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Abstract
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1 Introduction
In describing some phenomena and processes of many fields such as physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, capacitor the-
ory, electrical circuits, biology, control theory, fitting of experimental data, and so on, the
fractional order calculus is an excellent and more accurate tool than the integral order
calculus. For example, in physics, we use Newtons’ law ηε′(t) = σ (t) to describe the me-
chanics of viscous fluids, where σ (t) and ε(t) denote stress and strain at time t, respec-
tively, and η is the viscosity of the material. However, we need to employ Nuttings’ law [1]
ηDk

0+ε′(t) = σ (t) (k ∈ (n–1, n), n ∈N) to deal with the mechanics of viscous fluids involving
some possible interpolation properties. As a consequence, the subject of fractional differ-
ential equations is gaining much importance and attention. There have been many papers
focused on boundary value problems of fractional ordinary differential equations (see [1–
31]). Especially, the nonlocal boundary value problems have been widely studied by many
scholars because of their extensive applications in, e.g., blood flow problems, chemical en-
gineering, thermo-elasticity, underground water flow, population dynamics, and so forth.
The nonlocal boundary value problems of fractional-order differential equations consti-
tute a class of very interesting and important problems. Such boundary value problems
have been investigated in [8–14, 24, 25, 30].

In addition, the theory of impulse differential equations has seen significant develop-
ment in recent years and played a very important role in modern applied mathematical
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models of real processes arising in phenomena studied in physics, population dynamics,
chemical technology and biotechnology. Recently, some scholars have begun to study the
boundary value problems for impulsive fractional differential equations (see [1, 15–26, 30,
32]). As is well known, the study on fractional differential coupled systems is more compli-
cated and challenged than the study on a single fractional differential equation. Recently,
some scholars began to investigate fractional differential coupled systems and obtained
some good results (see [8, 12, 13, 24, 26, 31]). However, there are few papers on the impul-
sive fractional order coupled systems with nonlocal boundary conditions and impulses.
Therefore, in this paper, we consider the following four-point boundary value problem
for nonlinear fractional differential coupling system with fractional order impulses of the
form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
0+ x(t) = f (t, x(t), CDp

0+ y(t)), t ∈ J , t �= tk ,
CDβ

0+ y(t) = g(t, CDq
0+ x(t), y(t)), t ∈ J , t �= tk ,

CDγ1
0+ x(t+

k ) – CDγ1
0+ x(t–

k ) = J1k(x(tk)), k = 1, . . . , n,
CDγ2

0+ y(t+
k ) – CDγ2

0+ y(t–
k ) = J2k(y(tk)), k = 1, . . . , n,

x(0) = y(0) = 0, LRDδ1
0+ x(z) = x(1), LRDδ2

0+ y(w) = y(1),

(1.1)

where J = [0, 1], 1 < α, β < 2, 0 < p, q,γ1,γ2, δ1, δ2, z, w < 1, CDα
0+ , CDβ

0+ , CDp
0+ , CDq

0+ ,
CDγ1

0+ , and CDγ2
0+ are the Caputo fractional derivatives; LRDδ1

0+ and LRDδ2
0+ are the Riemann–

Liouville fractional derivatives; f , g ∈ C(J × R2, R), J1k , J2k ∈ C(R, R), and {tk} satisfies 0 =
t0 < t1 < · · · < tn < tn+1 = 1, CDγ1

0+ x(t+
k ), CDγ1

0+ x(t–
k ), CDγ2

0+ y(t+
k ), CDγ2

0+ y(t–
k ) all exist, CDγ1

0+ x(t–
k ) =

CDγ1
0+ x(tk), CDγ2

0+ y(t–
k ) = CDγ1

0+ y(tk), k = 1, 2, . . . , n.
The rest of this paper is organized as follows. In Sect. 2, we recall some definitions and

lemmas of the Caputo and Riemann–Liouville fractional calculus. In Sect. 3, we shall prove
the existence of solutions for system (1.1). In Sect. 4, some examples are given to demon-
strate the application of our main results. Finally, conclusions are given in Sect. 5 to simply
recall our studies and results obtained.

2 Preliminaries
Let C(J) be the Banach space of continuous functions from J to R with the norm ‖ψ‖C =
supt∈J |ψ(t)|. Define the function space PC(J) by

PC(J) =
{
ψ(t) : ψ(t), CDp

0+ψ(t), CDq
0+ψ(t), LRDδ1

0+ψ(t), LRDδ2
0+ψ(t) ∈ C(J), CDγ1

0+ψ
(
t+
k
)
,

CDγ1
0+ψ

(
t–
k
)
, CDγ2

0+ψ
(
t+
k
)

and CDγ2
0+ψ

(
t–
k
)

all exist, and satisfy
CDγ1

0+ψ
(
t–
k
)

= CDγ1
0+ψ(tk),C Dγ2

0+ψ
(
t–
k
)

= CDγ2
0+ψ(tk),

0 < p, q, δ1, δ2,γ1,γ2 < 1, 1 ≤ k ≤ n
}

.

Obviously, PC(J) is a real Banach space equipped with the norm

‖ψ‖PC = max
{‖ψ‖C ,

∥
∥cDp

0+ψ
∥
∥

C ,
∥
∥cDq

0+ψ
∥
∥

C

}
, ∀ψ ∈ PC(J).

Let X = PC(J)×PC(J). It is easily to verify that X is a Banach space with the norm ‖(u, v)‖ =
max{‖u‖PC,‖v‖PC}, (u, v) ∈ X.
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For the readers’ convenience, we introduce some necessary definitions and lemmas.
These definitions and properties can be found in the literature.

Definition 2.1 ([32, 33]) The Riemann–Liouville fractional integral of order α > 0 of a
continuous function f : (a,∞) → R is defined by

Iα
a+ f (t) =

1
Γ (α)

∫ t

a
(t – s)α–1f (s) ds,

provided that the right-hand side is pointwise defined on (a,∞).

Definition 2.2 ([33]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function f : (a,∞) → R is defined by

LRDα
a+ f (t) =

1
Γ (n – α)

dn

dtn

∫ t

0
(t – s)n–α–1f (s) ds,

where n – 1 < α ≤ n, provided that the right-hand side is pointwise defined on (a,∞).

Definition 2.3 ([32, 33]) If f ∈ Cn((a,∞), R) and α > 0, then the Caputo fractional deriva-
tive of order α is defined as

CDα
a+ f (t) =

1
Γ (n – α)

∫ t

a
(t – s)n–α–1f (n)(s) ds,

where n – 1 < α ≤ n, provided that the right-hand side is pointwise defined on (a,∞).

Lemma 2.1 ([33]) If u ∈ Cn[0, 1], and δ > 0, then

Iδ
0+

CDδ
0+ u(t) = u(t) –

n–1∑

k=0

u(k)(0)
k!

tk ,

where n = –[–δ] and [–δ] denotes the integer part of the real number –δ.

Lemma 2.2 ([32, 33]) If α,β > 0, t ∈ [a, b] and u(t) ∈ L[a, b], then

CDα
a+ Iα

a+ u(t) = u(t), Iα
a+ Iβ

a+ u(t) = Iα+β

a+ u(t).

Lemma 2.3 (see [34], pp. 36–39) Let α > 0 and suppose n denotes the smallest integer
greater than or equal to α. Then the following assertions hold:

(i) If λ > –1, λ �= α – i, i = 1, 2, . . . , n + 1, then for t ∈ [a, b],

LRDα
a+ (t – a)λ =

Γ (λ + 1)
Γ (λ – α + 1)

(t – a)λ–α .

(ii) LRDα
a+ (t – a)α–i = 0, i = 1, 2, . . . , n.

(iii) LRDβ

a+ Iα
a+ u(t) = Iα

a+ u(t), for all t ∈ [a, b], α ≥ β ≥ 0.

Lemma 2.4 (Nonlinear Alternative Of Leray–Schauder [35]) Let X be a Banach space,
C be a nonempty convex subset of X, Ω be an open subset of C with θ ∈ Ω . Suppose that
T : Ω→C is a completely continuous mapping. Then either
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(i) the mapping T has a fixed point in Ω , or
(ii) there exists a u ∈ ∂Ω and λ ∈ (0, 1) with u = λTu.

Lemma 2.5 Let h1 ∈ C(J). If �1 � z1–δ1
Γ (2–δ1) �= 1, then a function x ∈ PC(J) is a solution of the

boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CDα
0+ x(t) = h1(t), 1 < α < 2, t ∈ J , t �= tk ,

CDγ1
0+ x(t+

k ) – CDγ1
0+ x(t–

k ) = J1k(x(tk)), 0 < γ1 < 1, k = 1, 2, . . . , n,

x(0) = 0, LRDδ1
0+ x(z) = x(1), 0 < δ1 < 1, 0 < z < 1,

(2.1)

if and only if x ∈ PC(J) is a solution of the integral equation

x(t) = Iα
0+ h1(t) +

(
Iα–δ1

0+ h1(z) – Iα
0+ h1(1) + C1

1 – �1
+

k∑

i=1

Γ (2 – γ1)
t1–γ1
i

J1i
(
x(ti)

)
)

t

– Γ (2 – γ1)tγ1
k J1k

(
x(tk)

)
, t ∈ (tk , tk+1], k = 0, 1, . . . , n, (2.2)

where

C1 = �1Γ (2 – γ1)
j∑

i=1

J1i(x(ti))
t1–γ1
i

–
z–δ1 tγ1

j Γ (2 – γ1)
Γ (1 – δ1)

J1j
(
x(tj)

)
+ tγ1

n Γ (2 – γ1)J1n
(
x(tn)

)

– Γ (2 – γ1)
n∑

i=1

J1i(x(ti))
t1–γ1
i

, tj < z ≤ tj+1, j ∈ {0, 1, 2, . . . , n}.

Proof When t ∈ [0, t1], from Lemma 2.1, we have

x(t) = Iα
0+ h1(t) + u10 + u11t =

1
Γ (α)

∫ t

0
(t – s)α–1h1(s) ds + u10 + u11t. (2.3)

By x(0) = 0, we get u10 = 0. And it follows from (2.3) that

CDγ1
0+ x(t) =

u11t1–γ1

Γ (2 – γ1)
+

1
Γ (α – γ1)

∫ t

0
(t – s)α–γ1–1h1(s) ds, (2.4)

and

CDγ1
0+ x

(
t–
1
)

= CDγ1
0+ x(t1) =

u11t1–γ1
1

Γ (2 – γ1)
+

1
Γ (α – γ1)

∫ t1

0
(t1 – s)α–γ1–1h1(s) ds. (2.5)

When t ∈ (t1, t2], we similarly have

x(t) = Iα
0+ h1(t) + u20 + u21t =

1
Γ (α)

∫ t

0
(t – s)α–1h1(s) ds + u20 + u21t, (2.6)

CDγ1
0+ x(t) =

u21t1–γ1

Γ (2 – γ1)
+

1
Γ (α – γ1)

∫ t

0
(t – s)α–γ1–1h1(s) ds, (2.7)

and

CDγ1
0+ x

(
t+
1
)

=
u21t1–γ1

1
Γ (2 – γ1)

+
1

Γ (α – γ1)

∫ t1

0
(t1 – s)α–γ1–1h1(s) ds. (2.8)
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By (2.5), (2.8) and CDγ1
0+ x(t+

k ) – CDγ1
0+ x(t–

k ) = J1k(x(tk)), we obtain

u21 – u11 =
Γ (2 – γ1)

t1–γ1
1

J11
(
x(t1)

)
. (2.9)

In view of the continuity of x at t1, we have

u20 = –(u21 – u11)t1 = –Γ (2 – γ1)tγ1
1 J11

(
x(t1)

)
. (2.10)

When t ∈ (tk , tk+1], k = 2, 3, . . . , n, repeating the above calculation, we get

x(t) =
1

Γ (α)

∫ t

0
(t – s)α–1h1(s) ds + uk+1,0 + uk+1,1t, (2.11)

and

uk+1,1 – uk1 =
Γ (2 – γ1)

t1–γ1
k

J1k
(
x(tk)

)
, uk+1,0 = –Γ (2 – γ1)tγ1

k J1k
(
x(tk)

)
. (2.12)

From (2.11) and (2.12), we have

x(1) =
1

Γ (α)

∫ 1

0
(1 – s)α–1h1(s) ds – Γ (2 – γ1)tγ1

n J1n
(
x(tn)

)
+ un+1,1. (2.13)

Equations (2.9) and (2.12) give

uk+1,1 = u11 +
k∑

i=1

Γ (2 – γ1)
t1–γ1
i

J1i
(
x(ti)

)
, k = 1, 2, . . . , n. (2.14)

Denoting t0 = 0, tn+1 = 1, and noticing 0 < z < 1, we know that there exists j ∈ {0, 1, . . . , n}
such that z ∈ (tj, tj+1] and

x(z) =
1

Γ (α)

∫ z

0
(z – s)α–1h1(s) ds + uj+1,0 + uj+1,1z = Iα

0+ h1(z) + uj+1,0 + uj+1,1z. (2.15)

Applying Lemmas 2.2–2.3 and (2.15), we obtain

LRDδ1
0+ x(z) =

1
Γ (α – δ1)

∫ z

0
(z – s)α–δ1–1h1(s) ds +

uj+1,1Γ (2)z1–δ1

Γ (2 – δ1)
+

uj+1,0z–δ1

Γ (1 – δ1)
. (2.16)

Using LRDδ1
0+ x(z) = x(1), (2.12), (2.13), (2.14) and (2.16), we derive

u11 =
1

(1 – �1)Γ (α – δ1)

∫ z

0
(z – s)α–δ1–1h1(s) ds +

�1Γ (2 – γ1)
1 – �1

j∑

i=1

J1i(x(ti))
t1–γ1
i

–
z–δ1 tγ1

j Γ (2 – γ1)
(1 – �1)Γ (1 – δ1)

J1j
(
x(tj)

)
–

1
(1 – �1)Γ (α)

∫ 1

0
(1 – s)α–1h1(s) ds

+
tγ1
n Γ (2 – γ1)

1 – �1
J1n

(
x(tn)

)
–

Γ (2 – γ1)
1 – �1

n∑

i=1

J1i(x(ti))
t1–γ1
i
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=
1

1 – �1

[

Iα–δ1
0+ h1(z) – Iα

0+ h1(1) + �1Γ (2 – γ1)
j∑

i=1

J1i(x(ti))
t1–γ1
i

–
z–δ1 tγ1

j Γ (2 – γ1)
Γ (1 – δ1)

× J1j
(
x(tj)

)
+ tγ1

n Γ (2 – γ1)J1n
(
x(tn)

)
– Γ (2 – γ1)

n∑

i=1

J1i(x(ti))
t1–γ1
i

]

=
A1

1 – �1
. (2.17)

Thus, for (tk , tk+1], k = 0, 1, 2, . . . , n, we have

x(t) =
1

Γ (α)

∫ t

0
(t – s)α–1h1(s) ds + uk+1,0 + uk+1,1t

= Iα
0+ h1(t) – Γ (2 – γ1)tγ1

k J1k
(
x(tk)

)
+

(

u11 +
k∑

i=1

Γ (2 – γ1)
t1–γ1
i

J1i
(
x(ti)

)
)

t. (2.18)

Substituting (2.17) into (2.18), one can easily obtain (2.2). The proof is completed. �

Similarly, we conclude the following lemma.

Lemma 2.6 Let h2 ∈ PC(J). If �2 � w1–δ2
Γ (2–δ2) �= 1, then a function y ∈ PC(J) is a solution of

the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CDβ

0+ y(t) = h2(t), 1 < β < 2, t ∈ J , t �= tk ,
CDγ2

0+ y(t+
k ) – CDγ2

0+ y(t–
k ) = J2k(y(tk)), 0 < γ2 < 1, k = 1, 2, . . . , n,

y(0) = 0, LRDδ2
0+ y(w) = y(1), 0 < δ2 < 1, 0 < w < 1,

(2.19)

if and only if y ∈ PC(J) is a solution of the integral equation

x(t) = Iβ

0+ h2(t) +

(
Iβ–δ2

0+ h2(w) – Iβ

0+ h2(1) + C2

1 – �2
+

k∑

i=1

Γ (2 – γ2)
t1–γ2
i

J2i
(
y(ti)

)
)

t

– Γ (2 – γ2)tγ2
k J2k

(
y(tk)

)
, t ∈ (tk , tk+1], k = 0, 1, . . . , n, (2.20)

where

C2 = �2Γ (2 – γ2)
l∑

i=1

J2i(y(ti))
t1–γ2
i

–
w–δ2 tγ2

l Γ (2 – γ2)
Γ (1 – δ2)

J2l
(
y(tl)

)
+ tγ2

n Γ (2 – γ2)J2n
(
y(tn)

)

– Γ (2 – γ2)
n∑

i=1

J2i(y(ti))
t1–γ2
i

, tl < w ≤ tl+1, l ∈ {0, 1, 2, . . . , n}.

3 Main results
In this section, we shall investigate the existence of solution for system (1.1) by employing
the nonlinear alternative of Leray–Schauder.

Theorem 3.1 If the following conditions (H1)–(H6) hold, then the boundary value problem
(1.1) has at least a pair of solutions. The conditions are:

(H1) The functions f , g ∈ C(J × R2, R), and J1k , J2k ∈ C(R, R), k = 1, 2, . . . , n.
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(H2) For all ui, vi ∈ R (i = 1, 2), t ∈ R, there exist some constants Li, L̂i > 0 (i = 1, 2) such
that

∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ L1|u1 – u2| + L2|v1 – v2|,

∣
∣g(t, u1, v1) – g(t, u2, v2)

∣
∣ ≤ L̂1|u1 – u2| + L̂2|v1 – v2|.

(H3) N � supt∈[0,1] |f (t, 0, 0)| and N̂ � supt∈[0,1] |g(t, 0, 0)| all exist.
(H4) 0 < �1 = z1–δ1

Γ (2–δ1) < 1, 0 < �2 = w1–δ2
Γ (2–δ2) < 1.

(H5) For any u, v ∈ R, there exist some constants Mk , M̂k > 0, k = 1, 2, . . . , n, such that

∣
∣J1k(u)

∣
∣ ≤ Mk|u|, ∣

∣J2k(v)
∣
∣ ≤ M̂k|v|.

(H6) κ1 �M1 + N1 < 1 and κ2 �M2 + N2 < 1, where

M1 = (L1 + L2)
(

1
Γ (α + 1)

+
1

(1 – �1)Γ (α – δ1 + 1)
+

1
(1 – �1)Γ (α + 1)

)

,

N1 =
Γ (2 – γ1)

1 – �1

(
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 2 – �1

) n∑

i=1

Mi,

M2 = (L̂1 + L̂2)
(

1
Γ (β + 1)

+
1

(1 – �2)Γ (β – δ2 + 1)
+

1
(1 – �2)Γ (β + 1)

)

,

N2 =
Γ (2 – γ2)

1 – �2

(
2

t1–γ2
1

+
1

wδ2Γ (1 – δ2)
+ 2 – �2

) n∑

i=1

M̂i.

Proof Let Ω = {(x, y) ∈ X : ‖(x, y)‖ < r}, where X = PC(J)×PC(J) and r ≥ max{NM1
1–κ1

, N̂M2
1–κ2

}.
Then Ω = {(x, y) ∈ X : ‖(x, y)‖ ≤ r}, ∂Ω = {(x, y) ∈ X : ‖(x, y)‖ = r}. According to Lemmas
2.5–2.6, we define the operator T : Ω→X as follows:

T(x, y)(t) =
(
T1(x, y)(t), T2(x, y)(t)

)T , ∀(x, y) ∈ X, t ∈ J , (3.1)

where

T1(x, y)(t) = Iα
0+ f

(
t, x(t), CDp

0+ y(t)
)

+
Iα–δ1

0+ f (z, x(z), CDp
0+ y(z)) – Iα

0+ f (1, x(1), CDp
0+ y(1))

1 – �1
t

+

(
C1

1 – �1
+

k∑

i=1

Γ (2 – γ1)
t1–γ1
i

J1i
(
x(ti)

)
)

t – Γ (2 – γ1)tγ1
k J1k

(
x(tk)

)
,

t ∈ (tk , tk+1], k = 0, 1, . . . , n, (3.2)

T2(x, y)(t) = Iβ

0+ g
(
t, CDq

0+ x(t), y(t)
)

+
Iβ–δ2

0+ g(w, CDq
0+ x(w), y(w)) – Iβ

0+ g(1, CDq
0+ x(1), y(1))

1 – �2
t

+

(
C2

1 – �2
+

k∑

i=1

Γ (2 – γ2)
t1–γ2
i

J2i
(
y(ti)

)
)

t – Γ (2 – γ2)tγ2
k J2k

(
y(tk)

)
,

t ∈ (tk , tk+1], k = 0, 1, . . . , n, (3.3)
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C1 = �1Γ (2 – γ1)
j∑

i=1

J1i(x(ti))
t1–γ1
i

–
z–δ1 tγ1

j Γ (2 – γ1)
Γ (1 – δ1)

J1j
(
x(tj)

)

+ tγ1
n Γ (2 – γ1)J1n

(
x(tn)

)
– Γ (2 – γ1)

n∑

i=1

J1i(x(ti))
t1–γ1
i

,

tj < z ≤ tj+1, j ∈ {0, 1, 2, . . . , n}, (3.4)

and

C2 = �2Γ (2 – γ2)
l∑

i=1

J2i(y(ti))
t1–γ2
i

–
w–δ2 tγ2

l Γ (2 – γ2)
Γ (1 – δ2)

J2l
(
y(tl)

)

+ tγ2
n Γ (2 – γ2)J2n

(
y(tn)

)
– Γ (2 – γ2)

n∑

i=1

J2i(y(ti))
t1–γ2
i

,

tl < w ≤ tl+1, l ∈ {0, 1, 2, . . . , n}. (3.5)

Thus, the existence of solution for system (1.1) is equivalent to the existence of a fixed
point for the operator T defined by (3.1)–(3.5). Now we shall apply Lemma 2.4 to prove
that T has a fixed point (x∗(t), y∗(t)) ∈ Ω . Firstly, we need to show that T : Ω→X is com-
pletely continuous. In fact, for all (x, y) ∈ Ω , t ∈ J = [0, 1], from conditions (H1)–(H5), we
have

∣
∣T1(x, y)(t)

∣
∣

≤ Iα
0+

∣
∣f

(
t, x(t), CDp

0+ y(t)
)∣
∣

+
Iα–δ1

0+ |f (z, x(z), CDp
0+ y(z))| + Iα

0+ |f (1, x(1), CDp
0+ y(1))|

1 – �1

+
|C1|

1 – �1
+

k∑

i=1

Γ (2 – γ1)
t1–γ1
i

∣
∣J1i

(
x(ti)

)∣
∣ + Γ (2 – γ1)tγ1

k
∣
∣J1k

(
x(tk)

)∣
∣

≤ Iα
0+

∣
∣f

(
t, x(t), CDp

0+ y(t)
)

– f (t, 0, 0)
∣
∣ + Iα

0+
∣
∣f (t, 0, 0)

∣
∣

+
1

1 – �1

[
Iα–δ1

0+
∣
∣f

(
z, x(z), CDp

0+ y(z)
)

– f (z, 0, 0)
∣
∣ + Iα–δ1

0+
∣
∣f (z, 0, 0)

∣
∣
]

+
1

1 – �1

[
Iα

0+
∣
∣f

(
1, x(1), CDp

0+ y(1)
)

– f (1, 0, 0)
∣
∣ + Iα

0+
∣
∣f (1, 0, 0)

∣
∣
]

+
1

1 – �1

[

�1Γ (2 – γ1)
j∑

i=1

|J1i(x(ti))|
t1–γ1
i

+
z–δ1 tγ1

j Γ (2 – γ1)
Γ (1 – δ1)

∣
∣J1j

(
x(tj)

)∣
∣

+ tγ1
n Γ (2 – γ1)

∣
∣J1n

(
x(tn)

)∣
∣ + Γ (2 – γ1)

n∑

i=1

|J1i(x(ti))|
t1–γ1
i

]

+
k∑

i=1

Γ (2 – γ1)
t1–γ1
i

∣
∣J1i

(
x(ti)

)∣
∣ + Γ (2 – γ1)tγ1

k
∣
∣J1k

(
x(tk)

)∣
∣

≤ Iα
0+

(
L1

∣
∣x(t)

∣
∣ + L2

∣
∣CDp

0+ y(t)
∣
∣
)

+ Iα
0+ sup

0≤t≤1

∣
∣f (t, 0, 0)

∣
∣
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+
1

1 – �1

[
Iα–δ1

0+
(
L1

∣
∣x(z)

∣
∣ + L2

∣
∣CDp

0+ y(z)
)∣
∣) + Iα–δ1

0+ sup
0≤t≤1

∣
∣f (t, 0, 0)

∣
∣
]

+
1

1 – �1

[
Iα

0+
(
L1

∣
∣x(1)

∣
∣ + L2

∣
∣CDp

0+ y(1)
∣
∣
)

+ Iα
0+ sup

0≤t≤1

∣
∣f (t, 0, 0)

∣
∣
]

+
1

1 – �1

[

�1Γ (2 – γ1)
j∑

i=1

Mi|x(ti)|
t1–γ1
i

+
z–δ1 tγ1

j Γ (2 – γ1)
Γ (1 – δ1)

Mj
∣
∣x(tj)

∣
∣

+ tγ1
n Γ (2 – γ1)Mn

∣
∣x(tn)

∣
∣ + Γ (2 – γ1)

n∑

i=1

Mi|x(ti)|
t1–γ1
i

]

+
k∑

i=1

Γ (2 – γ1)
t1–γ1
i

Mi
∣
∣x(ti)

∣
∣ + Γ (2 – γ1)tγ1

k Mk
∣
∣x(tk)

∣
∣

≤ 1
Γ (α + 1)

(
L1‖x‖PC + L2‖y‖PC + N

)

+
1

(1 – �1)Γ (α – δ1 + 1)
(
L1‖x‖PC + L2‖y‖PC + N

)

+
1

(1 – �1)Γ (α + 1)
(
L1‖x‖PC + L2‖y‖PC + N

)

+
Γ (2 – γ1)

1 – �1

[
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 2 – �1

] n∑

i=1

Mi · ‖x‖PC

≤
[

(L1 + L2)
(

1
Γ (α + 1)

+
1

(1 – �1)Γ (α – δ1 + 1)
+

1
(1 – �1)Γ (α + 1)

)

+
Γ (2 – γ1)

1 – �1

(
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 2 – �1

) n∑

i=1

Mi

]

‖x‖PC

+ N(L1 + L2)
(

1
Γ (α + 1)

+
1

(1 – �1)Γ (α – δ1 + 1)
+

1
(1 – �1)Γ (α + 1)

)

≤ (M1 + N1)r + NM1 = κ1r + NM1 ≤ r. (3.6)

Similarly, we also have

∣
∣T2(x, y)(t)

∣
∣ ≤ κ2r + N̂M2 ≤ r. (3.7)

Estimates (3.6) and (3.7) indicate that T is uniformly bounded and T(Ω) ⊂ Ω .
Next, we show that operator T is equicontinuous, that is, for any ε > 0, τ2, τ1 ∈ J = [0, 1],

(x, y) ∈ Ω , there exists δ = δ(ε) > 0 such that, when |τ2 – τ1| < δ, we have ‖T(x, y)(τ2) –
T(x, y)(τ1)‖ < ε. Indeed, for any τ1, τ2 ∈ [0, 1], without loss of generality, let τ1 < τ2 and
|τ2 – τ1| < ξ , where ξ = min0≤i≤n{ti+1 – ti}, t0 = 0, tn+1 = 1. Similar to (3.6), we have

∣
∣T1(x, y)(τ2) – T1(x, y)(τ1)

∣
∣

≤ ∣
∣Iα

0+ f
(
τ2, x(τ2), CDp

0+ y(τ2)
)

– Iα
0+ f

(
τ1, x(τ1), CDp

0+ y(τ1)
)∣
∣

+
Iα–δ1

0+ |f (z, x(z), CDp
0+ y(z))| + Iα

0+ |f (1, x(1), CDp
0+ y(1))|

1 – �1
|τ2 – τ1|
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+

[
|C1|

1 – �1
+

k∑

i=1

Γ (2 – γ1)
t1–γ1
i

∣
∣J1i

(
x(ti)

)∣
∣

]

|τ2 – τ1|

≤ 1
Γ (α)

∫ τ1

0

[
(τ2 – s)α–1 – (τ1 – s)α–1]∣∣f

(
s, x(s), CDp

0+ y(s)
)∣
∣ds

+
1

Γ (α)

∫ τ2

τ1

(τ2 – s)α–1∣∣f
(
s, x(s), CDp

0+ y(s)
)∣
∣ds

+
Iα–δ1

0+ |f (z, x(z), CDp
0+ y(z))| + Iα

0+ |f (1, x(1), CDp
0+ y(1))|

1 – �1
|τ2 – τ1|

+

[
|C1|

1 – �1
+

k∑

i=1

Γ (2 – γ1)
t1–γ1
i

∣
∣J1i

(
x(ti)

)∣
∣

]

|τ2 – τ1|

≤ 1
Γ (α + 1)

(
L1‖x‖PC + L2‖y‖PC + N

)(
τα

2 – τα
1 – (τ2 – τ1)α

)

+
1

Γ (α + 1)
(
L1‖x‖PC + L2‖y‖PC + N

)
(τ2 – τ1)α

+
1

(1 – �1)Γ (α – δ1 + 1)
(
L1‖x‖PC + L2‖y‖PC + N

)|τ2 – τ1|

+
1

(1 – �1)Γ (α + 1)
(
L1‖x‖PC + L2‖y‖PC + N

)|τ2 – τ1|

+
Γ (2 – γ1)

1 – �1

[
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 1

] n∑

i=1

Mi · ‖x‖PC · |τ2 – τ1|

≤ 1
Γ (α + 1)

(L1r + L2r + N)
(
τα

2 – τα
1
)

+
1

(1 – �1)Γ (α – δ1 + 1)
(L1r + L2r + N)|τ2 – τ1|

+
1

(1 – �1)Γ (α + 1)
(L1r + L2r + N)|τ2 – τ1|

+
Γ (2 – γ1)

1 – �1

[
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 1

] n∑

i=1

Mi · r · |τ2 – τ1|

=
1

Γ (α)
(L1r + L2r + N)ηα–1|τ2 – τ1|

+
1

(1 – �1)Γ (α – δ1 + 1)
(L1r + L2r + N)|τ2 – τ1|

+
1

(1 – �1)Γ (α + 1)
(L1r + L2r + N)|τ2 – τ1|

+
Γ (2 – γ1)

1 – �1

[
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 1

] n∑

i=1

Mi · r · |τ2 – τ1|

≤
[

(L1r + L2r + N)
(

1
Γ (α)

+
1

(1 – �1)Γ (α – δ1 + 1)
+

1
(1 – �1)Γ (α + 1)

)

+
rΓ (2 – γ1)

1 – �1

(
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 1

) n∑

i=1

Mi

]

|τ2 – τ1|

= ρ1|τ2 – τ1|, (3.8)



Zhao and Huang Advances in Difference Equations         (2019) 2019:36 Page 11 of 13

where τ1 < η < τ2, ρ1 = (L1r + L2r + N)( 1
Γ (α) + 1

(1–�1)Γ (α–δ1+1) + 1
(1–�1)Γ (α+1) ) + rΓ (2–γ1)

1–�1
( 2

t1–γ1
1

+
1

zδ1 Γ (1–δ1) + 1)
∑n

i=1 Mi. Similar to (3.8), one has

∣
∣T2(x, y)(τ2) – T1(x, y)(τ1)

∣
∣ ≤ ρ2|τ2 – τ1|, (3.9)

where ρ2 = (L̂1r + L̂2r + N̂)( 1
Γ (β) + 1

(1–�2)Γ (β–δ2+1) + 1
(1–�2)Γ (β+1) ) + rΓ (2–γ2)

1–�2
( 2

t1–γ2
1

+ 1
wδ2 Γ (1–δ2) +

1)
∑n

i=1 M̂i.
Take δ = min{ξ , ε

ρ1
, ε

ρ1
}. According to (3.8) and (3.9), we conclude that, for any ε > 0,

τ2, τ1 ∈ J = [0, 1], (x, y) ∈ Ω , there exists δ > 0 such that ‖T(x, y)(τ2) – T(x, y)(τ1)‖ < ε if
|τ2 – τ1| < δ, namely, operator T is equicontinuous. Hence, by the Arzela–Ascoli theorem,
we know that T : Ω→Ω is completely continuous.

Finally, we prove that condition (ii) of Lemma 2.4 is not true. In fact, for all (x, y) ∈ ∂Ω ,
0 < λ < 1 and t ∈ [0, 1], analogous to (3.6) and (3.7), we have

∣
∣λT1(x, y)(t)

∣
∣ ≤ λ

(
κ1‖x‖PC + NM1

)
<

∥
∥(x, y)

∥
∥ = r (3.10)

and

∣
∣λT2(x, y)(t)

∣
∣ ≤ λ

(
κ2‖x‖PC + N̂M2

)
<

∥
∥(x, y)

∥
∥ = r. (3.11)

Estimates (3.10) and (3.11) imply that ‖λT(x, y)‖ < ‖(x, y)‖ = r, that is, (x, y) �= λT(x, y), for
all (x, y) ∈ ∂Ω . According to Lemma 2.4, we know that the boundary value problem (1.1)
has a pair of solutions (x∗, y∗) ∈ Ω . The proof is completed. �

4 Illustrative examples
Consider the following four-point boundary value problem for nonlinear fractional differ-
ential coupling system with fractional order impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
0+ x(t) = f (t, x(t), CDp

0+ y(t)), t ∈ J = [0, 1], t �= tk ,
CDβ

0+ y(t) = g(t, CDq
0+ x(t), y(t)), t ∈ J = [0, 1], t �= tk ,

CDγ1
0+ x(t+

k ) – CDγ1
0+ x(t–

k ) = J1k(x(tk)), k = 1, . . . , n,
CDγ2

0+ y(t+
k ) – CDγ2

0+ y(t–
k ) = J2k(y(tk)), k = 1, . . . , n,

x(0) = y(0) = 0, LRDδ1
0+ x(z) = x(1), LRDδ2

0+ y(w) = y(1).

(4.1)

Take α = 5
4 , β = 7

4 , p = 1
2 , q = 3

4 , γ1 = 1
3 , γ2 = 2

3 , δ1 = 1
5 , δ2 = 3

5 , n = 2, t1 = 1
6 , t2 = 5

6 , z = 1
7 , w =

4
7 , f (t, u, v) = sin(π t)+u+v

100 , g(t, u, v) = et+arctan(u2+v2)
100 , J11(u) = J22(u) = u2

200 , J12(u) = J21(u) =
3√u

100 .
Obviously, f , g ∈ C(J × R2, R), J11, J12, J21, J22 ∈ C(R, R). By a simple calculation, we have

∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ 1

100
|u1 – u2| +

1
100

|v1 – v2|,
∣
∣g(t, u1, v1) – g(t, u2, v2)

∣
∣ ≤ 1

100
|u1 – u2| +

1
100

|v1 – v2|,
∣
∣J11(u)

∣
∣ =

∣
∣J22(u)

∣
∣ ≤ 1

50
|u|, ∣

∣J12(u)
∣
∣ =

∣
∣J21(u)

∣
∣ ≤ 1

300
|u|,

sup
t∈[0,1]

∣
∣f (t, 0, 0)

∣
∣ =

1
100

, sup
t∈[0,1]

∣
∣g(t, 0, 0)

∣
∣ =

e
100

,
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that is, L1 = L2 = L̂1 = L̂2 = 1
100 , M1 = M̂2 = 1

100 , M2 = M̂1 = 1
300 , N = 1

100 , N̂ = e
100 . Therefore,

we obtain

0 < �1 =
z1–δ1

Γ (2 – δ1)
≈ 0.2264 < 1, 0 < �2 =

w1–δ2

Γ (2 – δ2)
≈ 0.9010 < 1,

M1 = (L1 + L2)
(

1
Γ (α + 1)

+
1

(1 – �1)Γ (α – δ1 + 1)
+

1
(1 – �1)Γ (α + 1)

)

≈ 0.0658,

N1 =
Γ (2 – γ1)

1 – �1

(
2

t1–γ1
1

+
1

zδ1Γ (1 – δ1)
+ 2 – �1

) n∑

i=1

Mi ≈ 0.1501,

M2 = (L̂1 + L̂2)
(

1
Γ (β + 1)

+
1

(1 – �2)Γ (β – δ2 + 1)
+

1
(1 – �2)Γ (β + 1)

)

≈ 0.3263,

N2 =
Γ (2 – γ2)

1 – �2

(
2

t1–γ2
1

+
1

wδ2Γ (1 – δ2)
+ 2 – �2

) n∑

i=1

M̂i ≈ 0.6451,

κ1 = M1 + N1 ≈ 0.2159 < 1, κ2 = M2 + N2 ≈ 0.9714 < 1.

Thus, conditions (H1)–(H6) of Theorem 3.1 hold. Then (4.1) has at least a pair of solutions.

5 Conclusions
In describing some phenomena and processes of many fields such as physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, capacitor the-
ory, electrical circuits, biology, control theory, fitting of experimental data, and so on, the
fractional differential equation is better and more accurate than the integral-order differ-
ential equations. So the study of fractional differential equations has attracted the eyes of
many scholars. Especially, the nonlocal boundary value problems have been widely studied
by many researchers because of their extensive applications in, e.g., blood flow problems,
chemical engineering, thermo-elasticity, underground water flow, population dynamics,
and so forth. In this paper, we consider the nonlocal boundary value problem for a nonlin-
ear fractional differential coupled system with fractional order impulses. We obtain some
new sufficient criteria for the existence of solutions by use of the Leray–Schauder alterna-
tive theorem.

Acknowledgements
The authors thank the referees for a number of suggestions which have improved many aspects of this article.

Funding
This work was supported by the National Natural Sciences Foundation of Peoples Republic of China under Grant (Nos.
11161025, 11661047).

Availability of data and materials
Not applicable.

Competing interests
The authors declare to have no competing interests.

Authors’ contributions
The authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 November 2018 Accepted: 21 January 2019



Zhao and Huang Advances in Difference Equations         (2019) 2019:36 Page 13 of 13

References
1. Li, X., Chen, F., Li, X.: Generalized anti-periodic boundary value problems of impulsive fractional differential equations.

Commun. Nonlinear Sci. Numer. Simul. 18, 28–41 (2013)
2. Ahmad, B., Nieto, J.: Existence results for nonlinear boundary value problems of fractional integrodifferential

equations with integral boundary conditions. Bound. Value Probl. 2009, Article ID 708576 (2009)
3. Ahmad, B.: Nonlinear fractional differential equations with anti-periodic type fractional boundary conditions. Differ.

Equ. Dyn. Syst. 21(4), 387–401 (2013)
4. Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order Caputo fractional differential equation.

Qual. Theory Dyn. Syst. 14(1), 157–171 (2015)
5. Guezane-Lakoud, A., Khaldi, R.: Solvability of a fractional boundary value problem with fractional integral condition.

Nonlinear Anal. 75, 2692–2700 (2012)
6. Zhao, K.: Triple positive solutions for two classes of delayed nonlinear fractional FDEs with nonlinear integral

boundary value conditions. Bound. Value Probl. 2015, 181 (2015)
7. Wang, J., Lv, L., Zhou, Y.: Boundary value problems for fractional differential equations involving Caputo derivative in

Banach spaces. J. Appl. Math. Comput. 38, 209–224 (2012)
8. Zhao, K., Gong, P.: Positive solutions of Riemann–Stieltjes integral boundary problems for the nonlinear coupling

system involving fractional-order differential. Adv. Differ. Equ. 2014, 254 (2014)
9. Zhao, K., Wang, K.: Existence of solutions for the delayed nonlinear fractional functional differential equations with

three-point integral boundary value conditions. Adv. Differ. Equ. 2016, 284 (2016)
10. Ahmad, B., Alsaedi, A.: Nonlinear fractional differential equations with nonlocal fractional integro-differential

boundary conditions. Bound. Value Probl. 2012, Article ID 691721 (2012)
11. Zhao, K., Gong, P.: Positive solutions ofm-point multi-term fractional integral BVP involving time-delay for fractional

differential equations. Bound. Value Probl. 2015, 19 (2015)
12. Zhang, Y., Bai, Z., Feng, T.: Existence results for a coupled system of nonlinear fractional three-point boundary value

problems at resonance. Comput. Math. Appl. 61, 1032–1047 (2011)
13. Ahmad, B., Sotiris, K., Ahmed, A.: On a coupled system of fractional differential equations with coupled nonlocal and

integral boundary conditions. Chaos Solitons Fractals 83, 234–241 (2016)
14. Zhao, K., Gong, P.: Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order

fractional differential. Math. Slovaca 67(2), 447–466 (2017)
15. Shu, X., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear

Anal., Theory Methods Appl. 74(5), 2003–2011 (2011)
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