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Abstract
In this paper, we mainly give the Lie algebras E, F and H of three kinds and their
commutator, respectively. Next, we establish three isospectral problems with the help
of their corresponding loop algebras˜E,˜F, and˜H. Based on on the Tu scheme,
coupling integrable couplings of three kinds for the generalized coupled Burgers
equation hierarchy are obtained. Finally, we obtain the Hamiltonian structure of one
of the coupling integrable couplings of the generalized coupled Burgers equation
hierarchy by using the quadratic-form identity.
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1 Introduction
The development of soliton theory has undergone a rapid development in the 1960s. Inte-
grable couplings are a new important and interesting topic in the field of soliton theory [1–
3]. A lot of integrable nonlinear evolution equations, such as the Schroedinger equation
and the KdV equation, were discussed. The notion of integrable couplings was first intro-
duced by Virasoro [4, 5]. Integrable couplings are coupled systems of integrable equations
which contain given integrable equations as their sub-systems [6]. Integrable couplings
have much richer mathematical structures than scalar integrable equations [7–31]. Re-
cently, Inc, Yusuf, Aliyu and Baleanu discussed a Lie symmetry analysis and conservation
laws for the time fractional simplified modified Kawahara equation, the generalized shal-
low water wave equation, the time fractional dispersive long-wave equation and the time
fractional generalized Burgers–Huxley equation. They also studied a time fractional third-
order variant Boussinesq system and gave a symmetry analysis, explicit solutions, conser-
vation laws and numerical approximations [32–37]. So it is important to study integrable
couplings in soliton theory. Zhang even proposed an efficient method for constructing
nonlinear evolution equations and their resulting Hamiltonian structure. Ma called it the
Tu scheme. Hence, Hu developed the trace identity, and got an efficient method to work
out the soliton equations and the Hamiltonian structure. In [38] Zhang gave three kinds of
coupling integrable couplings of the KdV hierarchy of evolution equations. The three Lie
algebras E, F and H in [38] can be used to obtain the other coupling integrable couplings
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of the soliton equations. In this paper, we introduce three higher-dimensional Lie algebras
and their corresponding loop algebras ˜E, ˜F , and ˜H , and consider three Lax pairs for the
zero curvature equation

Vx = [U , V ]. (1.1)

With the help of the loop algebras, we obtain three kinds of coupling integrable couplings
of the generalized coupled Burgers equation hierarchy. And the one coupling integrable
coupling of the generalized coupled Burgers equation hierarchy has a Hamiltonian struc-
ture obtained by employing the quadratic-form identity [39].

2 Three higher-dimensional Lie algebras
Let

E = span{e1, e2, e3, e4, e5, e6, e7}.

For ∀a =
∑7

i=1 aiei, b =
∑7

i=1 biei ∈ E, we have

[a, b] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2a3b2 – 2a2b3

2a1b3 – 2a3b1

2a1b2 – 2a2b1

a1b4 – a4b1 + a2b5 – a5b2 + a3b5 – a5b3

a5b1 – a1b5 + a2b4 – a4b2 + a4b3 – a3b4

a1b6 – a6b1 + a2b7 – a7b2 + a3b7 – a7b3

a7b1 – a7b1 + a2b6 – a6b2 + a6b3 – a3b6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.1)

It is easy to see that E is a Lie algebra equipped with the commutator (2.1).
Denote

F = span{f1, f2, f3, f4, f5, f6, f7, f8, f9}.

For ∀a =
∑7

i=1 aifi, b =
∑7

i=1 bifi ∈ L2, we easily obtain

[a, b] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2a3b2 – 2a2b3

2a1b3 – 2a3b1

2a1b2 – 2a2b1

2a7b2 – 2a2b7 + 2a3b6 – 2a6b3

2a3b8 – 2a8b3 + 2a9b2 – 2a2b9

2a1b7 – 2a7b1 + 2a4b3 – 2a3b4

2a1b6 – 2a6b1 + 2a4b2 – 2a2b4

2a1b9 – 2a9b1 + 2a5b3 – 2a3b5

2a1b8 – 2a8b1 + 2a5b2 – 2a2b5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.2)

and F is a Lie algebra equipped with the commutator (2.2).
The Lie algebras E and F are all expanding Lie algebra of the well-known Lie algebra

R3 =
{

r = (r1, r2, r3)T , ri ∈ R
}

,
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which along with the commutator leads to

[a, b] =

⎛

⎜

⎝

2a3b2 – 2a2b3

2a1b3 – 2a3b1

2a1b2 – 2a2b1

⎞

⎟

⎠
∀a = (a1, a2, a3)T , b = (b1, b2, b3)T ∈ R3. (2.3)

Assume that Ls is a s-dim Lie algebra,

K(Ls) =

⎧

⎪

⎨

⎪

⎩

A =

⎛

⎜

⎝

A1

A2

A3

⎞

⎟

⎠
, Ai ∈ Ls, i = 1, 2, 3

⎫

⎪

⎬

⎪

⎭

.

For

B =

⎛

⎜

⎝

B1

B2

B3

⎞

⎟

⎠
∈ K(Ls)

and

[A, B] =
(

[A1, B1], [A1, B2] + [A2, B1], [A1, B3] + [A3, B1] + [A3 + B3]
)T ∈ K(Ls),

K(Ls) is a Lie algebra. By taking s = 3 and [A1, B1] is the same as (2.3), then we can get
another Lie algebra K(Ls), which can be denoted H . The Lie algebra H is isomorphic to
the Lie algebra F ,

H = span{f1, f2, f3, f4, f5, f6, f7, f8, f9},

along with the commutator

[a, b] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2a3b2 – 2a2b3

2a1b3 – 2a3b1

2a1b2 – 2a2b1

2a3b5 – 2a5b3 + 2a6b2 – 2a2b6

2a1b6 – 2a6b1 + 2a4b3 – 2a3b4

2a1b5 – 2a5b1 + 2a4b2 – 2a2b4

2a3b8 – 2a8b3 + 2a9b2 – 2a2b9 + 2a9b8 – 2a8b9

2a1b9 – 2a9b1 + 2a7b3 – 2a3b7 + 2a7b9 – 2a9b7

2a1b8 – 2a8b1 + 2a7b2 – 2a2b7 + 2a7b8 – 2a8b7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.4)

where a =
∑9

i=1 aiei, b =
∑9

i=1 biei.
By applying Lie algebra E, F and H , we can obtain three kinds of coupling integrable

couplings of the generalized coupled Burgers equation hierarchy.

3 Three kinds of coupling integrable couplings of the generalized coupled
Burgers equation hierarchy

In this section, we shall show how to get three kinds of coupling integrable couplings of
the generalized coupled Burgers equation hierarchy by making use of the Lie algebra E, F
and H .
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(I) The first kind of coupling integrable couplings of the generalized coupled Burgers equa-
tion hierarchy.

The loop algebra of Lie algebra E is given by ˜E = span{ei(n) = eiλ
n, i = 1, 2, 3, 4, 5, 6, 7},

[ei(m), ej(n)] = [ei, ej]λm+n, m, n ∈ Z, i, j = 1, 2, 3, 4, 5, 6, 7, equipped with the commutator
(2.1). Consider a Lax pair for zero curvature equation as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U = e1(1) + qh2(0) + h2(1) + rh3(0) + u1h4(0) + u2h5(0) + s1h6(0) + s2h7(0),

V =
∑

m≥0(V1mh1(–m) + V2mh2(–m) + V3mh3(–m) + V4mh4(–m)

+ V5mh5(–m) + V6mh6(–m) + V7mh7(–m)).

(3.1)

The stationary zero equation

Vx = [U , V ] (3.2)

changes into

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V1,mx = –2V3,m+1 – 2qV3m + 2rV2m,

V2,mx = 2V3m – 2rV1m,

V3,mx = –2V1,m+1 – 2qV1m + 2V2m,

V4,mx = V5,m+1 + qV5m + V4m – u1V1m – u2V2m + rV5m – u2V3m,

V5,mx = V4,m+1 + qV4m + u2V1m – V5m – u1V2m + u1V3m – rV4m,

V6,mx = V7,m+1 + qV7m + V6m – s1V1m – s2V2m + rV7m – s2V3m,

V7,mx = V6,m+1 + qV6m + s2V1m – V7m – s1V2m + s1V3m – rV6m.

(3.3)

Denoting

V (n)
+ =

n
∑

m=0

(

V1mh1(n – m) + V2mh2(n – m) + V3mh3(n – m) + V4mh4(n – m)

+ V5mh5(n – m) + V6mh6(n – m) + V7mh7(n – m)
)

,

the stationary zero curvature equation (3.2) can be decomposed into

–V (n)
+x +

[

U , V (n)
+

]

= V (n)
–x –

[

U , V (n)
–

]

.

Simple computation results in

–V (n)
+x +

[

U , V (n)
+

]

= 2V3,n+1h1(0) + 2V1,n+1h3(0) – V5,n+1h4(0) – V4,n+1h5(0)

– V7,n+1h6(0) – V6,n+1h7(0).

Taking V (n) = V (n)
+ – 1

r V3,n+1h2(0), we have

–V (n)
x +

[

U , V (n)] =
(

1
r

V3,n+1

)

x
h2(0) –

1
r

V2,n+1xh3(0)

+
(

–V5,n+1 +
u2

r
V3,n+1

)

h4(0)
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+
(

–V4,n+1 +
u1

r
V3,n+1

)

h5(0) +
(

–V7,n+1 +
s2

r
V3,n+1

)

h6(0)

+
(

–V6,n+1 +
s1

r
V3,n+1

)

h7(0).

Hence the zero curvature equation

Ut – V (n)
x +

[

U , V (n)] = 0 (3.4)

gives rise to the Lax integrable hierarchy

ut =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q
r

u1

u2

s1

s2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

–∂( 1
r V3,n+1)

1
r ∂(V2,n+1)

V5,n+1 – u2
r V3,n+1

V4,n+1 – u1
r V3,n+1

V7,n+1 – s2
r V3,n+1

V6,n+1 – s1
r V3,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.5)

When we take s1 = s2 = 0, (3.5) can be reduced to an integrable coupling of the generalized
coupled Burgers equation hierarchy,

ut =

⎛

⎜

⎜

⎜

⎝

q
r

u1

u2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–∂( 1
r V3,n+1)

1
r ∂(V2,n+1)

V5,n+1 – u2
r V3,n+1

V4,n+1 – u1
r V3,n+1

⎞

⎟

⎟

⎟

⎠

. (3.6)

And (3.4) can be reduced to another generalized coupled Burgers equation hierarchy by
taking u1 = u2 = 0,

ut =

⎛

⎜

⎜

⎜

⎝

q
r
s1

s2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–∂( 1
r V3,n+1)

1
r ∂(V2,n+1)

V7,n+1 – s2
r V3,n+1

V6,n+1 – s1
r V3,n+1

⎞

⎟

⎟

⎟

⎠

. (3.7)

So we call (3.5) the first kind of coupling integrable couplings of the generalized coupled
Burgers equation hierarchy.

When we set V1,0 = 0, V2,0 = β , V3,0 = V4,0 = V5,0 = V6,0 = V7,0 = 0, we can obtain V1,1 = β ,
V2,1 = 0, V3,1 = βr, V4,1 = βu1, V5,1 = βu2, V6,1 = βs1, V7,1 = βs2, . . . .

Hence, when we take n = 2 in Eq. (3.5), we obtain the first kind of the coupling integrable
couplings of the generalized coupled Burgers equation, that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = βu2xx – 2βu1xq – βu1qx – βu2x – β

2 u1rx – βu1xr – β
u2rxx

4r – β
u2qx

2r ,

u2t = βu1xx – 2βu2xq – βu2qx + βu1x + β

2 u2rx + βu2xr – β
u1rxx

4r – β
u1qx

2r ,

s1t = βs2xx – 2βs1xq – βs1qx – βs2x – β

2 s1rx – βs1xr – β s2rxx
4r – β

s2qx
2r ,

s2t = βs1xx – 2βs2xq – βs2qx + βs1x + β

2 s2rx + βs2xr – β
s1rxx

4r – β
s1qx
2r .

(3.8)
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When we take u1 = u2 = s1 = s2 = 0, β = –2 in (3.9), we can get equations as follows:

⎧

⎨

⎩

qt = ( rxx
2r + qx

r + 2q2 + r2)x,

rt = – rxx
r qxx – 2qx

r + 2qxr + 4qrx.
(3.9)

And when we take r = –1 in (3.8), we can get the famous generalized Burgers equation

qt = 4qqx – qxx. (3.10)

(II) The second kind of coupling integrable couplings of the generalized coupled Burgers
equation hierarchy.

We have the loop algebra of the Lie algebra F :

˜F = span
{

fi(n) = fiλ
n, i = 1, 2, 3, 4, 5, 6, 7, 8, 9

}

,
[

fi(m), fj(n)
]

= [fi, fj]λm+n, m, n ∈ Z, i, j = 1, 2, 3, 4, 5, 6, 7, 8, 9,

of which the resulting commutators are defined the same as (2.2).
By using the loop algebra ˜F , we introduce an isospectral Lax pair for zero curvature

equation as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U = f1(0) + qf2(0) + f2(1) + rf3(0) + u1f4(0) + u2f5(0) + s1f7(0) + s2f9(0),

V =
∑

m≥0(V1mf1(–m) + V2mf2(–m) + V3mf3(–m) + V4mf4(–m)

+ V5mf5(–m) + V6mf6(–m) + V7mf7(–m) + V8mf8(–m) + V9mf9(–m)).

(3.11)

The stationary zero curvature

Vx = [U , V ]

is presented by the recurrence relations as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V1,mx = –2V3,m+1 – 2qV3m + 2rV2m,

V2,mx = 2V3m – 2rV1m,

V3,mx = –2V1,m+1 – 2qV1m + 2V2m,

V4,mx = –2V7,m+1 – 2qV7m + 2s1V2m + 2rV6m,

V5,mx = –2V9,m+1 – 2qV9m + 2s2V2m + 2rV8m,

V6,mx = 2V7m – 2s1V1m + 2u1V3m – 2rV4m,

V7,mx = –2V4,m+1 – 2qV4m + +2u1V2m + 2V6m,

V8,mx = 2V9m – 2s2V1m + 2u2V3m – 2rV5m,

V9,mx = –2V5,m+1 – 2qV5m + 2u2V2m + 2V8m.

(3.12)

Noting that

V (n)
+ =

n
∑

m=0

(

V1mf1(n – m) + V2mf2(n – m) + V3mf3(n – m) + V4mf4(n – m)
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+ V5mf5(n – m) + V6mf6(n – m) + V7mf7(n – m) + V8mf8(n – m) + V9mf9(n – m)
)

,

we obtain by a direct calculation

–V (n)
+x +

[

U , V (n)
+

]

= 2V3,n+1f1(0) + 2V1,n+1f3(0) + 2V7,n+1f4(0) + 2V9,n+1f5(0)

+ 2V4,n+1f7(0) + 2V5,n+1f9(0).

Taking V (n) = V (n)
+ – 1

r V3,n+1f2(0), after a calculation, we get

–V (n)
x +

[

U , V (n)] =
(

1
r

V3,n+1

)

x
f2(0) –

1
r

V2,n+1xf3(0) +
(

2V7,n+1 –
2s1

r
V3,n+1

)

f4(0)

+
(

2V9,n+1 –
2s2

r
V3,n+1

)

f5(0) +
(

2V4,n+1 –
2u1

r
V3,n+1

)

f7(0)

+
(

2V5,n+1 –
2u2

r
V3,n+1

)

f9(0).

The zero curvature equation

Ut – V (n)
x +

[

U , V (n)] = 0 (3.13)

admits

ut =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q
r

u1

u2

s1

s2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V7,n+1 + 2s1
r V3,n+1

–2V9,n+1 + 2s2
r V3,n+1

–2V4,n+1 + 2u1
r V3,n+1

–2V5,n+1 + 2u2
r V3,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.14)

which can be regarded as a composition of two integrable coupling of the generalized
coupled Burgers equation hierarchy as follows:

ut =

⎛

⎜

⎜

⎜

⎝

q
r

u1

u2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V7,n+1 + 2s1
r V3,n+1

–2V9,n+1 + 2s2
r V3,n+1

⎞

⎟

⎟

⎟

⎠

, (3.15)

ut =

⎛

⎜

⎜

⎜

⎝

q
r
s1

s2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V4,n+1 + 2u1
r V3,n+1

–2V5,n+1 + 2u2
r V3,n+1

⎞

⎟

⎟

⎟

⎠

. (3.16)

When we set V1,0 = 0, V2,0 = β , V3,0 = V4,0 = V5,0 = V6,0 = V7,0 = V8,0 = V9,0 = 0, we can
obtain V1,1 = β , V2,1 = 0, V3,1 = βr, V4,1 = βu1, V5,1 = βu2, V6,1 = 0, V7,1 = βs1, V8,1 = 0,
V9,1 = βs2, . . . .
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Hence, when we take n = 2 in (3.14), we get the second kind of the coupling integrable
couplings of the generalized coupled Burgers equation as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = – β

2 s1xx – 2βu1xq – βu1qx + 2βu1r – 2βs1r2 + β

2
s1rxx

r + β
s1qx

r ,

u2t = – β

2 s2xx – 2βu2xq – βu2qx + 2βu2r – 2βs2r2 + β

2
s2rxx

r + β
s2qx

r ,

s1t = – β

2 u1xx – 2βs1xq – βs1qx + 2βu1 – 2βs1r + β

2
u1rxx

r + β
u1qx

r ,

s2t = – β

2 u2xx – 2βs2xq – βs2qx + 2βu2 – 2βs2r + β

2
u2rxx

r + β
u2qx

r .

(3.17)

When take u1 = u2 = s1 = s2 = 0, r = –1, β = –2 in (3.17), we can also get the same as (3.10).
(III) The third kind of coupling integrable couplings of the generalized coupled Burgers

equation hierarchy.
By using the loop algebra of Lie algebra H as follows:

˜H = span
{

fi(n) = fiλ
n, i = 1, 2, 3, 4, 5, 6, 7, 8, 9

}

,

along with the commutator

[

fi(m), fj(n)
]

= [fi, fj]λm+n, m, n ∈ Z, i, j = 1, 2, 3, 4, 5, 6, 7, 8, 9,

we get the third type of coupling integrable couplings of the generalized coupled Burgers
equation hierarchy.

A Lax pair for zero curvature equation is given as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U = f1(0) + qf2(0) + f2(1) + rf3(0) + u1f4(0) + u2f6(0) + s1f7(0) + s2f9(0),

V =
∑

m≥0(V1mf1(–m) + V2mf2(–m) + V3mf3(–m) + V4mf4(–m)

+ V5mf5(–m) + V6mf6(–m) + V7mf7(–m) + V8mf8(–m) + V9mf9(–m)).

(3.18)

A solution to the stationary zero curvature equation

Vx = [U , V ]

is presented now:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V1,mx = –2V3,m+1 – 2qV3m + 2rV2m,

V2,mx = 2V3m – 2rV1m,

V3,mx = –2V1,m+1 – 2qV1m + 2V2m,

V4,mx = –2V6,m+1 – 2qV6m + 2rV5m + 2u2V2m,

V5,mx = 2V6m – 2u2V1m + 2u1V3m – 2rV4m,

V6,mx = –2V4,m+1 – 2qV4m + 2V5m + 2u1V2m,

V7,mx = –2V9,m+1 – 2qV9m + 2rV8m + 2s2V2m + 2s2V8m,

V8,mx = 2V9m – 2s2V1m + 2s1V3m – 2rV7m + 2s1V9m – 2s2V7m,

V9,mx = –2V7,m+1 – 2qV7m + 2V8m + 2s1V2m + 2s1V8m.

(3.19)
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Setting

V (n)
+ =

n
∑

m=0

(

V1mf1(n – m) + V2mf2(n – m) + V3mf3(n – m) + V4mf4(n – m)

+ V5mf5(n – m) + V6mf6(n – m) + V7mf7(n – m) + V8mf8(n – m) + V9mf9(n – m)
)

,

we have

–V (n)
+x +

[

U , V (n)
+

]

= 2V3,n+1f1(0) + 2V1,n+1f3(0) + 2V6,n+1f4(0)

+ 2V4,n+1f6(0) + 2V9,n+1f7(0) + 2V7,n+1f9(0).

Taking V (n) = V (n)
+ – 1

r V3,n+1f2(0), we obtain

–V (n)
x +

[

U , V (n)] =
(

1
r

V3,n+1

)

x
f2(0) –

1
r

V2,n+1xf3(0) +
(

2V6,n+1 – 2
u2

r
V3,n+1

)

f4(0)

+
(

2V4,n+1 – 2
u1

r
V3,n+1

)

f6(0) +
(

2V9,n+1 – 2
s2

r
V3,n+1

)

f7(0)

+
(

2V7,n+1 – 2
s1

r
V3,n+1

)

f9(0).

Thus, the zero curvature equation

Ut – V (n)
x +

[

U , V (n)] = 0 (3.20)

admits the Lax integrable hierarchy

ut =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q
r

u1

u2

s1

s2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V6,n+1 + 2 u2
r V3,n+1

–2V4,n+1 + 2 u1
r V3,n+1

–2V9,n+1 + 2 s2
r V3,n+1

–2V7,n+1 + 2 s1
r V3,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.21)

When we take s1 = s2 = 0 and u1 = u2 = 0 in (3.21), respectively, we get two integrable
coupling of the generalized coupled Burgers equation hierarchy

ut =

⎛

⎜

⎜

⎜

⎝

q
r

u1

u2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V6,n+1 + 2 u2
r V3,n+1

–2V4,n+1 + 2 u1
r V3,n+1

⎞

⎟

⎟

⎟

⎠

, (3.22)

ut =

⎛

⎜

⎜

⎜

⎝

q
r
s1

s2

⎞

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V9,n+1 + 2 s2
r V3,n+1

–2V7,n+1 + 2 s1
r V3,n+1

⎞

⎟

⎟

⎟

⎠

. (3.23)
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So we call (3.21) the third type of coupling integrable couplings of the generalized coupled
Burgers equation hierarchy.

Set V1,0 = 0, V2,0 = β , V3,0 = V4,0 = V5,0 = V6,0 = V7,0 = V8,0 = V9,0 = 0, we can obtain V1,1 =
β , V2,1 = 0, V3,1 = βr, V4,1 = βu1, V5,1 = 0, V6,1 = βu2, V7,1 = βs1, V8,1 = 0, V9,1 = βs2, . . . .

And when we take n = 2 in (3.21), we get the third hind of the coupling integrable cou-
plings of the generalized coupled Burgers equation, that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = – β

2 u2xx – 2βu1xq – βu1qx + 2βu1r – 2βu2r2 + β

2
u2rxx

r + β
u2qx

r ,

u2t = – β

2 u1xx – 2βu2xq – βu2qx + 2βu1 – 2βu2r + β

2
u1rxx

r + β
u1qx

r ,

s1t = – β

2 s2xx – 2βs1xq – βs1qx + 2βs1r – 2βs2r2 – 3βs2
2r + βs2

1r + 2βs1s2

– βs3
2 + βs2

1s2 + β

2
s2rxx

r + β
s2qx

r ,

s2t = – β

2 s1xx – 2βs2xq – βs2qx + 2βs1 – 2βs2r + 3βs2
1r – βs2

2 – 2βs1s2r

+ βs3
1 – βs1s2

2 + β

2
s1rxx

r + β
s1qx

r .

(3.24)

Similarly when take u1 = u2 = s1 = s2 = 0, n = 2, α = –2 in (3.24), we can obtain (3.10).

4 Hamiltonian structure of coupling integrable couplings of the generalized
coupled Burgers equation hierarchy

In this section we shall deduce the Hamiltonian forms of the coupling integrable couplings
(3.21) by using the quadratic-form [39]. The commutator (2.4) can be written as

[a, b]T = aT R(b), (4.1)

where

R(b)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 2b3 2b2 0 2b6 2b5 0 2b9 2b8
–2b3 0 –2b1 –2b6 0 –2b4 –2b9 0 –2b7
2b2 –2b1 0 2b5 –2b4 0 2b8 –2b7 0
0 0 0 0 2b3 2b2 0 0 0
0 0 0 –2b3 0 –2b1 0 0 0
0 0 0 2b2 –2b1 0 0 0 0
0 0 0 0 0 0 0 2b3 + 2b9 2b2 + 2b8
0 0 0 0 0 0 –2b3 – 2b9 0 –2b1 – 2b7
0 0 0 0 0 0 2b2 + 2b8 –2b1 – 2b7 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.2)

The constant symmetric matrix F satisfying the matrix equation

R(b)F = –
(

R(b)F
)T , F = FT , (4.3)
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shows that

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 –1 0 0 –1 0 0 –1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 –1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 –1 0 0 0 0 0 –1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.4)

In the linear space R9, define a functional,

{a, b} = aT Fb

= a1b1 + a2b2 – a3b3 + a7b7

+ a8b8 – a9b9 + (a1b4 + a4b1) + (a1b7 + a7b1) + (a2b5 + a5b2)

+ (a2b8 + a8b2) – (a3b6 + a6b3) – (a3b9 + a9b3). (4.5)

The Lax pair U and V in (3.18) can be written as

⎧

⎨

⎩

U = (1, q + λ, r, u1, 0, u2, s1, 0, s2)T ,

V = (V1, V2, V3, V4, V5, V6, V7, V8, V9),
(4.6)

where Vi =
∑

m≥0 Vimλ–m, i = 1, 2, . . . , 9. With the help of (4.2), we have

{

V ,
∂U
∂λ

}

= V2 + V5 + V8,

{

V ,
∂U
∂q

}

= V2 + V5 + V8,

{

V ,
∂U
∂r

}

= –V3 – V6 – V9,

{

V ,
∂U
∂u1

}

= V1,
{

V ,
∂U
∂u2

}

= –V3,

{

V ,
∂U
∂s1

}

= V1 + V7,
{

V ,
∂U
∂s2

}

= –V3 – V9,

substituting the above into the quadratic-form identity yields

δ

δu
(V2 + V5 + V8) = λ–γ ∂

∂λ
λγ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2 + V5 + V8

–V3 – V6 – V9

V1

–V3

V1 + V7

–V3 – V9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.7)
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where

δ

δu
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δ
δq
δ
δr
δ

δu1
δ

δu2
δ

δs1
δ

δs2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Comparing the coefficients of λ–n–2 on both sides of (4.7), we get

δ

δu
(V2,n+2 + V5,n+2 + V8,n+2) = (γ – n – 1)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2,n+1 + V5,n+1 + V8,n+1

–V3,n+1 – V6,n+1 – V9,n+1

V1,n+1

–V3,n+1

V1,n+1 + V7,n+1

–V3,n+1 – V9,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.8)

Taking n = 0 in (4.8), we obtain γ = 0.
So we get

δHn+2

δu
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2,n+1 + V5,n+1 + V8,n+1

–V3,n+1 – V6,n+1 – V9,n+1

V1,n+1

–V3,n+1

V1,n+1 + V7,n+1

–V3,n+1 – V9,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.9)

where

Hn+2 = –
V2,n+2 + V5,n+2 + V8,n+2

n + 1
.

So (3.21) can be written as a Hamiltonian form

ut =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q
r

u1

u2

s1

s2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

t

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

–( 1
r V3,n+1)x

1
r V2,n+1x

–2V6,n+1 + 2 u2
r V3,n+1

–2V4,n+1 + 2 u1
r V3,n+1

–2V9,n+1 + 2 s2
r V3,n+1

–2V7,n+1 + 2 s1
r V3,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 ∂ 1
r 0 0

0 0 –2 – 2
r 0 0

0 2 0 –2 u2
r 0 –2

1
r ∂

2
r 2 u2

r 0 2 + 2 s2
r 2 s1

r
0 0 0 –2 – 2 s2

r 0 2
0 0 2 –2 s1

r –2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2,n+1 + V5,n+1 + V8,n+1

–V3,n+1 – V6,n+1 – V9,n+1

V1,n+1

–V3,n+1

V1,n+1 + V7,n+1

–V3,n+1 – V9,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= J
δHn+2

δu
, (4.10)

where ∂ = ∂
∂x and J is a Hamiltonian operator. We can obtain a recursive operator from

(3.19),

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

l11 l12 l13 l14 l15 l16

l21 l22 l23 l24 l25 l26

l31 l32 l33 l34 l35 l36

l41 l42 l43 l44 l45 l46

l51 l52 l53 l54 l55 l56

l61 l62 l63 l64 l65 l66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.11)

where

l11 =
1
2r

∂ – ∂–1q∂ , l12 =
1
r
∂ – ∂–1r∂ , l13 =

u2

r
∂ – ∂–1u1∂ ,

l14 =
u1

r
∂ – ∂–1u2∂ , l15 =

s2

r
∂ – ∂–1s1∂ , l16 =

s1

r
∂ – ∂–1s2∂ ,

l21 = –r –
1
4
∂

1
r
∂ , l22 = –q –

1
2
∂

1
r

, l23 = 2u2∂
–1r –

1
2
∂

u2

r
, l24 = –

1
2
∂

u1

r
,

l25 = 2s2∂
–1r + 2s2∂

–1s2 –
1
2
∂

s2

r
, l26 = –

1
2
∂

s1

r
+ 2s2∂

–1 + 2s2∂
–1s1,

l31 = l32 = l35 = l36 = 0, l33 = –q – 2∂–1r, l34 =
∂

2
– 2∂–1,

l41 = l42 = l45 = l46 = 0, l43 =
∂

2
+ 2r∂–1r, l34 = 2r∂–1 – q,

l51 = l52 = l53 = l54 = 0, l55 = –q – 2∂–1r – 2∂–1s2 – 2s1∂
–1r – 2s1∂

–1s2,

l56 =
1
2
∂ – 2∂–1 – 2∂–1s1 – 2s1∂

–1 – 2s1∂
–1s1,

l61 = l62 = l63 = l64 = 0, l65 =
1
2
∂ + 2r∂–1r + 2r∂–1s2 + 2s2∂

–1r + 2s2∂
–1s2,

l66 = –q + 2r∂–1 + 2r∂–1s1 + 2s2∂
–1 + 2s2∂

–1s1.

L satisfies
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2,n+1 + V5,n+1 + V8,n+1

–V3,n+1 – V6,n+1 – V9,n+1

V1,n+1

–V3,n+1

V1,n+1 + V7,n+1

–V3,n+1 – V9,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= L

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2n + V5n + V8n

–V3n – V6n – V9n

V1n

–V3n

V1n + V7n

–V3n – V9n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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The Hamiltonian form of the coupling integrable couplings (3.21) can be written as

ut = J
δHn+2

δu
= JLn

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
–βr – βu2 – βs2

β

–βr
β + βs1

–βr – βs2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.12)

5 Conclusion
In this paper we get three kinds of coupling integrable couplings of the generalized cou-
pled Burgers equation hierarchy, which are new results. And we obtain the Hamiltonian
structure of one coupling integrable couplings of the generalized coupled Burgers equa-
tion hierarchy by using the quadratic-form identity.

6 Results and discussion
Firstly, we introduce three Lie algebras E, F and H . With the help of their corresponding
loop algebras ˜E, ˜F , and ˜H , we establish three isospectral problems, respectively. Then, by
taking advantage of the Tu scheme, we get three kinds of coupling integrable couplings of
the generalized coupled Burgers equation hierarchy as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = – β

2 u2xx – 2βu1xq – βu1qx + 2βu1r – 2βu2r2 + β

2
u2rxx

r + β
u2qx

r ,

u2t = – β

2 u1xx – 2βu2xq – βu2qx + 2βu1 – 2βu2r + β

2
u1rxx

r + β
u1qx

r ,

s1t = – β

2 s2xx – 2βs1xq – βs1qx + 2βs1r – 2βs2r2 – 3βs2
2r + βs2

1r + 2βs1s2

– βs3
2 + βs2

1s2 + β

2
s2rxx

r + β
s2qx

r ,

s2t = – β

2 s1xx – 2βs2xq – βs2qx + 2βs1 – 2βs2r + 3βs2
1r – βs2

2 – 2βs1s2r + βs3
1

– βs1s2
2 + β

2
s1rxx

r + β
s1qx

r ,

(6.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = βu2xx – 2βu1xq – βu1qx – βu2x – β

2 u1rx – βu1xr – β
u2rxx

4r – β
u2qx

2r ,

u2t = βu1xx – 2βu2xq – βu2qx + βu1x + β

2 u2rx + βu2xr – β
u1rxx

4r – β
u1qx

2r ,

s1t = βs2xx – 2βs1xq – βs1qx – βs2x – β

2 s1rx – βs1xr – β
s2rxx

4r – β
s2qx

2r ,

s2t = βs1xx – 2βs2xq – βs2qx + βs1x + β

2 s2rx + βs2xr – β
s1rxx

4r – β
s1qx
2r ,

(6.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = – β

2 s1xx – 2βu1xq – βu1qx + 2βu1r – 2βs1r2 + β

2
s1rxx

r + β
s1qx

r ,

u2t = – β

2 s2xx – 2βu2xq – βu2qx + 2βu2r – 2βs2r2 + β

2
s2rxx

r + β
s2qx

r ,

s1t = – β

2 u1xx – 2βs1xq – βs1qx + 2βu1 – 2βs1r + β

2
u1rxx

r + β
u1qx

r ,

s2t = – β

2 u2xx – 2βs2xq – βs2qx + 2βu2 – 2βs2r + β

2
u2rxx

r + β
u2qx

r ,

(6.3)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

qt = –β( rxx
4r + qx

r + q2 + r2

2 )x,

rt = β( rxx
2r + qx

r – qxr – 2qrx),

u1t = – β

2 u2xx – 2βu1xq – βu1qx + 2βu1r – 2βu2r2 + β

2
u2rxx

r + β
u2qx

r ,

u2t = – β

2 u1xx – 2βu2xq – βu2qx + 2βu1 – 2βu2r + β

2
u1rxx

r + β
u1qx

r ,

s1t = – β

2 s2xx – 2βs1xq – βs1qx + 2βs1r – 2βs2r2 – 3βs2
2r + βs2

1r + 2βs1s2

– βs3
2 + βs2

1s2 + β

2
s2rxx

r + β
s2qx

r ,

s2t = – β

2 s1xx – 2βs2xq – βs2qx + 2βs1 – 2βs2r + 3βs2
1r – βs2

2 – 2βs1s2r + βs3
1

– βs1s2
2 + β

2
s1rxx

r + β
s1qx

r .

(6.4)

Finally, we obtain the Hamiltonian structure of one of coupling integrable couplings of
the generalized coupled Burgers equation hierarchy by using the quadratic-form identity
as follows:

ut = J
δHn+2

δu
= JLn

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
–βr – βu2 – βs2

β

–βr
β + βs1

–βr – βs2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.5)

In this paper we can only get the Hamiltonian structure of one of the coupling integrable
couplings of the generalized coupled Burgers equation hierarchy by using the quadratic-
form identity. How to get all the Hamiltonian structure of one coupling integrable cou-
plings of the generalized coupled Burgers equation hierarchy is worthy of further study-
ing.

7 Methods and experiment
Not applicable.
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