
Zhang and Wang Advances in Difference Equations         (2019) 2019:64 
https://doi.org/10.1186/s13662-019-2009-4

R E S E A R C H Open Access

Hopf bifurcation of a heroin model with time
delay and saturated treatment function
Zizhen Zhang1* and Yougang Wang1

*Correspondence:
zzzhaida@163.com
1School of Management Science
and Engineering, Anhui University
of Finance and Economics, Bengbu,
China

Abstract
In this paper, local stability and Hopf bifurcation of a delayed heroin model with
saturated treatment function are discussed. First of all, sufficient conditions for local
stability and existence of Hopf bifurcation are obtained by regarding the time delay as
a bifurcation parameter and analyzing the distribution of the roots of the associated
characteristic equation. Directly afterward, properties of the Hopf bifurcation, such as
the direction and stability, are investigated with the aid of the normal form theory
and the manifold center theorem. Finally, numerical simulations are presented to
justify the obtained theoretical results, and some suggestions are offered for
controlling heroin abuse in populations.
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1 Introduction
Heroin is an opiate drug that is synthesized from morphine [1, 2]. It not only causes so-
matic and psychological effects for heroin users, but also brings social panic and economic
loss to the entire human society. Specially, it is one of the most important modes of trans-
mitting infectious diseases such as Human Immunodeficiency Virus (HIV) and Hepatitis
C Virus (HCV) [3–6]. In recent years, it has been established that heroin spreads in a
population like an epidemic disease. Based on this, some mathematical models have been
formulated to describe the epidemic dynamics of heroin users. In [7], Mackintosh and
Stewart proposed an exponential model based on the infectious disease model of Ker-
mack and Mckendrick to describe how the use of heroin spreads in an epidemic fashion.
White and Comiskey [8] formulated a heroin epidemic model for treating heroin users,
and it involves susceptibles, heroin users, and heroin users undergoing treatment, three
classes of people. Later, Mulone and Straughan [9] showed that the steady states of the
model proposed by White and Comiskey [8] are stable. However, they assumed that the
total population is a constant, which is not reasonable in reality. Thus, Wang et al. [10]
proposed a heroin model with the bilinear law incidence instead of the standard incidence
and studied its stability. Considering the effects of distributed time delay on the dynamics
of the heroin model, Samanta et al. [11–14] investigated different forms of heroin models
with distributed delays. Motivated by the work of Samanta et al. [11], Abdurahman et al.
[15] derived a discretized heroin epidemic model with a distributed time delay and studied
its stability and permanence. As stated in [16], all the heroin models above assume that
all individuals have the same level of susceptibility. This is not consistent with the reality,
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because the individuals at different stages have different levels of susceptibility. Thus, Fang
et al. [16, 17] investigated the heroin model with age-dependent susceptibility. In addition,
there are also some heroin models with nonlinear incidence rate that have received much
attention from scholars at home and abroad [18–20].

Obviously, most of the heroin models above assume that the treatment rate of heroin
users not in treatment is proportional to the number of them. However, it is only possible
to treat a limited number of heroin users at a given time, especially when the medical re-
sources are scarce. Thus, it is more realistic to investigate the heroin model with nonlinear
treatment function. To this end, Wangari and Stone [21] formulated the following heroin
model with a saturated treatment function:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βU1(t)S(t) – μS(t),

dU1(t)
dt = βU1(t)S(t) + pU2(t) – (μ + δ1 + ε)U1(t)

– αU1(t)
1+ηU1(t) ,

dU2(t)
dt = αU1(t)

1+ηU1(t) – (p + σ + δ2 + μ)U2(t),
dU3(t)

dt = σU2(t) + εU1(t) – μU3(t),

(1)

where S(t) denotes the number of susceptibles at time t; U1(t), U2(t), and U3(t) denote
the numbers of heroin users not in treatment, heroin users undergoing treatment, and in-
dividuals successfully treated from heroin use at time t, respectively. A is the constant
input rate of the susceptibles through immigration and birth; β is the contact rate of
the susceptibles with heroin users; p is the rate at which the heroin users undergoing
treatment relapse; δ1 and δ2 are the heroin-induced death rates of heroin users not in
treatment and heroin users undergoing treatment, respectively; ε is the self-cure rate
of heroin users not in treatment; σ is the successful treatment rate of heroin users un-
dergoing treatment; α is the rate at which heroin users are treated; η accounts for the
extent of saturation of heroin users; μ is the natural death rate of all the subpopula-
tions. Wangari and Stone [21] studied the stability and backward bifurcations of sys-
tem (1).

It should be pointed out that Wangari and Stone [21] assume that the heroin users are
cured instantaneously, which is not consistent with reality. As stated in [15], it needs some
time to become a heroin user for a susceptible one. In exactly the same way, it should also
take a period to cure drug users. Therefore, it is more realistic to incorporate the time
delay due to the period used to cure heroin users into system (1). We assume that heroin
users begin to be treated at t – τ and they are cured at t. Thus, we can obtain the following
delayed heroin model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – βU1(t)S(t) – μS(t),

dU1(t)
dt = βU1(t)S(t) + pU2(t) – (μ + δ1)U1(t)

– εU1(t – τ ) – αU1(t)
1+ηU1(t) ,

dU2(t)
dt = αU1(t)

1+ηU1(t) – (p + δ2 + μ)U2(t) – σU2(t – τ ),
dU3(t)

dt = σU2(t – τ ) + εU1(t – τ ) – μU3(t),

(2)

where τ is the period used to cure heroin users. We mainly focus on the effect of the time
delay on system (2).
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The organization of this paper is as follows. In Sect. 2, we study local stability and ex-
istence of Hopf bifurcation, and sufficient conditions for local stability and existence of
Hopf bifurcation are established. Section 3 deals with direction of the Hopf bifurcation,
stability, and period of the bifurcating periodic solutions. Computer simulations of the
model are performed in Sect. 4. Section 5, which is the last one, contains the conclu-
sions.

2 Local stability and existence of Hopf bifurcation
Based on the analysis in [21], we can conclude that if condition (H1): R0 > 1 and L1 < 0
holds, then system (2) has a unique endemic equilibrium E∗(S∗, U1∗, U2∗, U3∗), where

S∗ =
A

βU1∗ + μ
,

U2∗ =
αU1∗

(p + σ + δ2 + μ)(1 + ηU1∗)
,

U3∗ =
ασU1∗ + ε(p + σ + δ2 + μ)(1 + ηU1∗)U1∗

μ(p + σ + δ2 + μ)(1 + ηU1∗)
,

and U1∗ is the positive root of Eq. (3)

L2U2
1∗ + L1U1∗ + L0 = 0, (3)

where

L2 = (μ + δ1 + ε)(p + σ + δ2 + μ)βη,

L1 = (p + σ + δ2 + μ)
[
(μ + δ1 + ε)(β + μη) – Aβη

]
+ αβ(σ + δ2 + μ),

L0 =
[
μ(μ + δ1 + ε)(p + σ + δ2 + μ) + αμ(σ + δ2 + μ)

]
(1 – R0),

with

R0 =
βA(p + σ + δ2 + μ)

μ(μ + δ1 + ε)(p + σ + δ2 + μ) + μα(α + δ2 + σ )
.

The characteristic equation of the linear section of system (2) at E∗(S∗, U1∗, U2∗, U3∗) is

λ4 + M3λ
3 + M2λ

2 + M1λ + M0

+
(
N3λ

3 + N2λ
2 + N1λ + N0

)
e–λτ

+
(
P2λ

2 + P1λ + P0
)
e–2λτ = 0, (4)

where

M0 = m33m44(m11m22 – m12m21) – m11m23m32m44,

M1 = (m12m21 – m11m22)(m33 + m44) + m23m32(m11 + m44)

– m33m44(m11 + m22),

M2 = m11m22 + m33m44 – m12m21 – m23m32
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+ (m11 + m22)(m33 + m44),

M3 = –(m11 + m22 + m33 + m44),

N0 = m11m44(m33n22 + m22n33) – m12m21m44n33,

N1 = m12m21n33 – n22(m11m33 + m11m44 + m33m44)

– n33(m11m22 + m11m44 + m22m44),

N2 = n22(m11 + m33 + m44) + n33(m11 + m22 + m44),

N3 = –(n22 + n33), P0 = m11m44n22n33,

P1 = –n22n33(m11 + m44), P2 = n22n33,

and

m11 = –(βU1∗ + μ), m12 = –βS∗,

m21 = βU1∗, m22 = βS∗ – (μ + δ1) –
α

1 + ηU1∗
, m23 = p,

m32 =
α

1 + ηU1∗
, m33 = –(p + δ2 + μ),

m42 = –μ, n22 = –ε, n33 = –σ , n42 = ε, n43 = σ .

Multiplying by eλτ , Eq. (4) becomes

N3λ
3 + N2λ

2 + N1λ + N0

+
(
λ4 + M3λ

3 + M2λ
2 + M1λ + M0

)
eλτ

+
(
P2λ

2 + P1λ + P0
)
e–λτ = 0. (5)

When τ = 0, Eq. (5) becomes

λ4 + M03λ
3 + M02λ

2 + M01λ + M00 = 0, (6)

where

M00 = M0 + N0 + P0, M01 = M1 + N1 + P1,

M02 = M2 + N2 + P2, M03 = M3 + N3.

Based on the Routh–Hurwitz theorem, it can be concluded that all the roots of Eq. (6)
have negative real parts if (H2) holds

(H2) : M00 > 0, M01 > 0, M03 > 0, M01M02M03 > M2
01 + M2

03M00.

For τ > 0, let λ = iω (ω > 0) be a root of Eq. (5). Then

⎧
⎨

⎩

P1(ω) cos τω – P2(ω) sin τω = P3(ω),

P4(ω) sin τω + P5(ω) cos τω = P6(ω),
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where

P1(ω) = ω4 – (M2 + P2)ω2 + M0 + P0,

P2(ω) = (M1 – P1)ω – M3ω
3,

P3(ω) = N2ω
2 – N0,

P4(ω) = ω4 – (M2 – P2)ω2 + M0 – P0,

P5(ω) = (M1 + P1)ω – M3ω
3,

P6(ω) = N3ω
3 – N1ω.

Thus, one can obtain

cos τω =
P01(ω)
P00(ω)

,

sin τω =
P02(ω)
P00(ω)

,

with

P00(ω) = ω8 – 2M2ω
6 +

(
M2

2 + 2M0 – P2
2
)
ω4

+ 2(P0P2 – M0M2)ωω2 + M2
0 – P2

0,

P01(ω) = (N2 – M3N3)ω6

+
[
N3(M1 – P1) – N2(M2 – P2) + M3N1 – N0

]
ω4

+
[
N0(M2 – P2) – N1(M1 – P1) + N2(M0 – P0)

]
ω2

– N0(M0 – P0),

P02(ω) = N3ω
7 –

[
N3(M2 + P2) + N1

]
ω5

+
[
N3(M0 + P0) – N1(M2 + P2)

]
ω3 – N1(M0 + P0)ω.

Then we can obtain the following equation with respect to ω:

P2
01(ω) + P2

02(ω) – P2
00(ω) = 0. (7)

Next, we suppose that (H3): Eq. (7) has at least one positive root ω0.
Then Eq. (5) has a pair of purely imaginary roots ±iω0. For ω0, we can obtain the corre-

sponding critical value of time delay as follows:

τ0 =
1
ω0

arccos

{
P01(ω0)
P00(ω0)

}

. (8)

In what follows, we differentiate both sides of Eq. (7) with respect to τ and obtain

[
dλ

dτ

]–1

= –
G1(λ)
G2(λ)

–
τ

λ
,
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where

G1(λ) = 3B3λ
2 + 2B2λ + B1

+
(
4λ3 + 3M3λ

2 + 2M2λ + M1
)
eλτ + (2P2λ + P1)e–λτ ,

G2(λ) = λ
(
λ4 + M3λ

3 + M2λ
2 + M1λ + M0

)
eλτ

– λ
(
P2λ

2 + P1λ + P0
)
e–λτ .

Then we can obtain the expression of Re[ dλ
dτ

]–1
τ=τ0 . Let

Re

[
dλ

dτ

]–1

τ=τ0

=
PRQR + PIQI

Q2
R + Q2

I
,

where

PR = N1 – 3N3ω
2 +

(
M1 + P1 – 3M3ω

2) cos τ0ω0 – 2
(
M2ω – P2ω + 2ω3) sin τ0ω0,

PI = –2N2ω – 2
(
M2ω + P2ω – 2ω3) cos τ0ω0 –

(
M1 – P1 – 3M3ω

2) sin τ0ω0,

QR =
(
M1ω – P1ω – M3ω

3) cos τ0ω0 +
(
M0 + P0 – M2ω

2 – P2ω
2 + ω4) sin τ0ω0,

QI =
(
M0 – P0 – M2ω

2 + P2ω
2 + ω4) cos τ0ω0 –

(
M1ω + P1ω – M3ω

3) sin τ0ω0.

Obviously, if (H4): PRQR + PIQI �= 0 holds, then Re[ dλ
dτ

]–1
τ=τ0 �= 0. Based on the discussion

above and the Hopf bifurcation theorem in [22], we have the following results.

Theorem 1 For system (2), if conditions (H1)–(H4) hold, then the positive equilibrium
E∗(S∗, U1∗, U2∗, U3∗) is locally asymptotically stable when τ ∈ [0, τ0); system (2) undergoes
a Hopf bifurcation at E∗(S∗, U1∗, U2∗, U3∗) when τ = τ0, and a family of periodic solutions
bifurcate from E∗(S∗, U1∗, U2∗, U3∗).

3 Direction and stability of Hopf bifurcation
In this section, the formulae for determining the direction and stability of the Hopf bifur-
cation of system (2) at τ = τ0 are presented. Let τ = τ0 + μ0, μ0 ∈ R, so that μ0 = 0 is the
Hopf bifurcation value for the system. Define the space of continuous real-valued func-
tions as C = C([–1, 0], R4). Let u1(t) = S(t) – S∗, u2(t) = U1(t) – U1∗, u3(t) = U2(t) – U2∗,
u4(t) = U3(t) – U3∗, and normalize time delay with the scaling t → (t/τ ). Then the delay
system (2) transforms to a functional differential equation in C as follows:

u̇(t) = Lμ0 (ut) + F(μ0, ut), (9)

where u(t) = (u1, u2, u3, u4)T ∈ C = C([–1, 0], R4) and Lμ: C → R4 and F : R × C → R4 are
given as follows:

Lμ0φ = (τ0 + μ0)
(
Mmaxφ(0) + Nmaxφ(–1)

)
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and

F(μ0,φ) = (τ0 + μ0)

⎛

⎜
⎜
⎜
⎝

0
m25φ

2
2 (0) + m26φ

3
2 (0) + · · ·

m35φ
2
2 (0) + m36φ

3
2 (0) + · · ·

0

⎞

⎟
⎟
⎟
⎠

with

Mmax =

⎛

⎜
⎜
⎜
⎝

m11 m12 0 0
m21 m22 m23 0

0 m32 m33 0
0 0 0 m44

⎞

⎟
⎟
⎟
⎠

,

Nmax =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 n22 0 0
0 0 n33 0
0 n42 n43 0

⎞

⎟
⎟
⎟
⎠

and

m25 =
αη

(1 + ηU1∗)3 , m26 = –
αη2

(1 + ηU1∗)4 ,

m35 = –
αη

(1 + ηU1∗)3 , m36 =
αη2

(1 + ηU1∗)4 .
(10)

By the Riesz representation theorem, there exists a function η(θ ,μ0) for θ ∈ [–1, 0] such
that

Lμ0φ =
∫ 0

–1
dη(θ ,μ0)φ(θ ) (11)

for φ ∈ C. In fact, we choose

η(θ ,μ0) = (τ0 + μ0)
(
Mmaxδ(θ ) + Nmaxδ(θ + 1)

)
,

where δ(θ ) is the Dirac delta function.
For φ ∈ C([–1, 0], R4), define

A(μ0)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,μ0)φ(θ ), θ = 0,

and

R(μ0)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(μ0,φ), θ = 0.

Then system (9) is equivalent to

u̇(t) = A(μ0)ut + R(μ0)ut . (12)
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For ϕ ∈ C1([0, 1], (R4)∗), the adjoint operator A∗ of A(0) is defined as follows:

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0.

Next, we define the bilinear inner form for A and A∗:

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (13)

where η(θ ) = η(θ , 0).
Suppose that q(θ ) = (1, q2, q3, q4)T eiω0τ0θ is the eigenvector of A(0) corresponding to

iω0τ0 and q∗(s) = D(1, q∗
2, q∗

3, q∗
4)T eiτ0ω0s is the eigenvector of A∗(0) corresponding to

–iτ0ω0. Then we can obtain

q2 =
iω0 – m11

m12
,

q3 =
iω0 – m22 – n22e–iτ0ω0

m23
,

q4 =
n42q2 + n43q3

iω0 – m44
,

q∗
2 = –

iω0 + m11

m21
,

q∗
3 =

�2 – m42eiτ0ω0

m32
,

q∗
4 = –

m23m32q2

�1(�2 – n42eiτ0ω0 ) + m32n43eiτ0ω0
,

�1 = iω0 + m33 + n33eiτ0ω0 ,

�2 = –
(
iω0 + m22 + n22eiτ0ω0

)
q2 – m12.

From Eq. (13), we can obtain

D̄ =
[
1 + q2q∗

2 + q3q̄∗
3 + q4q̄∗

4

+ τ0e–iτ0ω0
(
q2

(
n22q̄∗

2 + n42q̄∗
4
)

+ q3
(
n33q̄∗

3 + n43q̄∗
4
))]–1

such that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Next, based on the algorithms in [22] and a computation process similar to that in [23–

25], we can obtain

g20 = 2D̄τ0
(
m25q̄∗

2q2
2 + m35q̄∗

3q2
2
)
,

g11 = 2D̄τ0q2q̄2
(
m25q̄∗

2 + m35q̄∗
3
)
,

g02 = 2D̄τ0
(
m25q̄∗

2q̄2
2 + m35q̄∗

3q̄2
2
)
,

g21 = 2D̄τ0
[
q̄∗

2
(
m25

(
2W (2)

11 (0)q2 + W (2)
20 (0)q̄2

)
+ 3m26q2

2q̄2
)

+ q̄∗
3
(
m35

(
2W (2)

11 (0)q2 + W (2)
20 (0)q̄2

)
+ 3m36q2

2q̄2
)]

,
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with

W20(θ ) =
ig20q(0)
τ0ω0

eiτ0ω0θ +
iḡ02q̄(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ ,

W11(θ ) = –
ig11q(0)
τ0ω0

eiτ0ω0θ +
iḡ11q̄(0)
τ0ω0

e–iτ0ω0θ + E2.

E1 and E2 can be obtained by the following two equations:

E1 = 2

⎛

⎜
⎜
⎜
⎝

2iω0 – m11 –m12 0 0
–m21 m′

22 –m23 0
0 –m32 m′

33 0
0 –n42e–2iτ0ω0 –n43e–2iτ0ω0 2iω0 – m44

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

0
m25q2

2

m35q2
2

0

⎞

⎟
⎟
⎟
⎠

,

E2 = –

⎛

⎜
⎜
⎜
⎝

m11 m12 0 0
m21 m22 + n22 m23 0

0 m32 m33 + n33 0
0 n42 n43 m44

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

0
2m25q2q̄2

2m35q2q̄2

0

⎞

⎟
⎟
⎟
⎠

,

with

m′
22 = 2iω0 – m22 – n22e–2iτ0ω0 ,

m′
33 = 2iω0 – m33 – n33e–2iτ0ω0 .

Then one can obtain

C1(0) =
i

2τ0ω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ0)}

τ0ω0
.

(14)

In conclusion, we have the following results.

Theorem 2 For system (2), if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable);
if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions increases (decreases).

4 Numerical simulation
In this section, some numerical simulations are performed to verify analytically obtained
results. We choose the same set of parameters as those in [21]: A = 3, P = 0.46, α = 0.9,
β = 0.001, δ1 = 0.002, δ2 = 0.001, σ = 0, 1, ε = 0.015, η = 0.15, and μ = 0.01. Then we obtain
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the following specific case of system (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 3 – 0.001U1(t)S(t) – 0.01S(t),

dU1(t)
dt = 0.001U1(t)S(t) + 0.46U2(t) – 0.012U1(t)

– 0.015U1(t – τ ) – 0.9U1(t)
1+0.15U1(t) ,

dU2(t)
dt = 0.9U1(t)

1+0.15U1(t) – 0.471U2(t) – 0.1U2(t – τ ),
dU3(t)

dt = 0.1U2(t – τ ) + 0.015U1(t – τ ) – 0.01U3(t).

(15)

Then we obtain R0 = 1.4885 > 1 and Eq. (3) becomes of the following form:

2.3126e – 006U2
1∗ – 1.1851e – 004U1∗ – 5.5986e – 004 = 0, (16)

from which one can obtain that system (15) has a unique positive equilibrium E∗(45.7321,
55.5995, 9.3976, 177.3752). Further, we can verify that E∗(45.7321, 55.5995, 9.3976,
177.3752) is locally asymptotically stable when τ = 0.

For τ > 0, by using Matlab software package, we obtain ω0 = 0.0368, τ0 = 40.1285, PRQR +
PIQI = 0.0082 > 0. In other words, the conditions for the occurrence of the Hopf bifurca-
tion are satisfied for system (15). According to Theorem 1, we can conclude that the unique
positive equilibrium E∗(45.7321, 55.5995, 9.3976, 177.3752) is locally asymptotically sta-
ble when τ ∈ [0, τ0 = 40.1285). This can be illustrated by Figs. 1–2. System (2) under-
goes a Hopf bifurcation at E∗(45.7321, 55.5995, 9.3976, 177.3752) when τ = τ0 = 40.1285
and a family of periodic solutions bifurcate from E∗(45.7321, 55.5995, 9.3976, 177.3752),
which can be shown as in Figs. 3–4. The bifurcation phenomenon can be also illustrated
by the bifurcation diagrams in Fig. 5. Moreover, by some complex computations, we obtain
C1(0) = –0.0462 + 0.0029i, λ′(τ0) = 0.3729 – 0.1846i, μ2 = 0.1239 > 0, β2 = –0.0924 < 0, and
T2 = 0.0135 > 0. Based on Theorem 2, we know that the Hopf bifurcation is supercritical,
the periodic solutions are stable and increase.

In addition, according to numerical simulations, we find that: (i) the number of suscepti-
bles decreases and the numbers of the other three populations increase when the number

Figure 1 Time plots of S, U1, U2 and U3 with τ = 37.45 < τ0 = 40.1285
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Figure 2 Phase portrait of system (15) with τ = 37.45 < τ0 = 40.1285: (a) S – U1 – U2, (b) S – U1 – U3,
(c) S – U2 – U3, (d) U1 – U2 – U3

Figure 3 Time plots of S, U1, U2 and U3 with τ = 45.25 > τ0 = 40.1285

of A or β in system (15) increases; this can be demonstrated by Figs. 6–7. (ii) the num-
bers of susceptibles and heroin users not in treatment decrease; nevertheless, the numbers
of heroin users undergoing treatment and individuals successfully treated from heroin
use increase when the number of α in system (15) increases, which can be illustrated by
Fig. 8. (iii) the number of heroin users not in treatment increases and the numbers of the



Zhang and Wang Advances in Difference Equations         (2019) 2019:64 Page 12 of 16

Figure 4 Phase portrait of system (15) with τ = 45.25 > τ0 = 40.1285: (a) S – U1 – U2, (b) S – U1 – U3,
(c) S – U2 – U3, (d) U1 – U2 – U3

Figure 5 Bifurcation diagram of system (15) with respect to τ : (a) S, (b) U1, (c) U2, (d) U3
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Figure 6 Effect of A on all classes for τ = 35.25: (a) S, (b) U1, (c) U2, (d) U3

Figure 7 Effect of β on all classes for τ = 35.25: (a) S, (b) U1, (c) U2, (d) U3
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Figure 8 Effect of α on all classes for τ = 25.25: (a) S, (b) U1, (c) U2, (d) U3

other three populations decrease when the number of η in system (15) increases. This
phenomenon can be shown as in Fig. 9.

5 Conclusions
In this paper, a delayed heroin model with saturated treatment function in the form of

αU1
1+ηU1

is discussed, which is different from the model in [21]. In our model, we assume
that the heroin users cannot be cured instantaneously and it needs a period to cure heroin
users, which is more in line with truth. Compared with the work by Wangari and Stone in
[21], we mainly focus on the effect of the time delay on the proposed model in the present
paper.

It has been shown that the time delay may destabilize the positive equilibrium of the
model and cause the population to fluctuate if certain conditions are satisfied. When the
value of the time delay is below the threshold τ0, then the positive equilibrium of the model
is locally asymptotically stable. In this case, the heroin abuse among the populations can be
controlled. However, when the value of the time delay passes through the threshold τ0, the
model will lose its stability and a Hopf bifurcation occurs and a family of periodic solutions
bifurcate from the positive equilibrium. In this case, the populations in the model will
oscillate in the vicinity of E∗(S∗, U1∗, U2∗, U3∗). Namely, the heroin abuse in the populations
will be out of control. Furthermore, properties of the Hopf bifurcation are investigated
with the aid of the normal form theory and center manifold theorem. Finally, numerical
simulations are presented to verify the analytical predictions.

It has been observed in our simulations that the number of heroin users not in treat-
ment increases when the number of A increases. Thus, the input rate of the susceptibles
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Figure 9 Effect of η on all classes for τ = 28.25: (a) S, (b) U1, (c) U2, (d) U3

in a community should be controlled properly, especially the input rate through immi-
gration. Similarly, it is strongly recommended that people should exercise self-control so
as to protect themselves from drugs, since the number of heroin users not in treatment
increases when the number of β increases. The number of heroin users not in treatment
decreases when the number of α increases, which suggests that populations in a com-
munity should periodically go to hospital for physical examination and early recognition,
treatment. Also, the number of heroin users not in treatment decreases when the num-
ber of η increases. This gives us a suggestion that we should improve medical facilities
continuously and ensure that medical resources are sufficient and available.
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