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Abstract
This paper is concerned with an optimal control problem for a linear stochastic
differential equation (SDE) of mean-field type, where the drift coefficient of
observation equation is linear with respect to the state, the control and their
expectations, and the state is subject to a terminal constraint. The control problem
cannot be solved by transforming it into a standard optimal control problem for an
SDE without mean-field term. By virtue of a backward separation method with a
decomposition technique, one optimality condition and one forward–backward filter
are derived. Two linear-quadratic (LQ) optimal control problems and one cash
management problem with terminal constraint and partial information are studied,
and optimal feedback controls are explicitly obtained.

Keywords: Feedback control; Filter; LQ optimal control; Necessary condition; SDE of
mean-field type

1 Introduction
One begins with a complete filtered probability space (Ω ,F , (Ft)0≤t≤T ,P), on which are
given an Ft-adapted standard Brownian motion (ωt , ω̃t) with value in R

2 and a Gaussian
random variable ξ with mean μ0 and covariance σ0. (ω, ω̃) is independent of ξ . Let T >
0 be a fixed time horizon, let R

m be the m-dimensional Euclidean space, and let fx be
the partial derivative of f with respect to x. If x : [0, T] → R is uniformly bounded, one
writes x ∈ L∞(0, T ;R). If x : [0, T] → R is square-integrable, one writes x ∈ L2(0, T ;R). If
x : [0, T]×Ω →R is an Ft-adapted, square-integrable process, one writes x ∈ L2

F (0, T ;R).
One also adopts similar notations for other filtrations and Euclidean spaces.

Consider the linear SDE

⎧
⎨

⎩

dxv
t = (atxv

t + ātExv
t + btvt + b̄tEvt) dt + ct dωt + c̃t dω̃t ,

xv
0 = ξ ,

where E is expectation, and v is a control process. Since Exv
t and Evt appear in the equa-

tion, one calls it an SDE of mean-field type. Assume that the solution xv to the equation is
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observed through

⎧
⎨

⎩

dyv
t = (ftxv

t + f̄tExv
t + gtvt + ḡtEvt) dt + ht dω̃t ,

y0 = 0.

The cost functional is

J [v] = E

[∫ T

0
l
(
t, xv

t ,Exv
t , vt ,Evt

)
dt + φ

(
xv

T ,Exv
T
)
]

.

Here vt is required to be σ {yv
s ; 0 ≤ s ≤ t}-adapted and to satisfy

E sup
0≤t≤T

|vt|2 < +∞

and

Eϕ
(
xv

T ,Exv
T
)

= 0;

the functions a, ā, b, b̄, c, c̃, f , f̄ , g , ḡ , h, l, φ and ϕ will be specified in Sect. 2. This is a
partially observable optimal control problem with terminal constraint. This problem can
reduce to an optimal control problem with certain additional control domain constraint,
but it cannot be studied by classical control theory for SDE without mean-field term. From
this viewpoint, this problem extends some standard optimal control problems and covers
a few financial models.

Classical variation provides an effective tool for studying optimal control problems.
However, it is not always valid for partially observed optimal control problems. A main
reason is there is a circular dependence between the control v and the observation yv.
In 2008, Wang and Wu [1] originally proposed a backward separation method. In 2018,
Wang coauthored their monograph [2], where the backward separation method was sys-
tematically introduced and was regarded as one of most important tools for studying par-
tially observed optimal control problems. Combining the backward separation method
with Girsanov’s measure transformation, the circular dependence between v and yv was
decoupled in Wang et al. [3], and then a necessary condition for optimality was derived.
Along this line, Zhang [4], Ma and Liu [5] extended [3] to the case of correlated state
and observation noises, and the case of risk-sensitive control, respectively. Buckdahn et
al. [6] studied an optimal control problem for SDE of conditional mean-field type. One
emphasizes that [3–5] and [6] are based on the assumption that the drift coefficients of
observation equations are uniformly bounded with respect to their components, which is
restricted in some applications. Using the backward separation method with an approxi-
mation technique, Wang et al. [7] generalized [3–6] in the sense that the drift coefficient
of observation equation linearly grows with respect to the state, and for any � > 0, the con-
trol v satisfies E sup0≤t≤T |vt|� < +∞. Note that [7] did not study the case of mean-field and
terminal constraint.

Clearly, the control problem in this paper does not satisfy the assumptions above, and
then the foregoing techniques are not valid. To overcome the difficulty caused, one will
adopt a decomposition technique introduced in Wang et al. [8, 9], where a partially ob-
servable forward–backward stochastic control system without mean-field term and/or
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terminal constraint was considered. Combining the decomposition technique with the
backward separation method, one solves the control problem. The contributions of this
paper are as follows.

– One new necessary condition for optimality is derived. The condition together with
forward–backward filter provides an effective method for studying stochastic optimal
control with terminal constraint and incomplete information.

– Three LQ examples with terminal constraint and partial information are solved, and
optimal feedback controls are obtained by accident.

– An SDE of mean-field type naturally arises from the study of standard LQ optimal
control driven by SDE without mean-field term. This interesting contribution can be
found in Example 4.2 below.

The control problem is also related to those of Meyer-Brandis et al. [10], Elliott et al.
[11], Yong [12], Hafayed and Abbas [13], Ni et al. [14] and Hafayed et al. [15]. Specifically,
[10, 15], respectively, studied a mean-field type control problem with partial information,
where neither noisy observation nor filter is studied. The other work investigated mean-
field type controls with complete information.

The rest of this paper is organized as follows. In Sect. 2, one reformulates the con-
trol problem and provides preliminary results. Section 3 derives one optimality condition
and one forward–backward filtering equation of mean-field type. In Sect. 4, one explicitly
solves three LQ optimal control problems with terminal constraint and partial informa-
tion. Finally, in Sect. 5, one gives some concluding remarks.

2 Problem formulation and preliminary
Define x0 and y0 by two SDEs

⎧
⎨

⎩

dx0
t = (atx0

t + ātEx0
t ) dt + ct dωt + c̃t dω̃t ,

x0
0 = ξ ,

(1)

and

⎧
⎨

⎩

dy0
t = (ftx0

t + f̄tEx0
t ) dt + ht dω̃t ,

y0 = 0,
(2)

where a, ā, c, c̃, f , f̄ , h ∈ L∞(0, T ;R). Assume that the control v ∈ L2
F (0, T ;R). Define xv,1

and yv,1 by

⎧
⎨

⎩

ẋv,1
t = atxv,1

t + ātExv,1
t + btvt + b̄tEvt ,

xv,1
0 = 0,

(3)

and

⎧
⎨

⎩

ẏv,1
t = ftxv,1

t + f̄tExv,1
t + gtvt + ḡtEvt ,

yv,1
0 = 0,

(4)
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where b, b̄, g, ḡ ∈ L∞(0, T ;R). It is clear that Eqs. (1), (2), (3) and (4) have unique solutions,
respectively. Set

xv
t = x0

t + xv,1
t and yv

t = y0
t + yv,1

t . (5)

It follows from Itô’s formula that xv and yv satisfy
⎧
⎨

⎩

dxv
t = (atxv

t + ātExv
t + btvt + b̄tEvt) dt + ct dωt + c̃t dω̃t ,

xv
0 = ξ ,

(6)

and
⎧
⎨

⎩

dyv
t = (ftxv

t + f̄tExv
t + gtvt + ḡtEvt) dt + ht dω̃t ,

y0 = 0,
(7)

respectively. For any v ∈ L2
F (0, T ;R), one introduces a constraint condition regarding the

terminal state and its distribution

Eϕ
(
xv

T ,Exv
T
)

= 0. (8)

Let

F y0

t = σ
{

y0
s ; 0 ≤ s ≤ t

}
, F yv

t = σ
{

yv
s ; 0 ≤ s ≤ t

}
,

and let U be a nonempty convex subset of R. Define three admissible control sets

U0
ad =

{
v
∣
∣vt is an F y0

t -adapted process with value in U and satisfies

E sup
0≤t≤T

|vt|2 < +∞
}

,

Uad =
{

v|v ∈ U0
ad is an F yv

t -adapted process
}

,

and

U c
ad =

{
v|v ∈ Uad satisfies terminal constraint (8)

}
.

It is easy to see that the inclusion relationship among them is

U0
ad ⊇ Uad ⊇ U c

ad.

With (5) and the definition of Uad, one proves the equality

F yv

t = F y0

t , v ∈ Uad.

In fact, since vt is F y0

t -adapted, then it follows from (3) and (4) that yv,1
t is F y0

t -adapted,
and thus yv

t is also F y0

t -adapted by using the second equality in (5). This implies that F yv

t ⊆
F y0

t , v ∈ Uad. In the same way, one gets F yv

t ⊇ F y0

t , v ∈ Uad. Then one draws the desired
conclusion.
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The cost functional is in the form of

J [v] = E

[∫ T

0
l
(
t, xv

t ,Exv
t , vt ,Evt

)
dt + φ

(
xv

T ,Exv
T
)
]

, (9)

where l : [0, T] ×R
2 × U ×R →R and φ,ϕ : R2 →R are continuously differentiable with

respect to (x, x̄, v, v̄) and (x, x̄), respectively, and there is a constant C > 0 such that

∣
∣ψ(x, x̄)

∣
∣ ≤ C

(
1 + |x|2 + |x̄|2),

∣
∣ψχ (x, x̄)

∣
∣ ≤ C

(
1 + |x| + |x̄|),

∣
∣l(t, x, x̄, v, v̄)

∣
∣ ≤ C

(
1 + |x|2 + |x̄|2 + |v|2 + |v̄|2),

∣
∣lχ (t, x, x̄, v, v̄)

∣
∣ ≤ C

(
1 + |x| + |x̄| + |v| + |v̄|),

with ψ = φ,ϕ and χ = x, x̄, v, v̄.
Then the optimal control problem with terminal constraint is restated as follows.

Problem (TC) Find a u ∈ U c
ad such that

J [u] = inf
v∈Uc

ad

J [v]

subject to (6), (7), (8) and (9). Any u satisfying the equality is called an optimal control of
Problem (TC), and xu is called the optimal state corresponding to u.

One also introduces an auxiliary problem without terminal constraint.

Problem (A) Find a u ∈ Uad such that

Jκ [u] = inf
v∈Uad

Jκ [v]

subject to (6), (7) and

Jκ [v] = E

[∫ T

0
l
(
t, xv

t ,Exv
t , vt ,Evt

)
dt + φ

(
xv

T ,Exv
T
)

+ κϕ
(
xv

T ,Exv
T
)
]

, κ ∈ � ⊆R. (10)

In what follows, one provides two preliminary results, whose proofs can be found in the
Appendix.

Proposition 2.1 For any κ ∈ �, one has

inf
v′∈Uad

Jκ
[
v′] = inf

v∈U0
ad

Jκ [v].

Proposition 2.2 Suppose that, for any κ ∈ �, uκ is an optimal control of Problem (A).
Moreover, suppose that there exists κ0 ∈ � such that

ϕ
(
xuκ0

T ,Exuκ0
T

)
= 0.

Then u = uκ0 is an optimal control of Problem (TC).
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Proposition 2.1 reveals the equivalence between Problem (A) and the problem of min-
imizing Jκ [v] over U0

ad. Proposition 2.2 together with Proposition 2.1 shows that one can
obtain an optimal control of Problem (TC) by the following procedures: (1) to derive all
optimal controls uκ of Problem (A); (2) to find uκ0 satisfying Eϕ(xuκ0

T ,Exuκ0
T ) = 0. Then

such uκ0 is exactly an optimal control of Problem (TC). Clearly, it is a more convenient
approach in at least some detailed cases. See, e.g., Sect. 4 for more details.

This remark shows that the second procedure above can easily be finished in general,
and thus it is enough to study Problem (A).

3 Optimality condition of Problem (A)
For any v, vj ∈ Uad, let xv and xvj be the solutions to (6) corresponding to v and vj, j = 1, 2, . . . .
For simplicity, we set

(
Υ θ

t
)

=
(
t, xv

t + θ
(
xvj

t – xv
t
)
,E

(
xv

t + θ
(
xvj

t – xv
t
))

, vt + θ (vj,t – vt),E
(
vt + θ (vj,t – vt)

))
,

(
Θλ

t
)

=
(
t, xλ

t ,Exλ
t ,λt ,Eλt

)
,

(
Ξλ

t
)

=
(
xλ

t ,Exλ
t
)
,

where λ = v, uκ , vj, j = 1, 2, . . . .

Theorem 3.1 If uκ is an optimal control of Problem (A), then the backward stochastic
differential equation of mean-field type

⎧
⎨

⎩

–dpκ ,t = [atpκ ,t + lx(Θuκ
t ) + E(ātpκ ,t + lx̄(Θuκ

t ))] dt – qκ ,t dωt – q̃κ ,t dω̃t ,

pκ ,T = φx(Ξuκ
T ) + κϕx(Ξuκ

T ) + E(φx̄(Ξuκ
T ) + κϕx̄(Ξuκ

T )),
(11)

has a unique solution (pκ , qκ , q̃κ ) ∈ L2
F (0, T ;R3) such that for any ν ∈ U

E
[(

Hv
(
Θ

uκ
t ; pκ ,t , qκ ,t , q̃κ ,t

)

+ EHv̄
(
Θ

uκ
t ; pκ ,t , qκ ,t , q̃κ ,t

))
(ν – uκ ,t)|F yuκ

t
] ≥ 0, κ ∈ �, (12)

where the Hamiltonian function H is defined by

H(t, x, x̄, v, v̄; p, q, q̃) = (atx + āt x̄ + btv + b̄t v̄)p + ctq + c̃t q̃ + l(t, x, x̄, v, v̄).

Proof If uκ is an optimal control of Problem (A), Proposition 2.1 implies that

Jκ [uκ ] = inf
v∈U0

ad

Jκ [v].

For any v ∈ U0
ad, let xuκ+εv be the solution to (6) corresponding to uκ + εv, where 0 ≤ ε ≤ 1.

Introduce the variational equation

⎧
⎨

⎩

ẋ1,t = atx1,t + ātEx1,t + btvt + b̄tEvt ,

x1,0 = 0,
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which admits a unique solution x1 ∈ L2
F (0, T ;R). It follows from Hölder’s inequality that

lim
ε→0

E sup
0≤t≤T

∣
∣
∣
∣
1
ε

(
xuκ+εv

t – xuκ
t

)
– x1,t

∣
∣
∣
∣

2

= 0.

Combining the limit with the optimality of u, one derives the first-order variational in-
equality

0 ≤ lim
ε→0

J[uκ + εv] – J[uκ ]
ε

= E

∫ T

0

(
lx

(
Θ

uκ
t

)
x1,t + lx̄

(
Θ

uκ
t

)
Ex1,t + lv

(
Θ

uκ
t

)
vt + lv̄

(
Θ

uκ
t

)
Evt

)
dt

+ E
[(
φx

(
Ξ

uκ
T

)
+ κϕx

(
Ξ

uκ
T

))
x1,T +

(
φx̄

(
Ξ

uκ
T

)
+ κϕx̄

(
Ξ

uκ
T

))
Ex1,T

]
.

On the other hand, once xuκ is determined by (6), (11) admits a unique solution (pκ , qκ , qκ )
in L2

F (0, T ;R3). Using Itô’s formula to x1pκ and inserting it into the variational inequality,
one gets

E

∫ T

0

[
btpκ ,t + lv

(
Θ

uκ
t

)
+ E

(
b̄tpκ ,t + lv̄

(
Θ

uκ
t

))]
vt dt ≥ 0.

Due to uκ ∈ U0
ad and the arbitrariness of vt , one deduces

E
{[

btpκ ,t + lv
(
Θ

uκ
t

)
+ E

(
b̄tpκ ,t + lv̄

(
Θ

uκ
t

))]
(ν – uκ ,t)|F y0

t
} ≥ 0, for any ν ∈ U .

Recalling for any uκ ∈ Uad, F yuκ
t = F y0

t , then one draws the desired conclusion. �

According to (12), one needs to compute the optimal filters of (11) and (6) depending
on F yv

t in order to compute uκ . For this purpose, one denotes by

Φ̂t = E
[
Φt|F yv

t
]

with Φt = x0
t , xv

t , v ∈ Uad

and

Ψ̂t = E
[
Ψt|F yuκ

t
]

with Ψt = pκ ,t , xuκ
t pκ ,t , z̃uκ

t

the filters of Φt and Ψt , respectively. Moreover, one denotes by

Σt = E
(
xv

t – x̂v
t
)2

the mean square error of x̂v
t , v ∈ Uad. Using Theorems 2.1 and 2.2 in [2] to (6), (7) and (11),

one derives the filters x̂v
t and p̂κ ,t of xv

t and pκ ,t with respect to F yv

t .

Theorem 3.2 For any v ∈ Uad, the filters x̂v
t and p̂κ ,t satisfy

⎧
⎨

⎩

dx̂v
t = (atx̂v

t + ātExv
t + btvt + b̄tEvt) dt + (c̃t + Σt fth–1

t ) dω̂t ,

x̂v
0 = μ0,

(13)
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and
⎧
⎨

⎩

–dp̂κ ,t = {atp̂κ ,t + E[lx(Θuκ
t )|F yuκ

t ] + E(ātpκ ,t + lx̄(Θuκ
t ))}dt – Qt dω̂t ,

p̂κ ,T = E[φx(Ξuκ
T ) + κϕx(Ξuκ

T )|F yu

T ] + E(φx̄(Ξuκ
T ) + κϕx̄(Ξuκ

T )),
(14)

respectively, where Σ is the unique solution to

⎧
⎨

⎩

Σ̇t – 2atΣt + (c̃t + Σt fth–1
t )2 – (ct + c̃t)2 = 0,

Σ0 = σ0,
(15)

ω̂t =
∫ t

0
h–1

s
[
dy0

s –
(
fsx̂0

s + f̄sEx0
s
)

ds
]
, (16)

is a standard Brownian motion with value in R, and

Qt = ˆ̃zuκ
t +

(
̂xuκ
t pκ ,t – x̂uκ

t p̂κ ,t
)
fth–1

t .

One emphasizes that (13) with (14) is a forward–backward stochastic differential filter-
ing equation of mean-field type, which has a unique solution (x̂uκ , p̂κ , Q) ∈ L2

Fyuκ (0, T ;R3)
for given uκ . It shows that Theorem 3.2 is different from the usual filtering theories. See,
e.g., Xiong [16].

4 Three LQ cases of Problem (TC)
In this section, one aims at illustrating Theorems 3.1 and 3.2 by three examples. For conve-
nience, one still adopts the state equation, the observation equation, and the correspond-
ing assumptions introduced in Sects. 2 and 3 unless noted otherwise.

Example 4.1 Find an admissible control to minimize

J [v] =
1
2
E

{∫ T

0

[
At

(
xv

t
)2 + Āt

(
Exv

t
)2 + Btv2

t + B̄t(Evt)2]dt

+ D
(
xv

T
)2 + D̄

(
Exv

T
)2

}

(17)

over U c
ad with U = R and the terminal constraint

Exv
T = γ , γ ∈R, (18)

subject to

⎧
⎨

⎩

dxv
t = (atxv

t + ātExv
t + btvt + b̄tEvt) dt + ct dωt + c̃t dω̃t ,

xv
0 = ξ ,

(19)

and
⎧
⎨

⎩

dyv
t = (ftxv

t + f̄tExv
t + gtvt + ḡtEvt) dt + ht dω̃t ,

y0 = 0,
(20)
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where A, Ā, B, B̄ ∈ L∞(0, T ;R), At > 0, At + Āt ≥ 0, Bt > 0, Bt + B̄t > 0, D ≥ 0, D + D̄ ≥ 0,
b 
= 0 and b + b̄ 
= 0.

Define an auxiliary cost functional without terminal constraint

Jκ [v] = Jκ [v] – κγ

with

Jκ [v] =
1
2
E

{∫ T

0

[
At

(
xv

t
)2 + Āt

(
Exv

t
)2 + Btv2

t + B̄t(Evt)2]dt

+ D
(
xv

T
)2 + D̄

(
Exv

T
)2 + 2κxv

T

}

, κ ∈ �. (21)

Since both κ and γ are constants, it is enough to minimize (21) over Uad subject to (19)
and (20). One will use three steps to explicitly solve the example.

Step 1 Candidate optimal control of the auxiliary problem without terminal constraint.
With the data, the Hamiltonian function is

H(t, x, x̄, v; pκ , qκ , q̃κ ) = (atx + āt x̄ + btv + b̄t v̄)pκ + ctqκ + c̃t q̃κ

+
1
2
[
Atx2 + Āt(x̄)2 + Btv2 + B̄t(v̄)2],

where (pκ , qκ , q̃κ ) is determined by the Hamiltonian system

⎧
⎪⎪⎨

⎪⎪⎩

dxuκ
t = (atxuκ

t + ātExuκ
t + btuκ ,t + b̄tEuκ ,t) dt + ct dωt + c̃t dω̃t ,

–dpκ ,t = [atpκ ,t + Atxu
t + E(ātpκ ,t + Ātxu

t )] – qκ ,t dωt – q̃κ ,t dω̃t ,

xuκ
0 = ξ , pκ ,T = Dxuκ

T + D̄Exuκ
T + κ .

(22)

If uκ is an optimal control of the auxiliary problem, then it follows from Theorem 3.1 that

Btuκ ,t + btp̂κ ,t + B̄tEuκ ,t + b̄tEpκ ,t = 0.

Solving it, we get

uκ ,t = –B–1
t

{
btp̂κ ,t +

[
b̄t – B̄t(Bt + B̄t)–1(bt + b̄t)

]
Epκ ,t

}
. (23)

Step 2 Feedback form of (23).
Inserting (23) into (22) and taking expectations, one gets an ordinary differential equa-

tion
⎧
⎪⎪⎨

⎪⎪⎩

d
dtExuκ

t = (at + āt)Exuκ
t – (Bt + B̄t)–1(bt + b̄t)2

Epκ ,t ,
d
dtEpκ ,t = –(At + Āt)Exuκ

t – (at + āt)Epκ ,t ,

Exuκ
0 = μ0, Epκ ,T = (D + D̄)Exuκ

T + κ .

(24)

Note that the first equation and the second equation in (24) are coupled. Since

–(Bt + B̄t)–1(bt + b̄t)2 < 0,
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the assumption condition of Theorem 2.6 in Peng and Wu [17] is satisfied, and hence (24)
has a unique solution (Exuκ ,Epκ ). Noticing the terminal condition of (24), one sets

Epκ ,t = αtExuκ
t + βκ ,t , (25)

where α and βκ are deterministic and differential functions such that αT = D + D̄ and
βκ ,T = κ . Using the chain rule for computing the derivative of (25), one has

d
dt

Epκ ,t = α̇tExuκ
t + αt

d
dt

Exuκ
t + β̇κ ,t

=
[
α̇t + (at + āt)αt – (Bt + B̄t)–1(bt + b̄t)2α2

t
]
Exuκ

t

+ β̇κ ,t – αt(Bt + B̄t)–1(bt + b̄t)2βκ ,t .

Comparing the equality with the second equation in (24), one deduces

⎧
⎨

⎩

α̇t + 2(at + āt)αt – (Bt + B̄t)–1(bt + b̄t)2α2
t + At + Āt = 0,

αT = D + D̄,
(26)

and

⎧
⎨

⎩

β̇κ ,t + [at + āt – (Bt + B̄t)–1(bt + b̄t)2αt]βκ ,t = 0,

βκ ,T = κ .
(27)

It is easy to see (26) and (27) admit unique solutions, respectively. Inserting (25) into the
first equation of (24), one derives

⎧
⎪⎪⎨

⎪⎪⎩

d
dtExuκ

t = [at + āt – (Bt + B̄t)–1(bt + b̄t)2αt]Exuκ
t

– (Bt + B̄t)–1(bt + b̄t)2βκ ,t ,

Exu
0 = μ0.

(28)

Using Theorem 3.2 to (22) with (23), one gets a forward–backward stochastic differential
filtering equation of mean-field type,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx̂uκ
t = [atx̂uκ

t – b2
t B–1

t p̂κ ,t + ātExuκ
t – (Bt + B̄t)–1(b̄2

t + 2btb̄t – B–1
t B̄tb2

t )Epκ ,t] dt

+ (c̃t + Σt fth–1
t ) dω̂t ,

–dp̂κ ,t = [Atx̂uκ
t + atp̂κ ,t + E(ātpκ ,t + Ātxuκ

t )] dt – Qt dω̂t ,

x̂uκ
0 = μ0, p̂κ ,T = Dx̂uκ

T + D̄Exuκ
T + κ ,

(29)

where Σ and ω̂ satisfy (15) with (16), and Exuκ and Epκ solve (28) and (25), respectively.
Since b 
= 0, (29) admits a unique solution (x̂uκ , p̂κ , Q) ∈ L2

Fyuκ (0, T ;R3) by Theorem 2.6 in
[17] again. Similarly, let

p̂κ ,t = Γt x̂uκ
t + Γ̄tEx̂uκ

t + Λκ ,t , (30)
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where Γ , Γ̄ and Λκ are three deterministic and differential functions satisfying ΓT = D,
Γ̄T = D̄ and Λκ ,T = κ . It follows from Itô’s formula that

dp̂κ ,t = Γ̇t x̂uκ
t dt + Γt dx̂uκ

t + ˙̄ΓtEx̂uκ
t dt + Γ̄t dEx̂uκ

t + Λ̇κ ,t dt

=
(
Γ̇t + atΓt – B–1

t b2
t Γ

2
t
)
x̂uκ

t dt

+
{ ˙̄Γt +

[
at + āt – 2(Bt + B̄t)–1(bt + b̄t)2Γt

]
Γ̄t – (Bt + B̄t)–1(bt + b̄t)2Γ̄ 2

t

– (Bt + B̄t)–1(b̄2
t + 2btb̄t – B–1

t B̄tb2
t
)
Γ 2

t + ātΓt
}
Ex̂uκ

t dt

+
{
Λ̇κ ,t – (Γt + Γ̄t)(Bt + B̄t)–1(bt + b̄t)2Λκ ,t

}
dt

+ Γt
(
c̃t + Σt fth–1

t
)

dω̂t .

Comparing it with the second equation in (29), one deduces

⎧
⎨

⎩

Γ̇t + 2atΓt – B–1
t b2

t Γ
2

t + At = 0,

ΓT = D,
(31)

⎧
⎪⎪⎨

⎪⎪⎩

˙̄Γt + 2[at + āt – (Bt + B̄t)–1(bt + b̄t)2Γt]Γ̄t – (Bt + B̄t)–1(bt + b̄t)2Γ̄ 2
t

– (Bt + B̄t)–1(b̄2
t + 2btb̄t – B–1

t B̄tb2
t )Γ 2

t + 2ātΓt + Āt = 0,

Γ̄T = D̄,

(32)

and
⎧
⎨

⎩

Λ̇κ ,t + [at + āt – (Γt + Γ̄t)(Bt + B̄t)–1(bt + b̄t)2]Λκ ,t = 0,

Λκ ,T = κ ,
(33)

which admit a unique solution, respectively. Plugging (30) into (23), one gets

uκ ,t = – B–1
t

{
btΓt x̂uκ

t +
[
btΓ̄t + (Bt + B̄t)–1(Btb̄t – B̄tbt)(Γt + Γ̄t)

]
Ex̂uκ

t

+ Bt(Bt + B̄t)–1(bt + b̄t)Λκ ,t
}

, (34)

where Γ , Γ̄ , Λκ and x̂uκ solve (31), (32), (33) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂uκ
t = {(at – b2

t B–1
t Γt)x̂uκ

t + [āt – (Bt + B̄t)–1(bt + b̄t)2Γ̄t

– (Bt + B̄t)–1(b̄2
t + 2btb̄t – B–1

t B̄tb2
t )Γt]Ex̂uκ

t

– (Bt + B̄t)–1(bt + b̄t)2Λκ ,t}dt

+ (c̃t + Σt fth–1
t ) dω̂t ,

x̂uκ
0 = μ0,

respectively.
Step 3 Optimal control of Example 4.1.
Solving (27) and (28), one gets

βκ ,t = κe
∫ T

t ρs ds,
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Ex̂uκ
t = μ0e

∫ t
0 ρs ds – κ

∫ t

0
(Bs + B̄s)–1(bs + b̄s)2e

∫ T
s ρr dr+

∫ t
s ρr dr ds,

with

ρt = at + āt – (Bt + B̄t)–1(bt + b̄t)2αt .

Recalling the terminal constraint (18), it yields

κ0 =
μ0e

∫ T
0 ρt dt – γ

∫ T
0 (Bt + B̄t)–1(bt + b̄t)2e2

∫ T
t ρs ds dt

. (35)

Then Proposition 2.2 implies the desired conclusion. The above deduction is summarized
as follows.

Proposition 4.1 The optimal feedback control of Example 4.1 is given by (34) with κ being
replaced by (35).

Example 4.2 In particular, if one lets the coefficients of (17), (19) and (20) Ā = B̄ = D̄ = ā =
b̄ = c = f = f̄ = g = ḡ = 0 on [0, T], then Example 4.1 is reduced to an LQ optimal control
with terminal constraint and complete information. Further, let v ∈ L2(0, T ;R). Since v is
deterministic, Proposition 4.1 implies that the optimal feedback control is

uκ0,t = –B–1
t bt

(
αtExuκ0

t + βκ0,t
)
,

where α, βκ0 and xuκ0 satisfy

⎧
⎨

⎩

α̇t + 2atαt – B–1
t b2

t α
2
t + At = 0,

αT = D,

βκ0,t = κ0e
∫ T

t (as–B–1
s b2

s αs) ds,

and
⎧
⎨

⎩

dxuκ0
t = (atx

uκ0
t – B–1

t b2
t αtExuκ0

t – B–1
t b2

t βκ0,t) dt + c̃t dω̃t ,

xuκ0
0 = ξ ,

(36)

with

κ0 =
μ0e

∫ T
0 (at–B–1

t b2
t αt ) dt

∫ T
0 B–1

t b2
t e2

∫ T
t (as–B–1

s b2
s αs) ds dt

,

respectively.

Note that (36) is an SDE of mean-field type. It shows that one begins with a classical
control system without mean-field term, but one ends up with a control system of mean-
field type. This is a very interesting phenomenon indeed.
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Example 4.3 One denotes by v the rate of capital withdrawal or injection of a firm, and by
xv the cash-balance process on [0, T]. Assume that the liability of the firm is governed by

–dL̄v
t = btvt dt + ct dωt + c̃t dω̃t ,

where ct dωt and c̃t dω̃t describe the liability risk. Assume that the firm owns an initial
investment ξ , and only invests in a money account with compounded interest rate a. Then
the cash-balance is denoted by

xv
t = e

∫ t
0 as ds

(

ξ –
∫ t

0
e–

∫ s
0 ar dr dL̄v

s

)

,

whose differential form is the same as (6) with ā = b̄ = 0. Due to the discreteness of the
account information, the firm partially observes the cash-balance by the corresponding
stock price

⎧
⎨

⎩

dSv
t = Sv

t [(ftxv
t + gt + 1

2 h2
t ) dt + ht dω̃t],

Sv
0 = 1.

Set

yv
t = log Sv

t .

It follows from Itô’s formula that yv is governed by (7) with f̄t = ḡt = 0. The firm hopes to
find a suitable v such that

J [v] =
1
2
E

[∫ T

0
v2

t dt +
(
xv

T – Exv
T
)2

]

is minimized overU c
ad with terminal constraint (18). The model implies that the firm wants

to minimize the risk of xv
T and v under a fixed terminal cash-balance level. Since

E
(
xv

T – Exv
T
)2 = E

(
xv

T
)2 –

(
Exv

T
)2,

Example 4.3 is also a special case of Example 4.1. The following result is an immediate
one of Proposition 4.1.

Corollary 4.1 The optimal rate of capital withdrawal or injection of the firm is

uκ0,t = –bt
(
Γt x̂

uκ0
t + Γ̄tEx̂uκ0

t + Λκ0,t
)
,

where Γ , Γ̄ , Λ and x̂uκ0 are the solutions to
⎧
⎨

⎩

Γ̇t + 2atΓt – b2
t Γ

2
t = 0,

ΓT = 1,
⎧
⎨

⎩

˙̄Γt + 2(at – b2
t Γt)Γ̄t – b2

t Γ̄
2

t = 0,

Γ̄T = –1,
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⎧
⎨

⎩

Λ̇κ0,t + [at – (Γt + Γ̄t)b2
t ]Λκ0,t = 0,

Λκ0,T = κ0,

and
⎧
⎨

⎩

dx̂uκ0
t = [(at – b2

t Γt)x̂
uκ0
t – b2

t Γ̄tEx̂uκ0
t – b2

t Λκ0,t] dt + (c̃t + Σt fth–1
t ) dω̂t ,

x̂uκ0
0 = μ0,

with

κ0 =
μ0e

∫ T
0 at dt – γ

∫ T
0 b2

t e2
∫ T

t as ds dt
.

One remarks that the model in Example 4.3 is inspired by Huang et al. [18], where the
variance of v does not enter the performance functional.

5 Concluding remarks
This paper has studied an optimal control problem driven by SDE of mean-field tpye,
where the drift coefficient of observation equation is linear with respect to the state, the
control and their expectations, and the observation equation is explicitly dependent on the
control. This framework covers many more financial models including [18], but it causes
trouble in addressing the control problem. This trouble has been solved by the backward
separation method with a decomposition technique. The results obtained here partially
improve those of [3–6].

The traditional separation principle method is also applicable to study Problem (TC).
However, the traditional method cannot offer a valid way to derive an optimality condition
of Problem (TC). The reason is listed below. Let �(t, x) be the conditional density of xv

t ,
given the observable filtration F yv

t . Similar to Theorem 2.3 in [2], one gets
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d�(t, x) = { 1
2 (c2

t + c̃2
t ) ∂2

∂x2 �(t, x) + [at�(t, x) + (atx + ātExv
t + btvt + b̄tExv

t ) ∂
∂x�(t, x)]}dt

+ [ft�(t, x)(x –
∫ +∞

–∞ χ�(t,χ ) dχ ) – c̃t
∂
∂x�(t, x)]ht dω̂t ,

�(0, x) = 1√
2πσ0

e
– (x–μ0)2

2σ2
0 , (t, x) ∈ [0, T] ×R,

where

ω̂t =
∫ t

0

1
hs

[

dyv
s –

∫ +∞

–∞

(
fsχ + f̄sExv

s + gsvs + ḡsEvs
)
�(s,χ ) dχ ds

]

is anF yv

t -adapted andR-valued standard Brownian motion, and hence, the cost functional
(9) is rewritten as

J [v] = E

[∫ T

0

∫ +∞

–∞
l
(
t, x,Exv

t , vt ,Evt
)
�(t, x) dt + φ

(
x,Exv

T
)
�(T , x)

]

.

This is an optimal control problem driven by stochastic partial differential equation with
complete information. To obtain the optimality condition of the control problem, lots of
stochastic calculuses on partial differential equation should be needed. Then it seems that
the traditional method is not as effective as the case of Sects. 3 and 4 in this paper.
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Appendix
One presents three lemmas first, and then one gives a proof of Proposition 2.1.

Lemma A1 For any vj ∈ L2
F (0, T ;R), j = 1, 2, there is a constant C > 0 such that

E sup
0≤t≤T

∣
∣xv1

t – xv2
t

∣
∣2 ≤ CE

∫ T

0
|v1,t – v2,t|2 dt.

Proof The estimate is obtained by Itô’s formula and Hölder’s inequality. The details of the
proof are omitted to save space. �

Lemma A2 For any v, vj ∈ Uad, j = 1, 2, . . . ,

lim
j→+∞ Jκ [vj] = Jκ [v].

Proof Using Taylor’s expansion, Hölder’s inequality and Lemma A1, one gets

∣
∣
∣
∣E

∫ T

0
l
(
Θ

vj
t
)

dt – E

∫ T

0
l
(
Θv

t
)

dt
∣
∣
∣
∣

=
∣
∣
∣
∣E

∫ T

0

[∫ 1

0
lx

(
Υ θ

t
)

dθ
(
xvj

t – xv
t
)

+
∫ 1

0
lx̄

(
Υ θ

t
)

dθE
(
xvj

t – xv
t
)

+
∫ 1

0
lv
(
Υ θ

t
)

dθ (vj,t – vt) +
∫ 1

0
lv
(
Υ θ

t
)

dθE(vj,t – vt)
]∣
∣
∣
∣

≤ CE

∫ T

0

(
1 +

∣
∣xvj

t
∣
∣ +

∣
∣xv

t
∣
∣ + E

∣
∣xvj

t
∣
∣ + E

∣
∣xv

t
∣
∣ + |vj,t| + |vt| + E|vj,t| + E|vt|

)

× (∣
∣xvj

t – xv
t
∣
∣ +

∣
∣Exvj

t – Exv
t
∣
∣ + |vj,t – vt| + |Evj,t – Evt|

)
dt

≤ C

√

E

∫ T

0

(
1 +

∣
∣xvj

t
∣
∣2 +

∣
∣xv

t
∣
∣2 + E

∣
∣xvj

t
∣
∣2 + E

∣
∣xv

t
∣
∣2 + |vj,t|2 + |vt|2 + E|vj,t|2 + E|vt|2

)
dt

×
(√

E sup
0≤t≤T

∣
∣xvj

t – xv
t
∣
∣2 +

√

E

∫ T

0
|vj,t – vt|2 dt

)

→ 0

as j → +∞. Here C > 0 is a constant which can be different from line to line. Similarly, one
has

Eφ
(
Ξ

vj
T

) → Eφ
(
Ξ v

T
)
, Eϕ

(
Ξ

vj
T

) → Eϕ
(
Ξ v

T
)

with j → +∞. Then the proof is complete. �

Lemma A3 Uad is dense in U0
ad.

Proof For any v ∈ U0
ad, one defines a family of controls by

vj,t =

⎧
⎨

⎩

ν, for 0 ≤ t ≤ δj,
1
δ j

∫ iδj
(i–1)δj

vs ds, for iδj < t ≤ (i + 1)δj,
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where ν ∈ U , i, j are natural numbers, 1 ≤ i ≤ j – 1, and δj = T/j. Similar to [8], one proves
that (i) vj ∈ Uad for any j, and (ii) vj → v as j → +∞ in L2

Fy0 (0, T ; U). Thus the proof is
complete. �

Proof of Proposition 2.1 From the definition of decision set, it is easy to see

inf
v′∈Uad

Jκ
[
v′] ≥ inf

v∈U0
ad

Jκ [v].

Then one only needs to prove the reverse inequality. Since vj introduced in Lemma A3 is
an element of Uad,

Jκ [vj] ≥ inf
v′∈Uad

Jκ
[
v′],

and, consequently, it follows from Lemma A2 that

Jκ [v] = lim
j→+∞ Jκ [vj] ≥ inf

v′∈Uad
Jκ

[
v′].

Then the arbitrariness of v implies the desired result. �

Proof of Proposition 2.2 According to the definition of optimal control and value function,
the desired conclusion is drawn by using the idea introduced in Chap. 11 of Øksendal [19].
One drops the details of the proof for saving space. �
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