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Abstract
Throughout this article, the conundrum on finite-time cluster synchronization is
investigated for time-varying delayed complex dynamical networks using a kind of
new hybrid control scheme. In the light of Lyapunov stability theorem and finite-time
control theory, the finite-time cluster synchronization criteria can be achieved.
Besides, we introduce the distinction between cluster synchronization and complete
synchronization, which is how to select the controlling nodes. We discuss the
differences among cluster synchronization with time-varying delays, complete
synchronization with time-varying delays, cluster synchronization with a single delay,
and cluster synchronization without delay, which is on constructing Lyapunov
functional and designing the finite-time hybrid controllers. Finally, numerical
simulations are presented to demonstrate the availability of the theoretical
consequences.
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1 Introduction
In the last few years, it is well known that the synchronization problem of complex net-
works [1, 2] has captured much more attention from researchers at various fields, such as
physical science, natural science, mathematics, communication, and engineering. More-
over, a multitude of latent applications of synchronization in different engineering do-
mains have been discovered, for instance, image processing systems [3], biological sys-
tems [4], and secure communications [5]. Hence, many diverse kinds of synchroniza-
tion have been examined, incorporating cluster synchronization [6–11], projective syn-
chronization [12–14], lag synchronization [15], generalized synchronization [16], com-
plete synchronization [17], anticipating synchronization [18], phase synchronization [19],
etc.

In the real world, on account of specific goals, many biological, social, and technological
networks are functionally divided into several groups (also called communities or clus-
ters), and the nodes belonging to the same group reach complete synchronization, but
there is no synchronization between any two different groups, which is called cluster syn-
chronization. Owing to its essentiality in communication engineering and biological sci-
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ences, much achievement has recently been devoted to studying the cluster synchroniza-
tion problem of complex dynamical networks, and many remarkable consequences have
been established [20–22].

Therefore, cluster synchronization is investigated in this article, which means that nodes
can achieve synchronization in each identical group; however, no synchronization arises
among nodes in diverse communities. To be more specific, if the nodes can be separated
into n nonempty groups, namely

{1, 2, . . . , N} = G1 ∪ G2 ∪ · · · ∪ Gm, (1)

where G1 = {1, 2, . . . , c1}, G2 = {c1 + 1, . . . , c2}, . . . , Gm = {cm–1 + 1, . . . , N}, then the nodes can
be synchronized in the uniform community, but no synchronization appears among the
unlike communities. When n = 1, among others, the cluster synchronization is equivalent
to the complete synchronization.

For the past few years, progressive control methods, such as pinning control [6–9, 15],
adaptive control [23], impulsive control [24, 25], intermittent control [6, 9, 25, 26], and so
on, have been proposed to accomplish the synchronization of a complex network. In par-
ticular, pinning control is one of the valid schemes in the cluster synchronization control
of a complex network, which is economy, simplicity, and practicality. However, as far as
we know, it is very tough to accomplish the finite-time cluster synchronization. Therefore,
in this paper, by using a pinning control scheme for reference, a kind of new finite-time
hybrid controller has been projected to command the complex networks and accomplish
the finite-time cluster synchronization.

It is well known that time delay [6–9, 11, 23, 25, 27] is a highly widespread phenomenon
in actual complex network systems. Accordingly, it is essential to investigate the incidence
of time delay on the cluster synchronization of a complex network. Ma and Lu [7] inquired
into the cluster synchronization of complex network models without time delay. The clus-
ter synchronization of linearly coupled systems was examined by Liu et al. [6] with just a
single time delay.

In realistic situations, nevertheless, much intricate and changeable information ex-
change in complex network is subsistent and time delay is not simply like xi(t – τ ). For
this reason, Wang et al. [8] investigated the cluster synchronization of a dynamical com-
plex network with time-varying delays [9], which is more close to actuality. Throughout
this paper, the complex networks model is also used for reference, see Wang et al. [8].
However, the cluster synchronization of a complex network is frequently accomplished in
finite time [13, 25, 26, 28–33] in practical application. Namely, characters are expected to
achieve the cluster synchronization of time-delay complex network as quickly as feasible
in reality and the purpose of finite-time synchronization is the optimality in convergence
time. It is remarkable to investigate the finite-time cluster synchronization of a complex
network in practice. Therefore, many scientific and technical works have been joining the
studies for finite-time synchronization of complex networks. Nevertheless, Wang et al.
[8] just investigated asymptotic stability of the cluster synchronization. Jiang et al. [13] in-
vestigated cluster general projective synchronization of complex networks in finite time
without time delay.

Hence, enlightened by the above papers, in this article we aim to achieve the finite-time
cluster synchronization of complex networks with time-varying delays via hybrid control.
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Figure 1 A BA scale-free network with three clusters consisting of 19 nodes

By precedence controlling some key nodes in the φith cluster, which has direct connection
with the nodes in other clusters, some sufficient conditions are derived to guarantee the
cluster synchronization of networks in finite time as shown in Fig. 1 [13, 14], where the
key controlling nodes are Nos. 3, 4, 5, 6, 7, 8, 13, 14, 15.

The work is organized as follows. In Sect. 2, the complex network model is presented,
together with some necessary assumptions and lemmas. In Sect. 3, some sufficient crite-
ria for finite-time cluster synchronization are given, and controlled-nodes schemes which
comprise undirected network and directed network are proposed in the remark. Numer-
ical simulations are shown in Sect. 4 to check the effectiveness of the theoretical conse-
quences. Ultimately, the paper is concluded in Sect. 5.

2 Problem description
In this section, we think about an undirected complex network composed of N nodes
with each being an n-dimensional dynamical system. The complex dynamical network is
depicted by

ẋi(t) = fφi

(
t, xi(t), xi

(
t – τφi (t)

))
+ c1

N∑

j=1

aijΓ1xj(t)

+ c2

N∑

j=1

bijΓ2xj
(
t – τφi (t)

)
, (2)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of node i, i = 1, 2, . . . , N .
fφi : R × Rn × Rn → Rn depicts the dynamics of nodes in the φith cluster. τφi (t) repre-
sents time-varying delays in the complex network. c1 > 0 and c2 > 0 are coupling strength.
A = (aij)N×N (B = (bij)N×N ) is the outer-coupling configuration matrix that stands for the
complex network topological structure. Provided there is a connection from j to node
i(j �= i), then aij = aji > 0 (bij = bji > 0), or else aij = aji = 0 (bij = bji = 0). The diagonal entries
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of matrices meet the diffusive coupling conditions as follows:

aii = –
N∑

j=1,j �=i

aji

(

bii = –
N∑

j=1,j �=i

bji

)

. (3)

Γ1 ∈ Rn×n and Γ2 ∈ Rn×n describe the inner-coupling matrices among the clusters.
The complex network has m (2 ≤ m ≤ N) clusters and {1, 2, . . . , N} = G1 ∪ G2 ∪· · ·∪ Gm.

Provided node i is geared to the jth cluster, then let φi = j. Utilize fi(·) to stand for the
partial dynamics of all nodes in the ith cluster. Let si(t) be the solution of the network
system ṡφi (t) = fφi (t, si(t), si(t – τφi (t))) (i = 1, 2, . . . , m) with limt→∞‖si(t) – sj(t)‖ �= 0 (i �= j).

The controlled complex network in regard to the complex system (2) can be depicted as
follows:

ẋi(t) = fφi

(
t, xi(t), xi

(
t – τφi (t)

))
+ c1

N∑

j=1

aijΓ1xj(t)

+ c2

N∑

j=1

bijΓ2xj
(
t – τφi (t)

)
+ ui(t), i = 1, 2, . . . , N , (4)

where ui(t) (i = 1, 2, . . . , N ) represents the hybrid controllers.
Define the error variables as follows:

ei(t) = xi(t) – sφi (t), i = 1, 2, . . . , N , (5)

where ṡφi (t) = fφi (t, si(t), si(t – τφi (t))) symbolizes the local dynamics of the nodes in the
φith group. Hence, when limt→t1‖ei(t)‖ = 0 (i = 1, 2, . . . , N ), the complex network (4) can
achieve finite-time cluster synchronization.

Next, some indispensable assumptions and lemmas are given to demonstrate our pri-
mary consequences.

Assumption 1 ([8]) Assume that there exist constants ςφi > 0 and θφi > 0 for ∀x, y ∈ Rn

and t ≥ 0 such that the vector-valued function fφi (t, xi(t), xi(t – τφi (t))) satisfies the semi-
Lipschitz condition:

(
xi(t) – yi(t)

)T(
fφi

(
t, xi(t), xi

(
t – τφi (t)

))
– fφi

(
t, yi(t), yi

(
t – τφi (t)

)))

≤ ςφi

(
xi(t) – yi(t)

)T(
xi(t) – yi(t)

)
+ θφi

(
xi

(
t – τφi (t)

)
– yi

(
t – τφi (t)

))T

× (
xi

(
t – τφi (t)

)
– yi

(
t – τφi (t)

))
, i = 1, 2, . . . , N . (6)

Assumption 2 ([8]) Assume that the time-varying delay τφi (t) is a differential function
and 0 ≤ τ̇φi (t) ≤ ε ≤ 1.

Lemma 1 ([34]) Suppose that there exist any two vectors x and y and a matrix S > 0 with
appropriate dimensions such that

2xTy ≤ xTSx + yTS–1y. (7)
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Lemma 2 ([25]) For x1, x2, . . . , xn ∈ Rn, and 0 < q < 2 is a real number, the following in-
equality holds:

‖x1‖q + ‖x2‖q + · · · + ‖xn‖q ≥ (‖x1‖2 + ‖x2‖2 + · · · + ‖xn‖2)q/2. (8)

Lemma 3 ([35]) Assume that there exists an indeterminate vector parameter α which is
norm bounded, i.e., ‖α‖ < ω, where ω is a known positive invariable, and ‖ · ‖ represents
matrix 2-norms, then we have ‖α̃ – α‖ ≤ ‖α̃‖ + ‖α‖ ≤ ‖α̃‖ + ω.

Lemma 4 ([13]) Suppose that a continuous, positive definite function V (t) satisfies the
following inequality:

V̇ (t) ≤ –pV ξ (t), ∀t ≥ t0, V (t0) ≥ 0, (9)

where p > 0, 0 < ξ < 1 are two constants. For any given time t0, V (t) satisfies the following
inequality: V 1–ξ (t) ≤ V 1–ξ (t0) – p(1 – ξ )(t – t0), t0 ≤ t ≤ t1 and V (t) ≡ 0, ∀t ≥ t∗, with t∗

given by t∗ = t0 + V 1–ξ (t0)/[p(1 – ξ )].

3 Main results
In this section, our main results are described to make the complex network (4) realize the
finite-time cluster synchronization via pinning control. The synchronization errors are
represented by ei(t) = xi(t) – sφi (t) (i = 1, 2, . . . , N ). Then, on the basis of complex network
(2), the synchronization error system can be obtained as follows:

ėi(t) = f̃φi

(
t, xi(t), xi

(
t – τφi (t)

))
+ c1

N∑

j=1

aijΓ1ej(t)

+ c2

N∑

j=1

bijΓ2ej
(
t – τφi (t)

)
+ c1

N∑

j=1

aijΓ1sφi (t)

+ c2

N∑

j=1

bijΓ2sφi

(
t – τφi (t)

)
+ ui(t), i = 1, 2, . . . , N , (10)

where f̃φi (t, xi(t), xi(t – τφi (t))) = fφi (t, xi(t), xi(t – τφi (t))) – fφi (t, si(t), si(t – τφi (t))) (i =
1, 2, . . . , N). In order to accomplish the cluster synchronization in finite time, the hybrid
controllers are contrived as follows:

ui(t) =

⎧
⎨

⎩
–g1ei(t) – αi(t), i ∈ J̃φi ,

–ωi(t), i ∈ Jφi\J̃φi ,
(11)
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thereinto

αi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ

+ k
(

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

,

ωi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣∣μ

+ k
(

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

+ 2k
(

g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

,

(12)

where i = 1, 2, . . . , N ; k is a tunable constant, g1 is a positive constant denoting the con-
trol strength, and k1 is a positive constant; if ‖e(t)‖ �= 0, Ψ (ei(t),‖e(t)‖) = ei(t)

‖e(t)‖2 , or else
Ψ (ei(t),‖e(t)‖) = 0. Besides, Jφi represents all the nodes in the φith group and J̃φi denotes
the nodes in the φith group which is directly connected with the nodes in other groups.

Remark 1 By using the pinning control method for reference, a finite-time hybrid con-
troller ui(t) has been designed. The structure of the hybrid controller is the same as the
one of the pinning controller, i.e., they both divide the nodes into two parts. Thereinto,
in i ∈ J̃φi , the nodes are key controlling nodes, which means they will be controlled pref-
erentially. As we all know, the pinning controller is just appropriate for accomplishing
asymptotic or exponential synchronization of complex networks. Therefore, there are few
literatures to investigate finite-time synchronization by pinning control, not to speak of
finite-time cluster synchronization. For the purpose of realizing the finite-time cluster
synchronization of complex dynamical networks, the hybrid controller is contrived by us.

Theorem 1 Under Assumption 1, Assumption 2, and Lemma 3, if the following conditions
hold:

(1) η2 + 1
2 – 1–ε

2 k1 < 0,
(2) η1 + c1λmax(Q) + 1

2 c2
2λmax(PPT) + 1

2 k1 – g1 < 0,
where η1 = ςφi > 0, η2 = θφi > 0, Q = A ⊗ Γ1, and P = B ⊗ Γ2, then the complex network (2)
under the hybrid controllers (11) can achieve cluster synchronization in finite time:

t0 ≤ t̄ ≤ t∗ = t0 +
1

(1 – μ)k
(
2V (t0)

) 1–μ
2 , (13)

where

V (t0) =
1
2

N∑

i=1

e2
i (t0) +

1
2

k1

N∑

i=1

∫ t0

t0–τφi (t0)
eT

i (s)ei(s) ds

+ g1

m∑

φi=1

∑

i∈Jφi \J̃φi

∫ t1

t0

eT
i (s)ei(s) ds. (14)

Moreover, ei(t0) and τφi (t0) are original constant values of ei(t) and τφi (t), respectively.



Xiao et al. Advances in Difference Equations         (2019) 2019:93 Page 7 of 21

Proof A Lyapunov–Krasovskii functional is constructed as indicated below:

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

k1

N∑

i=1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds

+ g1

m∑

φi=1

∑

i∈Jφi \J̃φi

∫ t1

t
eT

i (s)ei(s) ds. (15)

Calculating the derivative of V (t) in relation to time t along the solutions of system (10)
outputs the following:

V̇ (t) =
N∑

i=1

eT
i (t)

[

fφi

(
t, xi(t), xi

(
t – τφi (t)

))
– fφi

(
t, si(t), si

(
t – τφi (t)

))

+ c1

N∑

j=1

aijΓ1ej(t) + c2

N∑

j=1

bijΓ2ej
(
t – τφi (t)

)
+ ui(t)

]

+
1
2

k1

N∑

i=1

eT
i (t)ei(t)

–
1 – τ̇φi (t)

2
k1

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)
– g1

m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)ei(t). (16)

Inserting hybrid controllers (11) into V̇ (t) and in the light of Assumption 1, we get

V̇ (t) ≤ η1

N∑

i=1

eT
i (t)ei(t) + η2

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)

+ c1eT(t)(A ⊗ Γ1)e(t) + c2eT(t)(B ⊗ Γ2)e
(
t – τφi (t)

)

+
1
2

k1

N∑

i=1

eT
i (t)ei(t) –

1 – τ̇φi (t)
2

k1

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)

–
m∑

φi=1

∑

i∈Jφi \J̃φi

g1eT
i (t)ei(t) –

m∑

φi=1

∑

i∈J̃φi

g1eT
i (t)ei(t) – k

N∑

i=1

eT
i (t)

×
[(

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

+ sign
(
ei(t)

)∣∣ei(t)
∣∣μ

]

– 2k
m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)

[(
g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

]
,

where e(t) = (‖e1(t)‖,‖e2(t)‖, . . . ,‖eN (t)‖)T; constants η1 > 0 and η2 > 0; and ⊗ bespeaks
the Kronecker product of two matrices.

Let Q = A ⊗ Γ1, P = B ⊗ Γ2, and from Lemma 1, we have

V̇ (t) ≤ η1eT(t)e(t) + η2eT(
t – τφi (t)

)
e
(
t – τφi (t)

)

+ c1eT(t)Qe(t) + c2eT(t)Pe
(
t – τφi (t)

)
+

1
2

k1eT(t)e(t)

–
1 – τ̇φi (t)

2
k1eT(

t – τφi (t)
)
e
(
t – τφi (t)

)
– g1eT(t)e(t)



Xiao et al. Advances in Difference Equations         (2019) 2019:93 Page 8 of 21

– k
N∑

i=1

eT
i (t)

[(
k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

+ sign
(
ei(t)

)∣∣ei(t)
∣
∣μ

]
– 2k

m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)

×
[(

g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

]

≤ η1eT(t)e(t) + η2eT(
t – τφi (t)

)
e
(
t – τφi (t)

)
+ c1eT(t)Qe(t)

+
1
2

c2
2eT(t)PPTe(t)+

1
2

eT(
t – τφi (t)

)
e
(
t – τφi (t)

)
+

1
2

k1eT(t)e(t)

–
1 – τ̇φi (t)

2
k1eT(

t – τφi (t)
)
e
(
t – τφi (t)

)
– g1eT(t)e(t) – k

N∑

i=1

eT
i (t)

×
[(

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

+ sign
(
ei(t)

)∣∣ei(t)
∣
∣μ

]

– 2k
m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)

[(
g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)]

≤
(

η2 +
1
2

–
1 – ε

2
k1

)
eT(

t – τφi (t)
)
e
(
t – τφi (t)

)
+

(
η1 + c1λmax(Q)

+
1
2

c2
2λmax

(
PPT)

+
1
2

k1 – g1

)
eT(t)e(t) – k

N∑

i=1

eT
i (t)

×
[(

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

+ sign
(
ei(t)

)∣∣ei(t)
∣∣μ

]

– 2k
m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)

[(
g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)]

.

According to the conditions of Theorem 1, Lemma 2, and Lemma 3, we can acquire

V̇ (t) ≤ –k
N∑

i=1

eT
i (t)

[(
k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

+ sign
(
ei(t)

)∣∣ei(t)
∣∣μ

]
– 2k

m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)

×
[(

g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)]

≤ –k
N∑

i=1

∣
∣eT

i (t)ei(t)
∣
∣

1+μ
2 – k

N∑

i=1

(
k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds
) 1+μ

2

– 2k
m∑

φi=1

∑

i∈Jφi \J̃φi

(
g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
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≤ –2
1+μ

2 k

(
1
2

N∑

i=1

e2
i (t) +

1
2

N∑

i=1

k1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds

+ k
m∑

φi=1

∑

i∈Jφi \J̃φi

g1

∫ t1

t
eT

i (s)ei(s) ds

) 1+μ
2

= –2
1+μ

2 kV
1+μ

2 (t).

On the basis of Lemma 4, for any initial values, the synchronization error system (10) can
be obtained by the global stabilization in time t0 ≤ t̄ ≤ t∗ = t0 + 1

(1–μ)k (2V (t0))
1–μ

2 . When the

initial time t0 = 0, we have t∗ = 1
(1–μ)k (2V (0))

1–μ
2 , and we can know that the synchronization

time of network counts on value of the constants k(k > 0) and μ(0 ≤ μ < 1). Denote T(k) =
1

(1–μ)k (2V (0))
1–μ

2 . If we fix the μ, then we get T ′(k) = – 1
(1–μ)k2 (2V (0))

1–μ
2 < 0; therefore,

T(k) is the thoroughly monotone diminishing function. Namely, the more sizeable the
tunable constant k is, the shorter time is needed to achieve synchronization. Accordingly,
the complex network (2) can achieve the cluster synchronization in finite time t̄. This
completes the proof. �

Remark 2 In this section, we recommended the finite-time hybrid control method to
synchronize the complex dynamical networks with time-varying delays. There is a large
amount of consequences concerning asymptotic and exponential cluster synchronization
via pinning control [6–9, 15]. Nevertheless, so far as we know, there are few published
papers dealing with the finite-time cluster synchronization. And compared with the tech-
nique of asymptotic and exponential cluster synchronization for complex dynamical net-
works with time-varying delays, our consequences are capable of shortening the cluster
synchronization time.

In the following, we will give a simple pinning controller to achieve asymptotic cluster
synchronization of the complex networks (2) and compare their difference in time of ac-
complishing synchronization in numerical simulations. The pinning controller is given as
follows:

u′
i(t) =

⎧
⎨

⎩
–g1ei(t), i ∈ J̃φi ,

0, i ∈ Jφi\J̃φi ,
(17)

where i = 1, 2, . . . , N ; g1 is a positive constant denoting the control strength.

Theorem 2 Suppose that Assumption 1, Assumption 2, and Lemma 3 hold. If the following
conditions hold:

(1) η2 + 1
2 – 1–ε

2 k1 < 0,
(2) η1 + c1λmax(Q) + 1

2 c2
2λmax(PPT) + 1

2 k1 – g1 < 0,
where η1 = ςφi > 0, η2 = θφi > 0, Q = A ⊗ Γ1, and P = B ⊗ Γ2, then the complex network (2)
under the pinning controller (17) can achieve asymptotic cluster synchronization.
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Proof A Lyapunov–Krasovskii functional is constructed as indicated below:

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

k1

N∑

i=1

∫ t

t–τφi (t)
eT

i (s)ei(s) ds

+ g1

m∑

φi=1

∑

i∈Jφi \J̃φi

∫ t1

t
eT

i (s)ei(s) ds. (18)

Calculating the derivative of V (t) in relation to time t along the solutions of system (18)
outputs the following:

V̇ (t) =
N∑

i=1

eT
i (t)

[

fφi

(
t, xi(t), xi

(
t – τφi (t)

))
– fφi

(
t, si(t), si

(
t – τφi (t)

))

+ c1

N∑

j=1

aijΓ1ej(t) + c2

N∑

j=1

bijΓ2ej
(
t – τφi (t)

)
+ u′

i(t)

]

+
1
2

k1

N∑

i=1

eT
i (t)ei(t)

–
1 – τ̇φi (t)

2
k1

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)
– g1

m∑

φi=1

∑

i∈Jφi \J̃φi

eT
i (t)ei(t). (19)

The process of proof is similar to that in Theorem 1:

V̇ (t) ≤ η1

N∑

i=1

eT
i (t)ei(t) + η2

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)

+ c1eT(t)(A ⊗ Γ1)e(t) + c2eT(t)(B ⊗ Γ2)e
(
t – τφi (t)

)

+
1
2

k1

N∑

i=1

eT
i (t)ei(t) –

1 – τ̇φi (t)
2

k1

N∑

i=1

eT
i
(
t – τφi (t)

)
ei

(
t – τφi (t)

)

–
m∑

φi=1

∑

i∈Jφi \J̃φi

g1eT
i (t)ei(t) –

m∑

φi=1

∑

i∈J̃φi

g1eT
i (t)ei(t)

≤ η1eT(t)e(t) + η2eT(
t – τφi (t)

)
e
(
t – τφi (t)

)
+ c1eT(t)Qe(t)

+
1
2

c2
2eT(t)PPTe(t) +

1
2

eT(
t – τφi (t)

)
e
(
t – τφi (t)

)
+

1
2

k1eT(t)e(t)

–
1 – τ̇φi (t)

2
k1eT(

t – τφi (t)
)
e
(
t – τφi (t)

)
– g1eT(t)e(t)

≤
(

η2 +
1
2

–
1 – ε

2
k1

)
eT(

t – τφi (t)
)
e
(
t – τφi (t)

)

+
(

η1 + c1λmax(Q) +
1
2

c2
2λmax

(
PPT)

+
1
2

k1 – g1

)
eT(t)e(t)

≤ 0.

The proof of Theorem 2 is completed. Therefore, the complex network (2) can achieve
asymptotic cluster synchronization via the pinning controller (17). �
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Remark 3 In the hybrid controller, the methods of selecting key controlling nodes come
from the pinning controller. As everyone knows, in the pinning control technique of com-
plex dynamical networks, how to select nodes as pinned nodes is a crucial, significant,
and interesting problem. In references [36–38], we can see that when a coupling matrix of
nodes is undirected, the authors can choose the highly connected nodes as pinned can-
didates, and when a coupling matrix of nodes is directed, they select the nodes whose
out-degrees are larger than in-degrees as controlled candidates. In this article, the nodes
can achieve cluster synchronization in each community by the hybrid control method,
whereas no synchronization arises among nodes in varying communities. We make those
nodes in the φith group which are directly connected with the nodes in other groups to
be key controlling candidates.

Using the method of designing controller and constructing Lyapunov function in this
paper, three complex network models derived from system (2) deformation are presented
to realize finite-time synchronization respectively.

(1) When the cluster synchronization of complex systems (2) is changed into complete
synchronization as indicated below:

ẋi(t) = f
(
t, xi(t), xi

(
t – τ1(t)

))
+ c1

N∑

j=1

aijΓ1xj(t)

+ c2

N∑

j=1

bijΓ2xj
(
t – τ2(t)

)
, i = 1, 2, . . . , N . (20)

Construct the Lyapunov–Krasovskii functional as shown below:

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

k1

N∑

i=1

∫ t

t–τ1(t)
eT

i (s)ei(s) ds

+
1
2

k2

N∑

i=1

∫ t

t–τ2(t)
eT

i (s)ei(s) ds + g1

N∑

i=l+1

∫ t1

t
eT

i (s)ei(s) ds. (21)

Therefore, the finite-time hybrid controllers are redesigned as follows:

ui(t) =

⎧
⎨

⎩
–g1ei(t) – αi(t), 1 ≤ i ≤ l,

–ωi(t), l + 1 ≤ i ≤ N ,
(22)

in which

αi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ + k

2∑

r=1

(
kr

∫ t

t–τr(t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

,

ωi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ + k

2∑

r=1

(
kr

∫ t

t–τr (t)
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

+ 2k
(

g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥∥e(t)
∥∥)

.
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Moreover, according to the proof of Theorem 1, the following conditions need to be
satisfied:

(1) η1 + c1λmax(Q) +
1
2

c2
2λmax

(
PPT)1

2
k1 +

1
2

k2 – g1 < 0,

(2) η2 –
1 – ε1

2
k1 < 0,

(3)
1
2

–
1 – ε2

2
k2 < 0.

Then the complex dynamical networks (21) can achieve complete synchronization
in the finite time t1 ≤ t0 + 1

(1–μ)k (2V (t0))
1–μ

2 .
(2) When time-varying delays τφi (t) are reduced to a positive constant τ > 0 in complex

systems (2) as follows:

ẋi(t) = fφi

(
t, xi(t), xi(t – τ )

)
c1

N∑

j=1

aijΓ1xj(t)

+ c2

N∑

j=1

bijΓ2xj(t – τ ), i = 1, 2, . . . , N . (23)

The Lyapunov–Krasovskii functional is translated into

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

k1

N∑

i=1

∫ t

t–τ

eT
i (s)ei(s) ds

+ g1

m∑

φi=1

∑

i∈Jφi \J̃φi

∫ t1

t
eT

i (s)ei(s) ds. (24)

Hence, the finite-time hybrid controllers are redesigned as shown below:

ui(t) =

⎧
⎨

⎩
–g1ei(t) – αi(t), i ∈ J̃φi ,

–ωi(t), i ∈ Jφi\J̃φi ,
(25)

in which

αi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣∣μ + k

(
k1

∫ t

t–τ

eT
i (s)ei(s) ds

) 1+μ
2

Ψ
(
ei(t),

∥∥e(t)
∥∥)

,

ωi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ + k

(
k1

∫ t

t–τ

eT
i (s)ei(s) ds

) 1+μ
2

Ψ
(
ei(t),

∥
∥e(t)

∥
∥)

+ 2k
(

g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

,

and the following conditions need to be satisfied:

(1) η1 + c1λmax(Q) +
1
2

c2
2λmax

(
PPT)

+
1
2

k1 – g1 < 0,
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(2) η2 +
1
2

–
1
2

k1 < 0.

Then the complex networks (23) can achieve cluster synchronization in the finite
time t2 ≤ t0 + 1

(1–μ)k (2V (t0))
1–μ

2 .
(3) In case of cluster synchronization without delays, the complex system (2) is

translated into

ẋi(t) = fφi

(
t, xi(t)

)
+ c1

N∑

j=1

aijΓ1xj(t), i = 1, 2, . . . , N . (26)

Construct the Lyapunov function as shown below:

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) + g1

m∑

φi=1

∑

i∈Jφi \J̃φi

∫ t1

t
eT

i (s)ei(s) ds. (27)

Hence, the finite-time hybrid controllers are changed into

ui(t) =

⎧
⎨

⎩
–g1ei(t) – αi(t), i ∈ J̃φi ,

–ωi(t), i ∈ Jφi\J̃φi ,
(28)

αi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ,

ωi(t) = k sign
(
ei(t)

)∣∣ei(t)
∣
∣μ + 2k

(
g1

∫ t1

t
eT

i (s)ei(s) ds
) 1+μ

2
Ψ

(
ei(t),

∥
∥e(t)

∥
∥)

,

and the following condition needs to be satisfied:

(1) η1 + c1λmax(Q) – g1 < 0.

Then the complex networks (26) can achieve cluster synchronization in the finite
time t3 ≤ t0 + 1

(1–μ)k (2V (t0))
1–μ

2 .

Remark 4 From the above consequences, it is clear that the pinning scheme in the hybrid
controllers are different between cluster synchronization and complete synchronization.
Furthermore, as is well known, the time-varying delays should meet 0 ≤ τ̇φi (t) ≤ ε < 1.
However, when delay is constant delay, it just satisfies τ ≥ 0. Of course, without time de-
lays, constructing a Lyapunov function and designing a finite-time hybrid controller is
more simple and brief.

4 Numerical simulations
In this section, we show numerical examples to certify the correctness and effectiveness
of the proposed finite-time cluster synchronization approach.

In the first instance, consider a delayed neural network with three communities as fol-
lows:

ẋ(t) = fφi

(
t, x(t), x

(
t – τφi (t)

))
, φi = 1, 2, 3, (29)
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where x(t) = (x1(t), x2(t), x3(t))T, f1(t, x(t), x(t – τ1(t))) = D1x(t) + g11(x(t)) + g12(x(t – τ1(t))),
f2(t, x(t), x(t – τ2(t))) = D2x(t) + g21(x(t)) + g22(x(t – τ2(t))) + H , and f3(t, xi(t), x(t – τ1(t))) =
D3x(t) + g31(x(t)) + g32(x(t – τ3(t))).

In the numerical simulation, we select g11(x) = (0, –x1x3, x1x2)T, g12(x) = (0, 6x2, 0)T,
g21(x) = (0, 0, x1x3)T, g22(x) = (x1, 0, 0)T, g31(x) = (3.247(|x1 + 1| – |x1 – 1|), 0, 0)T, g32(x) =
(0, 0, –3.906 sin(0.5x1))T, H = [0, 0, 0.2]T, τ1(t) = 0.2et

1+et , τ2(t) = 2et

1+et , τ3(t) = 1.2et

1+et , D1 =
[ –10 10 0

28 4 0
0 0 – 8

3

]
, D2 =

[ 0 –1 –1
1 0.2 0
0 0 –1.2

]
and D3 =

[ –2.169 10 0
1 –1 1
0 –19.53 –0.1636

]
.

The network model (29) with the above coefficients exhibits chaotic behaviors as shown
in Figs. 2–4, with original values x1(s) = 0.2, x2(s) = 0.4, and x3(s) = 0.5, ∀s ∈ [–2, 0].

Figure 2 The chaotic state of the first cluster

Figure 3 The chaotic state of the second cluster
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Figure 4 The chaotic state of the third cluster

Then we consider a complex dynamical network with 19 nodes, and there are three
groups in Fig. 1. The network is represented as follows:

ẋi(t) = fφi

(
t, xi(t), xi

(
t – τφi (t)

))
+ c1

N∑

j=1

aijΓ1xj(t)

+ c2

N∑

j=1

bijΓ2xj
(
t – τφi (t)

)
+ ui(t), i = 1, 2, . . . , 19, (30)

where Γ1 = Γ2 = diag(1, 1, 1), c1 = 10, c2 = 1, ε = 0.1, A =
∑N

j=1 aij, B =
∑N

j=1 bij, N = 19, k = 2,
k1 = 1.4, and g1 = 41.4. After a simple calculation, we get λmax(A) = λmax(B) = –0.0456,
λmax(Q) = –0.0456, λmax(PPT ) = 75.3617, η1 = 3.4707, η2 = 0.1, and V (0) = 7.677. The
above parameters are substituted into conditions (1) and (2) of Theorem 1, which are met
after computing. Next, we can see from Figs. 5–8 that the complex dynamical networks
with time-varying delays achieve cluster synchronization in finite time by hybrid control.

The following quantities are applied to measure the course of cluster synchronization:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E1(t) =
√∑

φi=1 ‖xi(t) – s1(t)‖2,

E2(t) =
√∑

φi=2 ‖xi(t) – s2(t)‖2,

E3(t) =
√∑

φi=3 ‖xi(t) – s3(t)‖2,
⎧
⎪⎪⎨

⎪⎪⎩

E12(t) = min‖xi(t) – xj(t)‖, φi = 1,φj = 2,

E13(t) = min‖xi(t) – xj(t)‖, φi = 1,φj = 3,

E23(t) = min‖xi(t) – xj(t)‖, φi = 2,φj = 3,

(31)

where E1(t), E2(t), and E3(t) signify the synchronization errors of each community of the
complex networks. E12(t), E13(t), and E23(t) symbolize the errors of the complex networks
between two diverse communities. The cluster synchronization is accomplished if the syn-
chronization errors E1(t), E2(t), and E3(t) converge to zero and E12(t), E13(t), and E23(t) do
not when t → t1. As shown in Fig. 5, it is clearly known that the nodes have achieved
finite-time synchronization in the identical group, but there is no synchronization among
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Figure 5 The synchronization errors in the same group and among the different groups

the varying groups. After computing, the finite time satisfies t̄ ≤ 1.959. Figure 6 shows the
time evolutions of nodes of each cluster, which also illustrates that the complex networks
(4) can achieve cluster synchronization in finite time.

Compared with asymptotic cluster synchronization, the settling time of finite-time clus-
ter synchronization is bounded. It is shown that the convergence rate of finite-time clus-
ter synchronization is faster than that of asymptotic cluster synchronization. As shown in
Fig. 7, where line a represents the finite-time synchronization errors and line b represents
the asymptotic synchronization errors, line a converges to zero earlier than line b.

As pointed out in Sect. 1, for the sake of improving synchronization efficiency, we need
to select the nodes in the φth group to be the key controlling nodes, which has direct
connections with the nodes in other groups. Namely, the key controlling nodes are Nos.
3, 4, 5, 7, 8, 13, 14, 15 in Fig. 1. It is shown that the selection method of controlling nodes
is more efficient than another hybrid controller which selects nodes (Nos. 1, 2, 9, 10, 11,
12, 16, 17, 18, 19) as key controlling nodes. As shown in Fig. 8, where line a represents the
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Figure 6 The time evolutions of nodes of three clusters

hybrid controller (11) and line b represents the another hybrid controller, line a converges
to zero earlier than line b.
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Figure 7 The finite-time synchronization errors and the asymptotic synchronization errors

Remark 5 We can realize that, from the above numerical analysis, our hybrid control
method for achieving finite-time cluster synchronization of complex networks model is
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Figure 8 The synchronization errors under different controllers

effective, practical, and economic. In order to achieve cluster synchronization, we first
should observe the cluster framework of complex networks. Then, the controller could be
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concluded and designed by this explored cluster structure as well as the controlled nodes
could be selected. Finally, the cluster synchronization will be achieved below appropriate
coupling strength.

5 Conclusion
In this paper, the finite-time cluster synchronization for time-varying delayed complex
dynamical networks via hybrid control has been investigated. Sufficient conditions are
concluded via formation of the Lyapunov–Krasovskii functional and designing the finite-
time hybrid controller with time-varying delays. Hybrid control plans are presented to
make the complex dynamical networks achieve cluster synchronization. Eventually, nu-
merical simulations have substantiated the correctness and availability of achieving the
finite-time cluster synchronization of complex networks with time-varying delays by the
hybrid control technique.

Furthermore, in the coming research, we will consider how to broaden the condition
ε < 1 in Assumption 2 and investigate the finite-time cluster synchronization with adaptive
coupling strength c(t) via intermittent hybrid control.
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