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Abstract
This paper regards function matrix projective synchronization of two different
non-dissipatively coupled complex dynamical networks for different dimensions and
different nodes. In this kind of complex dynamical networks the internal delays are
different from the coupled delays. By using Lyapunov stability theory, using
mathematical induction, two different hybrid feedback controllers are built to realize
the function matrix projective synchronization. Compared with the existing results,
the coupling matrices do not need to be symmetric or diffuse. By giving a numerical
simulation we explain the validity and appropriateness of our conclusion.
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1 Introduction
Lots of large systems in the real world, for example, biological neural networks, social
networks, food chains and food webs, can be depicted by complex networks. The com-
plex dynamical networks are composed of coupled nodes, in which all the nodes form the
edge-connected nonlinear dynamic system. In recent decades, the research of complex
networks (CNs) has drawn wide attention from scholars of various fields [1–6]. Especially,
synchronization as an important dynamic property of the coupled nonlinear systems has
been extensively studied in [7–11].

In recent years, a novel synchronization, called function projective synchronization
(FPS), was proposed and studied [12–15]. FPS is the coupled drive and the response sys-
tems could be synchronized to the scale function matrix. Therefore, FPS is a generalized
synchronization of chaotic systems. Obviously, FPS includes complete synchronization,
anti-synchronization and projective synchronization. If the scale function matrix is a unit
matrix or a constant, we can obtain projective synchronization, complete synchroniza-
tion or anti-synchronization. In the function matrix projective synchronization (FMPS)
approach, the uncertainty of the scale function matrix can improve the security of com-
munication [16, 17], therefore, FMS aroused wide interest of scholars.
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For example, based on adaptive control, the function projective synchronization for a
kind of chaotic system was considered in [18]. The function projective synchronization of
complex networks by a hybrid feedback controller was proposed in [19]. Additionally, fur-
ther consequences as regards the generalized matrix projective synchronization for gen-
eral complex networks were studied in [20]. Even though synchronization of the complex
networks for the same and different dynamic systems has been widely researched, the
premise is that the dynamic dimensions of the nodes are the same. Actually, most systems
are based on nonlinear dynamics, so the interactions between them may be completely
different. On the other hand, during the information transmission process, because of the
spatial and temporal characteristics of CNs, the time delays present in a single system and
the coupled delays between the nodes may differ at different times.

Inspired by the discussion of the above issues, by constructing a Lyapunov function,
applying mathematical induction, and using the matrix theory to study the complex net-
works for nonidentical nodes and different dimensions, we realize the function matrix
projective synchronization by the hybrid feedback controller. It is worth noting that the
coupling matrix is not required to obey symmetry or diffusion conditions. At last, a nu-
merical simulation is given to explain the validity and appropriateness of our conclusion.

Notation: In this paper, | · | respects the absolute value. In denotes the n-dimensional unit
matrix. �n is n-dimensional Euclidean space, �n×n respects the set of the n × n real ma-
trices. A > B (A ≥ B) denotes the matrix A – B is positive definite (nonnegative). diag(· · · )
means the block diagonal matrix. λmin(A) and λmax(A) are the minimum eigenvalue of
A and the maximum eigenvalue of A, respectively. The symmetric terms in a symmetric
matrix are respected by ∗. ‖ · ‖ respects the Euclidean norm. If not clearly stated, all the
matrices of this paper are assumed to have compatible dimensions.

2 Preliminaries
A typical complex dynamical networks consisting of N dynamical nodes with different
intrinsic and coupled delays is described by

ẋi(t) = fi
(
xi(t), xi

(
t – ρ(t)

))
+ ε

N∑

j=1

cijQijxj
(
t – τ (t)

)
, (1)

where xi(t) = (xi1(t), xi2(t), . . . , xini (t))T ∈ �ni stands for the state vector of the ith node, i =
1, 2, . . . , N . fi(·, ·) ∈ �ni is the vector-valued function. ε > 0 denotes the coupling strength,
ρ(t) and τ (t) are the intrinsic time-varying delay and the coupled time-varying delay, re-
spectively. Qij ∈ �ni×nj stands for the inner coupling matrix, j = 1, 2, . . . , N . C = (cij)N×N

represents the outer coupling matrix which satisfies cij �= 0, if there exists a connection
from the ith to the jth node (i �= j); otherwise cij = 0.

Considering (1) as the drive system, then the response system under the controller can
be written as follows:

ẏi(t) = gi
(
yi(t), yi

(
t – ρ(t)

))
+ ε

N∑

j=1

dijGijyj
(
t – τ (t)

)
+ ui(t), (2)

where yi(t) = (yi1(t), yi2(t), . . . , yimi (t))T ∈ �mi stands for the state vector of the ith node, i =
1, 2, . . . , N . gi(·) ∈ �mi is a vector-valued function. ε > 0 represents the coupling strength.
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ui(t) is the controller. Gij ∈ �mi×mj stands for the inner coupling matrix, j = 1, 2, . . . , N .
D = (dij)N×N denotes the outer coupling matrix which satisfies dij �= 0, if there exists a
connection from the jth node to the ith node (i �= j); otherwise dij = 0.

Definition 2.1 The function matrix projective synchronization between the drive system
(1) and the response system (2) is realized, if there is a matrix Mi(t) ∈ �mi×ni which is a
continuously differentiable scaling function such that

lim
t→∞

∥∥yi(t) – Mi(t)xi(t)
∥∥ = 0, i = 1, 2, . . . , N .

Remark 2.1 By using different special expressions for the scaling function matrix, the
function matrix projective synchronization will be transformed into the complete syn-
chronization, the anti-synchronization, the hybrid synchronization and the projective
synchronization.

Definition 2.2 If for a continuously differentiable scaling function matrix Mi(t) ∈ �mi×ni ,
such that ‖yi(t) – Mi(t)xi(t)‖ ≤ Me–αt , then the exponentially FMPS between the drive
system (1) and the response system (2) is called an implemented function matrix projective
synchronization with the exponential rate α, where M,α ∈ �+.

Assumption 2.1 For different time-varying delays, ρ(t) and τ (t) are differential expres-
sions and satisfy 0 ≤ ρ(t) ≤ ρ , 0 ≤ τi(t) ≤ τi, ρ̇(t) ≤ ρ̃ < 1 and τ̇ (t) ≤ μ < 1, where ρ and τi

are two constants.

Assumption 2.2 For the function σ (·, ·) ∈ �n is called to satisfy the QUAD condition, that
is, to say σ ∈ QUAD(L,�), if there are two diagonal matrices L ≥ 0 and � ≥ 0 hold on

(x – y)T(
σ (x, x̃) – σ (y, ỹ)

) ≤ (x – y)T L(x – y) + (x̃ – ỹ)T�(x̃ – ỹ),

for ∀x, y, x̃, ỹ ∈ �n.

Lemma 2.1 For ∀x, y ∈ �n and a matrix R > 0, we have 2xT y ≤ xT Rx + yT R–1y.

3 FMPS of non-dissipatively coupled CNs via linear and nonlinear feedback
control

In the following, we will give a linear and nonlinear feedback control methods to realize
the FMPS.

The error state vector is

ei(t) = yi(t) – Mi(t)xi(t), (3)

where Mi(t) ∈ �mi×ni is the time-varying scaling matrix.
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Then, from (1)–(3), the error system (EDS) would be deduced

ėi(t) = ẏi(t) – Ṁi(t)xi(t) – Mi(t)ẋi(t)

= gi
(
yi(t), yi

(
t – ρ(t)

))
+ ε

N∑

j=1

dijGijyj
(
t – τ (t)

)

+ ui(t) – Ṁi(t)xi(t) – Mi(t)ẋi(t),

i = 1, 2, . . . , N . (4)

Next, the hybrid controller is considered as

ui(t) = uo
i (t) + uc

i (t), i = 1, 2, . . . , N , (5)

where

uo
i (t) = Mi(t)ẋi(t) + Ṁi(t)xi(t) – gi

(
Mi(t)xi(t), Mi

(
t – ρ(t)

)
xi

(
t – ρ(t)

))

– ε

N∑

j=1

dijGijMj
(
t – τ (t)

)
xj

(
t – τ (t)

)
,

uc
i (t) = –βiei(t),

and βi > 0 is the feedback gain. uo
i (t) is the nonlinear controller, while uc

i (t) is the linear
feedback controller.

Thus, the SDE can be rewritten by

ėi(t) = g̃i
(
ei(t), ei

(
t – ρ(t)

))
+ ε

N∑

j=1

G̃ij(ej
(
t – τ (t)

)
– βiei(t), i = 1, 2, . . . , N , (6)

where g̃i(ei(t), ei(t –ρ(t))) = gi(yi(t), yi(t –ρ(t))) – gi(Mi(t)xi(t), Mi(t –ρ(t))xi(t –ρ(t))), G̃ij =
dijGij.

Theorem 3.1 Under Assumptions 2.1–2.2, for the considered synchronization scaling
function matrix Mi(t) ∈ �mi×ni , if

ε

2
λmax

( N∑

j=1

G̃ijG̃T
ij

)

+ (1 – ρ̃)–1eαρδmax + �max

+
Nε

2(1 – μ)
eατ +

α

2
< βi, i = 1, 2, . . . , N , (7)

then the drive system (1) and the response system (2) can realize FMPS by linear and non-
linear feedback control.

Proof Build a Lyapunov functional as follows:

V (et) = V1(et) + V2(et), (8)
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where

V1(et) =
1
2

N∑

i=1

eT
i (t)ei(t),

V2(et) =
N∑

i=1

∫ t

t–ρ(t)
eT

i (s)eα(s–t)Piei(s) ds +
N∑

i=1

∫ t

t–τ (t)
eT

i (s)eα(s–t)Riei(s) ds,

where Pi > 0 and Ri > 0 are the diagonal matrices which can be determined below.
The differential of V (et) is obtained along the track of system (5), as follows:

V̇1(et) =
N∑

i=1

eT
i (t)ėi(t)

=
N∑

i=1

eT
i (t)g̃i

(
ei(t), ei

(
t – ρ(t)

))
+ ε

N∑

i=1

N∑

j=1

eT
i (t)G̃ijej

(
t – τ (t)

)

–
N∑

i=1

βieT
i (t)ei(t), (9)

V̇2(et) = –αV2(et) +
N∑

i=1

[
eT

i (t)Piei(t) –
(
1 – ρ̇(t)

)
e–αρ(t)eT

i
(
t – ρ(t)

)
Piei

(
t – ρ(t)

)]

+
N∑

i=1

[
eT

i (t)Riei(t) –
(
1 – τ̇ (t)

)
e–ατ (t)eT

i
(
t – τ (t)

)
Riei

(
t – τ (t)

)]

≤
N∑

i=1

eT
i (t)(Pi + Ri)ei(t) – (1 – ρ̃)e–αρ

N∑

i=1

eT
i
(
t – ρ(t)

)
Piei

(
t – ρ(t)

)

– (1 – μ)e–ατ

N∑

i=1

eT
i
(
t – τ (t)

)
Riei

(
t – τ (t)

)
. (10)

It is worth noting g̃i(·, ·) satisfies Assumption 2.2. Accordingly, there are matrices Li > 0
and �i > 0, and we have

eT
i (t)g̃i

(
ei(t), ei

(
t – ρ(t)

))

≤ eT
i (t)Liei(t) + eT

i
(
t – ρ(t)

)
�iei

(
t – ρ(t)

)
, (11)

where Li = diag(li1, li2, . . . , limi ), �i = diag(δi1, δi2, . . . , δimi ), i = 1, 2, . . . , N .
By Lemma 2.1, it is calculated that

ε

N∑

i=1

N∑

j=1

eT
i (t)G̃ijej

(
t – τ (t)

)

≤ ε

2

N∑

i=1

N∑

j=1

eT
i (t)G̃ijG̃T

ij ei(t) +
ε

2

N∑

i=1

N∑

j=1

ej
(
t – τ (t)

)T ej
(
t – τ (t)

)

=
ε

2

N∑

i=1

N∑

j=1

eT
i (t)G̃ijG̃T

ij ei(t) +
1
2

Nε

N∑

i=1

eT
i
(
t – τ (t)

)
ei

(
t – τ (t)

)
. (12)
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Then, according to (8)–(11), it follows that

V̇ (et) + αV (et)

≤ α

2

N∑

i=1

eT
i (t)ei(t) +

N∑

i=1

eT
i (t)Liei(t) +

N∑

i=1

eT
i
(
t – ρ(t)

)
�iei

(
t – ρ(t)

)

+
ε

2

N∑

i=1

N∑

j=1

eT
i (t)G̃ijG̃T

ij ei(t) +
1
2

Nε

N∑

i=1

eT
i
(
t – τ (t)

)
ei

(
t – τ (t)

)

+
N∑

i=1

eT
i (t)(Pi + Ri)ei(t) – (1 – ρ̃)e–αρ

N∑

i=1

eT
i
(
t – ρ(t)

)
Piei

(
t – ρ(t)

)

– (1 – μ)e–ατ

N∑

i=1

eT
i
(
t – τ (t)

)
Riei

(
t – τ (t)

)
– βi

N∑

i=1

eT
i (t)ei(t). (13)

Let Pi = (1 – ρ̃)–1eαρ�i, Ri = Nε
2(1–μ) eατ Imi , then

V̇ (et) + αV (et) ≤
N∑

i=1

eT
i (t)

[

Li +
ε

2

N∑

j=1

G̃ijG̃T
ij + (1 – ρ̃)–1eαρ�i +

Nε

2(1 – μ)
eατ Imi

+
(

α

2
– βi

)
Imi

]

ei(t)

≤
[

ε

2
λmax

( N∑

j=1

G̃ijG̃T
ij

)

+ (1 – ρ̃)–1eαρδmax + �max +
Nε

2(1 – μ)
eατ

+
(

α

2
– βi

)] N∑

i=1

eT
i (t)ei(t), (14)

where δmax = max{δij}, �max = max{lij}, i = 1, 2, . . . , N , j = 1, 2, . . . , mi. �

4 FMPS of non-dissipatively coupled CNs via nonlinear and adaptive feedback
control

Next, we put forward a nonlinear and adaptive feedback control methods to achieve
FMPS. The hybrid controller is considered as

ui(t) = uo
i (t) + uc

i (t), i = 1, 2, . . . , N , (15)

where

uo
i (t) = Mi(t)ẋi(t) + Ṁi(t)xi(t) – gi

(
Mi(t)xi(t), Mi

(
t – ρ(t)

)
xi

(
t – ρ(t)

))

– ε

N∑

j=1

dijGijMj
(
t – τ (t)

)
xj

(
t – τ (t)

)
,

uc
i (t) = –βi(t)ei(t),

β̇i(t) = kieT
i (t)ei(t),
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and ki is positive constant, uo
i (t) and uc

i (t) are the nonlinear controller and the adaptive
feedback controller, respectively.

By a similar analysis to above, one has

ėi(t) = ẏi(t) – Ṁi(t)xi(t) – Mi(t)ẋi(t)

= g̃i
(
ei(t), ei

(
t – ρ(t)

))
+ ε

N∑

j=1

G̃ij
(
ej
(
t – τj(t)

)
– ei

(
t – τi(t)

))
– βi(t)ei(t),

i = 1, 2, . . . , N , (16)

where g̃i(ei(t), ei(t –ρ(t))) = gi(yi(t), yi(t –ρ(t))) – gi(Mi(t)xi(t), Mi(t –ρ(t))xi(t –ρ(t))), G̃ij =
dijGij.

Theorem 4.1 Under the Assumptions 2.1–2.2, for the considered synchronization scaling
function matrix Mi(t) ∈ �mi×ni , if there is a sufficiently large constant β∗ > 0, satisfying

ε

2
λmax

( N∑

j=1

G̃ijG̃T
ij

)

+ (1 – ρ̃)–1δmax + �max +
Nε

2(1 – μ)
< β∗ (17)

then the drive system (1) and the response system (2) can realize FMPS under nonlinear
and adaptive feedback control.

Proof Build a Lyapunov functional as follows:

V (et) = V1(et) + V2(et), (18)

where

V1(et) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

N∑

i=1

(βi(t) – β∗)2

ki
,

V2(et) =
N∑

i=1

∫ t

t–ρ(t)
eT

i (s)Piei(s) ds +
N∑

i=1

∫ t

t–τ (t)
eT

i (s)Riei(s) ds,

where β∗ > 0 is a constant. Pi > 0 and Ri > 0 are the diagonal matrices which can be deter-
mined as below.

The differential of V (et) is obtained along the track of system (5), as follows:

V̇1(et) =
N∑

i=1

eT
i (t)ėi(t) +

N∑

i=1

(
βi(t) – β∗)eT

i (t)ei(t)

=
N∑

i=1

eT
i (t)g̃i

(
ei(t), ei

(
t – ρ(t)

))
+ ε

N∑

i=1

N∑

j=1

eT
i (t)G̃ijej

(
t – τ (t)

)

–
N∑

i=1

β∗eT
i (t)ei(t). (19)
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Then, similar to the proof of Theorem 3.1, and letting Pi = (1 – ρ̃)–1�i, Ri = Nε
2(1–μ) Imi , we

get the following result:

V̇ (et) ≤
N∑

i=1

eT
i (t)

[

Li +
ε

2

N∑

j=1

G̃ijG̃T
ij + (1 – ρ̃)–1�i +

Nε

2(1 – μ)
Imi – β∗Imi

]

ei(t)

≤
[

ε

2
λmax

( N∑

j=1

G̃ijG̃T
ij

)

+ (1 – ρ̃)–1δmax + �max

+
Nε

2(1 – μ)
– β∗

] N∑

i=1

eT
i (t)ei(t), (20)

where δmax = max{δij}, �max = max{lij}, i = 1, 2, . . . , N and j = 1, 2, . . . , mi.
In view of condition (16), one has V̇ (et) ≤ 0. Let e(t) = (eT

1 (t), eT
2 (t), . . . , eT

N (t))T , β̃ = β∗ –
( ε

2λmax(
∑N

j=1 G̃ijG̃T
ij )+(1– ρ̃)–1δmax +�max + Nε

2(1–μ) ), since V (et) > 0, we have
∫ t

0 β̃‖e(s)‖2 ds ≤
–

∫ t
0 V̇ (es) ds ≤ V (e0) – V (et) ≤ V (e0). From (18), it is clear that V (e0) is bounded. Then, by

Barbalat’s lemma, we have limt→∞ ‖e(t)‖2 = 0, which means the FMPS is realized. �

5 Numerical example
A numerical simulation is provided to explain the validity and correctness of the theoret-
ical results we have given.

Consider the drive network as follows:

ẋi(t) = fi
(
xi(t), xi

(
t – ρ(t)

))
+ ε

2∑

j=1

cijQijxj
(
t – τ (t)

)
, (21)

where xi(t) = (xin1 , xin2 )T , i = 1, 2, n1 = 3, n2 = 4, ρ(t) = et

(1+et ) , τ (t) = 1 – 0.2 cos(2t),
fi(xi(t), xi(t –ρ(t))) = fi(xi(t)) + 1

2 sin(xi(t –ρ(t))). Here, we consider the nonlinear functions
fi(xi(t)) which are composed of the hyperchaotic Rossler system and the Lorenz system
with nonidentical nodes:

f1
(
x1(t)

)
=

⎡

⎢
⎣

36(x12(t) – x11(t))
20x12(t) – x11(t)x13(t)
–3x13(t) + x11(t)x12(t)

⎤

⎥
⎦ ,

f2
(
x2(t)

)
=

⎡

⎢
⎢⎢
⎣

10(x22(t) – x21(t)) + x24(t)
28x21(t) – x22(t) – x21(t)x23(t)

x21(t)x22(t) – 8
3 x23(t)

1.3x24(t) – x21(t)x23(t)

⎤

⎥
⎥⎥
⎦

.

The coupling matrices of system (20) are defined as

C =

(
–0.3 –0.2
0.1 0.4

)

, Q11 =

⎛

⎜
⎝

0.4 –0.2 0.3
0.2 –0.3 0.4
0.3 0.2 0.1

⎞

⎟
⎠ ,
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Q12 =

⎛

⎜
⎝

0.2 0 0.3 –0.5
0.1 –0.3 0.4 0
0.3 0.2 0.1 –0.2

⎞

⎟
⎠ , Q21 =

⎛

⎜⎜⎜
⎝

0.2 –0.1 0.3
0 0.3 0.2

0.4 0.2 0.1
0.1 –0.2 0.5

⎞

⎟⎟⎟
⎠

,

Q22 =

⎛

⎜⎜
⎜
⎝

0.1 –0.2 0.3 0.1
0.4 –0.3 0 0.2

–0.3 0.2 –0.1 0.1
0 0.2 0.1 –0.2

⎞

⎟⎟
⎟
⎠

.

The response system with controller ui(t) is described by

ẏi(t) = gi
(
yi(t), yi

(
t – ρ(t)

))
+ ε

2∑

j=1

dijGijyj
(
t – τ (t)

)
+ ui(t), (22)

ui(t) = uo
i (t) + uc

i (t), (23)

where

uo
i (t) = Mi(t)ẋi(t) + Ṁi(t)xi(t) – gi

(
Mi(t)xi(t), Mi

(
t – ρ(t)

)
xi

(
t – ρ(t)

))

– ε

N∑

j=1

dijGijMj
(
t – τ (t)

)
xj

(
t – τ (t)

)
,

uc
i (t) = –βi(t)ei(t),

β̇i(t) = kieT
i (t)ei(t), i = 1, 2,

gi(yi(t), yi(t – ρ(t))) = Biyi(t) + 1
2 (cos2(yi(t)) – yi(t – ρ(t))), and the parameters of system

(21) are given by

B1 =

⎛

⎜⎜⎜
⎝

1 –2 3 1
4 3 –1 2

–3 2 –1 1
0 2 1 –5

⎞

⎟⎟⎟
⎠

, B2 =

⎛

⎜
⎝

0 1 –2
–3 –1 2
0 1 –1

⎞

⎟
⎠ , D =

(
–0.5 0
0.3 0.4

)

,

G11 =

⎛

⎜⎜
⎜
⎝

0.4 0 0 –0.1
0.1 0.3 0 –0.2
0 0 0.1 0

–0.1 0.1 –0.2 0.5

⎞

⎟⎟
⎟
⎠

, G12 =

⎛

⎜⎜
⎜
⎝

–0.2 0.1 0.1
0.1 0 –0.1

–0.1 0.1 0.1
0 –0.2 0.1

⎞

⎟⎟
⎟
⎠

,

G21 =

⎛

⎜
⎝

0.1 0.1 0 –0.1
0 0.1 –0.1 0.2
0 –0.1 0.1 0

⎞

⎟
⎠ , G22 =

⎛

⎜
⎝

–0.1 0.1 0
0 –0.3 0.1

0.2 0 –0.1

⎞

⎟
⎠ .

Thus, we give the time-varying scaling matrices,

M1(t) =

⎛

⎜
⎜⎜
⎝

0 0 1
0 0.5 sin 2t –1

2 cos t 0 1
0 0 1 – sin t

⎞

⎟
⎟⎟
⎠

,
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Figure 1 The state tracks of drive system (21)

Figure 2 The state tracks of response system (22)

M2(t) =

⎛

⎜
⎝

–2 –1 1 0
0 –0.5 cos 2t –1 0

–1 0 0 sin t

⎞

⎟
⎠ .

The other parameters are taken as ε = 0.5, k1 = k2 = 5, β1(0) = β2(0) = 0.5. The initial
values of the state variables are random. Figures 1 and 2 demonstrate the state tracks of
the drive system and the response system, respectively. From Fig. 3, we know the state
tracks of the drive system and the response system can be realized as a function of matrix
projective synchronization with the hybrid controller (23). In addition, Fig. 4 demonstrates
the track of the adaptive feedback that obtains for βi(t).

6 Conclusion
This paper studies the problem of the function matrix projective synchronization for dif-
ferent coupled complex networks for the nonidentical nodes and the different dimensions.
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Figure 3 The tracks of synchronization errors ei(t)

Figure 4 The tracks of adaptive feedback gains βi(t)

In order to obtain the FMPS in which the internal time delays are different from the cou-
pled delays, the hybrid feedback controller is given, by utilizing Lyapunov stability theory
and mathematical induction. The coupling matrices are not required to satisfy the sym-
metry and the diffusion conditions. Finally, through presenting a numerical simulation we
display the validity and appropriateness of our given scheme.
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