Finally, it will be verified that the set ε = {(u, v) ∈ X × X|(u, v) = λQ(u, v), 0 ≤ λ ≤ 1} is
bounded. Let (u, v) ∈ ε, with (u, v) = λQ(u, v). For any t ∈ [0, 1], we have

u(t) = λQ1(u, v)(t), v(t) = λQ2(u, v)(t).

Then
∣
∣u(t)

∣
∣ ≤ σ1

(
k0 + k1|u| + k2|v|

)
+ σ2

(
γ0 + γ1|u| + γ2|v|

)

= σ1k0 + σ2γ0 + (σ1k1 + σ2γ1)|u| + (σ1k2 + σ2γ2)|v|

and
∣∣v(t)

∣∣ ≤ σ3
(
k0 + k1|u| + k2|v|

)
+ σ4

(
γ0 + γ1|u| + γ2|v|

)

= σ3k0 + σ4γ0 + (σ3k1 + σ4γ1)|u| + (σ3k2 + σ4γ2)|v|,
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which implies

‖u‖ + ‖v‖ ≤ (σ1 + σ3)k0 + (σ2 + σ4)γ0 +
[
(σ1 + σ3)k1 + (σ2 + σ4)γ1

]‖u‖
+

[
(σ1 + σ3)k2 + (σ2 + σ4)γ2

]‖v‖.

Consequently,

∥
∥(u, v)

∥
∥ ≤ (σ1 + σ3)k0 + (σ2 + σ4)γ0

σ0

where

σ0 = min
{

1 –
[
(σ1 + σ3)k1 + (σ2 + σ4)γ1

]
, 1 –

[
(σ1 + σ3)k2 + (σ2 + σ4)γ2

]}
,

which proves that ε is bounded. Thus, by Lemma 3.2, the operator Q has at least one fixed
point. Hence, the boundary value problem (1)–(2) has at least one solution. �

4 Some examples
In this section, we will present some examples to illustrate the main results.

Example 1 Consider the following system of fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cD3/2
0+ u(t) = et

18 + cos2 u(t)
9 + 25(|v(t)|)

10+|v(t)| , t ∈ (0, 1),
cD3/2

0+ v(t) = 1+sin2(u(t))
3√t(1–t)2

+ |v(t)|
18(1+|v(t)|) + 1

4 , t ∈ (0, 1),

u(0) = 1
2 v(1), cD1/2

0+ u(1) = 1
3

cD1/2
0+ v(1/4),

v(0) = 3
7 u(1), cD1/2

0+ v(1) = 2
3

cD1/2
0+ u(1/4).

Here α = β = 3
2 , γ = 1

2 , λ1 = 1
2 , λ2 = 1

3 , μ1 = 3
7 , μ2 = 2

3 , ξ = 1
4 . By simple calculation„ we

found that σ1 = 2.755358, σ2 = 2.847316, σ3 = 2.10908, σ4 = 2.49716. Note that

∣∣f (t, u1, u2) – f (t, v1, v2)
∣∣ ≤ 1

18
|u1 – u2| +

1
18

|v1 – v2|,
∣
∣g(t, u1, u2) – g(t, v1, v2)

∣
∣ ≤ 1

18
|u1 – u2| +

1
18

|v1 – v2|,

and (σ1 + σ3)l1 + (σ2 + σ4)l2 ≈ 0.56716 < 1. Thus all the conditions of Theorem 3.1 are
satisfied.

Example 2 Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD3/2
0+ u(t) = 1

6(t+1)2 u(t) + 1
32 sin v(t) + 1, t ∈ (0, 1),

cD3/2
0+ v(t) = 1

64π
sin(2πu(t)) + 1

32 v(t) + 1
2 , t ∈ (0, 1),

u(0) = 1
3 v(1), cD1/3

0+ u(1) = 1
2

cD1/3
0+ v(1/5),

v(0) = 3
5 u(1), cD1/3

0+ v(1) = 2
5

cD1/3
0+ u(1/5).
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Here α = β = 3
2 , γ = 1

3 , λ1 = 1
3 , λ2 = 1

2 , μ1 = 3
5 , μ2 = 2

5 , ξ = 1
5 . Note that

∣∣f (t, x1, x2)
∣∣ ≤ 1 +

1
32

|x1| +
1

32
|x2|,

∣
∣g(t, x1, x2)

∣
∣ ≤ 1

2
+

1
32

|x1| +
1

32
|x2|.

We get k1 = 1
32 , k2 = 1

32 , γ1 = 1
32 , γ2 = 1

32 . By simple calculation, we found that σ1 = 2.14850,
σ2 = 2.1845, σ3 = 2.10890, σ4 = 2.32131, then we have (σ1 +σ3)k1 +(σ2 +σ4)γ1 ≈ 0.27386 < 1
and (σ1 +σ3)k2 + (σ2 +σ4)γ2 < 1. By Theorem 3.3, the coupled boundary value problem has
at least one positive solution.

5 Conclusions
In this work, we have established the existence and uniqueness results for a nonlinear
coupled system of Caputo type fractional differential equations supplemented with cou-
pled fractional nonlocal non-separated boundary conditions by using the Banach contrac-
tion principle and the Leray–Schauder fixed point theorem. Finally, we give examples to
demonstrate our results.
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