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Abstract
In this paper, considering the impact of stochastic environment noise on infection
rate, a stochastic SIS epidemic model with nonlinear incidence rate is proposed and
analyzed. Firstly, for the corresponding deterministic system, the threshold which
determines the extinction or permanence of the disease is obtained by analyzing the
stability of the equilibria. Then, for the stochastic system, the global dynamics is
investigated by using the theory of stochastic differential equations; especially the
threshold dynamics is explored when the stochastic environment noise is small. The
results show that the condition for the epidemic disease to go to extinction in the
stochastic system is weaker than that of the deterministic system, which implies that
stochastic noise has a significant impact on the spread of infectious diseases and the
larger stochastic noise is conducive to controlling the epidemic diseases. To illustrate
this phenomenon, we give some computer simulations with different intensities of
the stochastic noise.
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1 Introduction
Infectious diseases are the public enemy of mankind and have brought great catastrophe
to mankind. Authors were committed to finding ways to control infectious diseases from
pathology, epidemiology, culture and other aspects. The mathematical modeling method
is considered as an effective method to understand the development and evolution of vari-
ables [1–13]. Mathematical models have been used to study the spread and evolution of
infectious diseases in the human population. For example, Bernoulli in 1760 proposed
the first mathematical model in epidemiology, for studying the spread and inoculation of
smallpox. By classifying human populations into three separate categories: the susceptible
S, the infected I and the removed R, Kermack and McKendrick [14] in 1927 proposed a
well-known compartmental model. It is assumed in the model that the susceptible class
can transform into the infective class through the contact with infected persons, and the
infectives can be recovered through treatment so that have permanent immunity. There-
fore, it is now well known as the SIR model, which has been widely studied by [15–20].
However, some research showed that some diseases, such as influenza [21], viral diarrhea
[22] and hand, foot and mouth disease [23], the immunity gained after an illness is tem-
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porary, then part of the recovered can transfer to the susceptible population again, this
model is known as the SIS model [24].

Many researchers pay special attention to the incidence rate of infectious diseases.
A nonlinear incidence rate plays an important role in the evolution of infectious diseases,
because epidemic models described by nonlinear incidence rates may be more suitable and
realistic, which also exhibit much richer dynamics. For example, the standard incidence
rate β SI

N or the bilinear incidence rate βSI is proposed and used in reference [25–28]. And
saturation infection rate βSI

1+αI is used in reference [29]. A special non-monotone with the
form βSpIq is proposed and investigated by Severo [30], Liu et al. [31], Hethcote et al. [32],
and Y. Li and Muldowney [33]. About more general forms of incidence functions, please
see Pugliese [34], Thieme [35], Korobeinikov [36], Ruan and Wang [37] and Huang [38].

Motivated by the previous work, we pay special attention to the following model which
is an improved case of Liu et al. [31]:

⎧
⎨

⎩

Ṡ(t) = Λ – μS(t) – βSp(t)I(t) + γ I(t),

İ(t) = βSp(t)I(t) – (γ + α + μ)I(t),
(1)

where Λ is the recruitment rate of the population including the birth and migration. α is
mortality due to illness. p is positive integer. The biological significance of other parame-
ters please see Liu et al. [31].

Generally in the dynamic modeling of infectious diseases, we will first consider a de-
terministic model, however, considering the real world is filled with random and unpre-
dictable, using stochastic model to model the dynamic of infectious diseases is more prac-
tical. Different stochastic disturbance approaches have been introduced into epidemic
models. On the whole, there are four common random stochastic approaches. The first
one is to introduce the parameters’ disturbance to a deterministic system (see, e.g., [39–
47]), the second one is to investigate the stochasticity by using the method of time Markov
chains (see, e.g., [48–52]). The third one is to consider Lévy jump noise (see, e.g., [53–55]).
The fourth one is to study stochastic disturbance around the positive equilibria of a de-
terministic system (see, e.g., [56, 57]). Similar ideas have also been used in other modeling
and analysis, for example [58–62].

In the spread progress of infectious diseases, the transmission coefficient is often sub-
ject to interference from the environment. Mathematically, this interference from the en-
vironment can be described as a standard Brownian motion simply. In this paper, based
on model (1), we assume that the nonlinear incidence rate is perturbed by white noise so
that

β → β + σ Ḃ(t), (2)

where B(t) is a standard Brownian motion with intensity σ > 0. Then the resultant model
takes the following form:

⎧
⎨

⎩

dS(t) = Λ – μS(t) – βSp(t)I(t) + γ I(t) dt – σSp(t)I(t) dB(t),

dI(t) = βSp(t)I(t) – (μ + α + γ )I(t) dt + σSp(t)I(t) dB(t).
(3)

Our main objective in the rest of present paper is to attempt to establish the threshold
dynamics of system (3) similar to the deterministic system.
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2 Preliminaries
Throughout this paper, we let Rd : the d-dimensional Euclidean space. Rd

+ := {x ∈ R
d : xi >

0, 1 ≤ i ≤ d}, i.e. the positive cone.
Let (Ω ,F ,P) be the complete probability space adapted to the filtration {F}t≥0 and

{Bt}t≥0 is a one-dimensional Brownian motion defined on it. L1(R+;Rd) is the family of all
R

d-valued measurable {Ft}-adapted processes f = {f (t)}t≥0 and

P
[∫ T

0

∣
∣f (t)

∣
∣dt < ∞ for all T > 0

]

= 1.

Let C2,1(Rd ×R+;R) denote the family of all real-valued functions V (x, t) defined on R
d ×

R+ such that they are twice continuously differentiable in x and once in t. We set

Vt =
∂V
∂t

, Vx =
(

∂V
∂x1

,
∂V
∂x2

, . . . ,
∂V
∂xd

)

,

Vxx =
(

∂2V
∂xi ∂xj

)

d×d
=

⎛

⎜
⎜
⎝

∂2V
∂x1 ∂x1

· · · ∂2V
∂x1 ∂xd

...
...

∂2V
∂xd ∂x1

· · · ∂2V
∂xd ∂xd

⎞

⎟
⎟
⎠ .

Clearly, when V ∈ C2,1(R × R+; R), we have Vx = ∂V
∂x , Vxx = ∂2V

∂x2 .

Lemma 2.1 (The one-dimensional Itô’s formula [63]) Let x(t) be an Itô’s process on t ≥ 0
with the stochastic differential

dx(t) = f (t) dt + g(t) dBt ,

where f ∈ L1(R+;R) and g ∈ L2(R+;R). Let V ∈ C2,1(Rd ×R+;R). Then V (x(t), t) is again
an Itô’s process with the stochastic differential given by

dV
(
x(t), t

)
=
[

Vt
(
x(t), t

)
+ Vx

(
x(t), t

)
f (t) +

1
2

Vxx
(
x(t), t

)
g2(t)

]

dt

+ Vx
(
x(t), t

)
g(t) dBt .

Let f be an integrable function on [0, +∞), define 〈f (t)〉 = 1
t
∫ t

0 f (θ ) dθ . Then we have the
following definition [43].

Definition 2.1 For system (3),
(i) the diseases I(t) is said to be extinctive if limt→+∞ I(t) = 0;

(ii) the diseases I(t) is said to be permanent in mean if there exists a positive constant λ

such that lim inft→+∞〈I(t)〉 ≥ λ.

By using the methods from Lahrouz and Omari [42], we can prove the following lemma.

Lemma 2.2 For any initial value (S0, I0) ∈ R2
+, there exists a unique solution (S(t), I(t))

to system (3) on t ≥ 0, and the solution will remain in R2
+ with probability one, namely,

(S(t), I(t)) ∈ R2
+ for all t ≥ 0 almost surely.
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Proof Firstly, we know that, for any initial value (S0, I0) ∈ R2
+, because the coefficients of

system (3) are locally Lipschitz continuous, then there exists a unique local solution on
[0, τε) where τε is the explosion time. To prove this solution is global, we need to show
τε = ∞ almost surely. To do it, let ε0 > 0 such that S0 > ε0, I0 > ε0. For any positive ε, which
satisfies ε ≤ ε0, define the stopping time τε by

τε = inf
{

t ∈ [0, τε) : S(t) ≤ ε or I(t) ≤ ε
}

,

with the traditional setting inf∅ = ∞, where ∅ denotes the empty set. Clearly, τε is in-
creasing as ε → 0. Set τ0 = limε→0, then τ0 ≤ τε a.s, hence we only need to prove τ0 = ∞ a.s.
Otherwise, then there exist a pair of constants T > 0 and δ ∈ (0, 1) such that P{τ0 ≤ T} > δ.
Hence there exists a positive constant ε1 ≤ ε0 such that P{τ0 ≤ T} > δ for any positive
ε ≤ ε1.

Define C2 function N : R2
+ → R2

+ by N(t) = S(t) + I(t). Obviously, N(t) satisfies

dN(t) ≤ (
Λ – μN(t)

)
dt.

After a simple calculation, it easy to see that, for all t < τε ,

N(t) ≤ max

{

S0 + I0,
Λ

μ

}

:= C1.

Define a function V : R2
+ → R2

+ by

V (S, I) = – ln
S

C1
– ln

I
C1

.

Obviously, V is positive definite. Using Itô’s formula, we get

dV = LV dt + σSp–1(I – S) dB,

where

LV = –
Λ

S
+ μ + βSp–1I – γ

I
S

+
1
2
σ 2S2(p–1)I2 – βSp + μ + α + γ +

1
2
σ 2S2p.

Then we have

LV ≤ 2μ + α + γ + βCp
1 +

1
2
σ 2C2p

1 +
1
2
σ 2C2p

1 = C2.

Thus,

dV ≤ C2 dt + σSp–1(I – S) dB.

Integrating both sides from 0 to τε ∧ T , and then taking expectations, yields

EV
(
S(τε ∧ T), I(τε ∧ T)

)≤ V (S0, I0) + C2T .
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Set Ωe = {τe ≤ T} for any positive ε ≤ ε1 and then P(ΩE) > δ. Note that, for every ω ∈ Ωε ,
there is at least one of S(τε ,ω), I(τε ,ω) equals ε, then

V
(
S(τε), I(τε)

)≥ – ln
ε

C1
.

Thus,

V (S0, I0) + C2T ≥ E
[
IΩε V

(
S(τeε ∧ T), I(τε ∧ T)

)]

= P(Ωε)V
(
S(τε), I(τε)

)

> –δ ln
ε

C1
,

where IΩε is the indicator function of Ωe. Letting ε → 0 leads to the contradiction ∞ >
V (S0, I0) + C2T = ∞. Thus, we must have τε = ∞ almost surely. The proof of Lemma 2.2
is completed. �

By using the methods from Ji et al. [64], we can prove the following lemma and remark.

Lemma 2.3 For any initial value (S0, I0) ∈ R2
+, there exists a unique solution (S(t), I(t))

to system (3) on t ≥ 0, and the solution will remain in R2
+ with probability 1, namely,

(S(t), I(t)) ∈ R2
+ for all t ≥ 0 a.s.

Remark 2.1 In fact, from system (3), we have

d
(
S(t) + I(t)

)≤ (
Λ – μ

(
S(t) + I(t)

))
dt.

Then we have

S(t) + I(t) ≤ Λ

μ
+
(

S0 + I0 –
Λ

μ

)

e–μt .

If S0 + I0 ≤ Λ
μ

then S(t) + I(t) ≤ Λ
μ

. Therefore, the region

Γ =
{
(
S(t), I(t)

) ∈ R2
+ : S(t) + I(t) ≤ Λ

μ
, t ≥ 0

}

is an invariant set, then, from now on, we always assume the initial value (S(0), I(0)) ∈ Γ .

By using the methods from Meng et al. [43], we can prove the following lemma.

Lemma 2.4 Let (S(t), I(t)) be a solution of system (3) with initial value (S(0), I(0)) ∈ R2
+.

Then

lim
t→+∞

∫ t
0 σSp(τ ) dB(τ )

t
= 0 a.s.
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Proof Let Z(t) =
∫ t

0 σSp(τ ) dB(τ ) and θ > 2. By the Burkholder–Davis–Gundy inequality
in [63] and Lemma 2.1, we have

E
[

sup
0≤τ≤t

∣
∣Z(τ )

∣
∣θ
]

≤ Cθ E
[∫ t

0
σ 2S2p(τ ) dτ

] θ
2 ≤ Cθ t

θ
2 E
[

sup
0≤τ≤t

σ θ Spθ (τ )
]

≤ Mθ Cθ t
θ
2 ,

where Mθ = σ θ ( Λ
μ

)pθ . Then, for any 0 < ε < θ
2 – 1,

P

{
ω : sup

kδ≤t≤(k+1)δ

∣
∣Z(t)

∣
∣θ > (kδ)1+ε+ θ

2
}

≤ E(|Z((k + 1)δ)|θ )
(kδ)1+ε+ θ

2

≤ Mθ Cθ [(k + 1)δ] θ
2

(kδ)1+ε+ θ
2

≤ 2 θ
2 Mθ Cθ

(kδ)1+ε
.

By Doob’s martingale inequality and the Borel–Cantelli lemma in [63], for almost all ω ∈
Ω , we get

sup
kδ≤t≤(k+1)δ

∣
∣Z(t)

∣
∣θ ≤ (kδ)1+ε+ θ

2 (4)

holds for all but finitely many k. Thus, there exists a positive k0(ω), for almost all ω ∈ Ω ,
for which (4) holds when k ≥ k0(ω). Hence, if k ≥ k0(ω) and kδ ≤ t ≤ (k + 1)δ, then, for
almost all ω ∈ Ω ,

ln |Z(t)|θ
ln t

≤ (1 + ε + θ
2 ) ln(kδ)

ln(kδ)
= 1 + ε +

θ

2
.

So, we have

∣
∣Z(t)

∣
∣≤ t

1
2 + 1+ε

θ .

Then, for the above ε, there exist a constant T(ω) and a set Ωε , such that P(Ωε) ≥ 1 – ε

and for t ≥ T(ω), ω ∈ Ωε ,

0 ≤ lim inf
t→+∞

|Z(t)|
t

≤ lim sup
t→+∞

|Z(t)|
t

≤ lim sup
t→+∞

t
1+ε
θ

– 1
2 = 0.

Then we have

lim
t→+∞

|Z(t)|
t

= 0,

i.e.

lim
t→+∞

Z(t)
t

= lim
t→+∞

∫ t
0 σSp(τ ) dB(τ )

t
= 0.

This completes the proof of Lemma 2.4. �
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3 Dynamics of the deterministic system
It is easy to see that the equilibrium of system (1) satisfies

⎧
⎨

⎩

Λ – μS(t) – βSp(t)I(t) + γ I(t) = 0,

βSp(t)I(t) – (μ + α + γ )I(t) = 0,
(5)

resulting at most two equilibria: E0( Λ
μ

, 0), E∗(S∗, I∗), where

S∗ = p

√
μ + α + γ

β
, I∗ =

Λ – μS∗

μ + α
.

From the expressions of I∗, we know if

Λ

μ
> p

√
μ + α + γ

β
,

system (1) has unique positive equilibrium E∗. Regarding the stability of these equilibria,
we have the following theorem.

Theorem 3.1 Define

R =
β( Λ

μ
)p

μ + α + γ
. (6)

Then, for system (1), we have
(i) if R < 1, it has a unique stable ‘diseases-extinction’ equilibrium point E0, which

implies the extinction of the diseases;
(ii) if R > 1, it has a stable positive equilibrium E∗, which implies the permanence of the

disease.

Proof The Jacobian of the linearization system of the system (1) at E0 gives

J0 =

(
–μ r – β( Λ

μ
)p

0 β( Λ
μ

)p – (μ + α + γ )

)

,

which has the following eigenvalues:

λ1 = –μ, λ2 = β

(
Λ

μ

)p

– (μ + α + γ ).

Since μ > 0, resulting λ1 < 0, according to the stability theory, E0 is stable if and only if
λ2 < 0, i.e., R < 1.

At E∗ the Jacobian takes the form of

J1 =

(
–βpS∗p–1I∗ – μ γ – βS∗p

βpS∗p–1I∗ 0

)

,

and the eigenvalues of matrix J1 satisfy

λ1 + λ2 = –βpS∗p–1I∗ – μ < 0,
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λ1λ2 = –
(
γ – βS∗p)

βpS∗p–1I∗

= (μ + α)βpS∗p–1I∗ > 0.

This implies λ1 and λ2 have negative real parts. Thus the equilibrium E∗ is stable. �

4 Dynamics of the stochastic system
In this section, we try to explore the conditions leading to the extinction and persistence
of the infectious disease.

4.1 Extinction
Let us introduce

R∗ =
β( Λ

μ
)p

μ + α + γ
–

σ 2( Λ
μ

)2p

2(μ + α + γ )
= R –

σ 2( Λ
μ

)2p

2(μ + α + γ )
,

where R is given as in (6). Then we have the following.

Theorem 4.1 For system (3),
(i) If σ 2 > max{β( μ

Λ
)p, β2

2(μ+α+γ ) }, then the infectious disease of system (3) goes to
extinction almost surely.

(ii) If σ 2 < β( μ

Λ
)p, then the infectious disease of system (3) goes to extinction almost surely

for R∗ < 1.
Moreover, limt→+∞ S(t) = Λ

μ
, almost surely.

Proof Let (S(t), I(t)) be a solution of system (3) with initial value (S(0), I(0)) ∈ R2
+. Applying

Itô’s formula to system (3) results in

d ln I(t) =
(

βSp(t) – (μ + α + γ ) –
σ 2

2
S2p(t)

)

dt + σSp(t) dB(t). (7)

Integrating both sides of (7) from 0 to t gives

ln I(t) =
∫ t

0

(

βSp(τ ) –
σ 2

2
S2p(τ )

)

dτ – (μ + α + γ )t + M(t) + ln I(0), (8)

where

M(t) =
∫ t

0
σSp(τ ) dB(τ ),

known as the local continuous martingale and M(0) = 0.
Consider the quadratic function

g(z) = βz –
σ 2

2
z2, z ∈

[

0,
(

Λ

μ

)p]

. (9)

It is easy to verify that when σ 2 > σ1 = β( μ

Λ
)p, g(z) reaches its maximum value gmax = β2

2σ 2

at z = β

σ 2 ; and when σ 2 < σ1, its maximum value gmax = ( Λ
μ

)p(β – σ 2

2 ( Λ
μ

)p) is achieved at
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z = ( Λ
μ

)p. Then in (8), noticing Sp(t) ∈ [0, ( Λ
μ

)p], we have two cases to discuss, depending
on whether σ 2 > β( μ

Λ
)p.

Case I: σ 2 > β( μ

Λ
)p. In this case, we can easily see from (8) that

ln I(t) ≤ β2

2σ 2 t – (μ + α + r)t + M(t) + ln I(0). (10)

Dividing both sides of (10) by t > 0, we have

ln I(t)
t

≤ –
(

μ + α + γ –
β2

2σ 2

)

+
M(t)

t
+

ln I(0)
t

(11)

and by Lemma 2.4, we have

lim
t→+∞

M(t)
t

= 0

almost surely. Then taking the limit superior on both sides of (11) leads to

lim sup
t→+∞

ln I(t)
t

≤ –
(

μ + α + γ –
β2

2σ 2

)

< 0

almost surely, when σ 2 > max{β( μ

Λ
)p, β2

2(μ+α+γ ) }, which implies limt→+∞ I(t) = 0.
Case II: σ 2 < β( μ

Λ
)p. In this case, we can similarly have

ln I(t) ≤
(

Λ

μ

)p(

β –
σ 2

2

(
Λ

μ

)p)

t – (μ + α + r)t + M(t) + ln I(0). (12)

Dividing both sides of (12) by t > 0, we have

ln I(t)
t

≤ (μ + α + γ )
[

β( Λ
μ

)p

μ + α + r
–

σ 2( Λ
μ

)2p

2(μ + α + γ )
– 1
]

+
M(t)

t
+

ln I(0)
t

. (13)

Taking the superior limit on both sides of (13) leads to

lim sup
t→+∞

ln I(t)
t

≤ (μ + α + γ )
(
R∗ – 1

)

almost surely. Then when R∗ < 1, we have

lim sup
t→+∞

ln I(t)
t

< 0

almost surely, which implies limt→+∞ I(t) = 0.
Next, we prove the last conclusion. Given 0 < ε � 1, since limt→+∞ I(t) = 0, we have

0 < I(t) < ε for t large enough. By the first equation of system (3), we have

dS(t)
dt

≥ Λ –
(

μ + β

(
Λ

μ

)p–1

ε + σ

(
Λ

μ

)p–1

ε
∣
∣Ḃ(t)

∣
∣

)

S(t).



Gao et al. Advances in Difference Equations         (2019) 2019:41 Page 10 of 19

Then when ε → 0 we have

lim inf
t→+∞ S(t) ≥ Λ

μ
(14)

almost surely. On the other hand from Remark 2.1, we have

lim sup
t→+∞

S(t) ≤ Λ

μ
+ ε

almost surely. Let ε → 0. Then one has

lim sup
t→+∞

S(t) ≤ Λ

μ
(15)

almost surely. From (14) and (15), we have

lim
t→+∞ S(t) =

Λ

μ

almost surely. This completes the proof of Theorem 4.1. �

Remark 4.1 Theorem 4.1 shows that when R∗ < 1, the infectious disease of system (3)
dies out almost surely, that is to say, large white noise stochastic disturbance can lead to
epidemic extinction.

Remark 4.2 Note that R∗ = R–
σ 2( Λ

μ )2p

2(μ+α+γ ) . Obviously, R < 1 leads to R∗ < 1, while the other
side is not true. This implies that the condition for I(t) going to extinction in the deter-
ministic system is stronger than its stochastic counterpart due to the effect of the white
noise disturbance.

4.2 Permanence in mean
Integrating from 0 to t and dividing by t on both sides of system (3) yields

Θ(t) =
S(t) – S(0)

t
+

I(t) – I(0)
t

= Λ – μ
〈
S(t)

〉
– (μ + α)

〈
I(t)

〉
.

Then one can get

〈
S(t)

〉
=

Λ

μ
–

μ + α

μ

〈
I(t)

〉
–

Θ(t)
μ

.

Applying Itô’s formula gives

d
(
ln I(t)

)
=
[

βSp(t) – (μ + α + γ ) –
σ 2

2
S2p(t)

]

dt + σSp(t) dB(t)

≥
[

βSp(t) – (μ + α + γ ) –
σ 2

2

(
Λ

μ

)2p]

dt + σSp(t) dB(t). (16)
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Integrating from 0 to t and dividing by t on both sides of (16) yields

ln I(t) – ln I(0)
t

≥ β
1
t

∫ t

0
Sp(θ ) dθ –

[

(μ + α + γ ) +
σ 2

2

(
Λ

μ

)2p]

+
M(t)

t
, (17)

by using Hölder’s inequality, we have

ln I(t) – ln I(0)
t

≥ β
(〈

S(t)
〉)p –

[

(μ + α + γ ) +
σ 2

2

(
Λ

μ

)2p]

+
M(t)

t

= β

(
Λ

μ
–

μ + α

μ

〈
I(t)

〉
–

Θ(t)
μ

)p

–
[

(μ + α + γ ) +
σ 2

2

(
Λ

μ

)2p]

+
M(t)

t
. (18)

In (18), let a = Λ
μ

– Θ(t)
μ

, b = μ+α

μ
〈I(t)〉. Then according the number p being odd, there are

two cases we should discuss.
Case I. When p is an even number, let p = 2n, n ∈ N . Then we have

(a – b)p ≥
(

p
0

)

ap +

(
p
1

)

ap–1(–b) +

(
p
3

)

ap–3(–b)3 + · · · +

(
p

p – 1

)

a(–b)p–1

≥
(

p
0

)

ap +

(
p
1

)

ap–1(–b) +

(
p
3

)

ap–3(–b)
(

Λ(μ + α)
μ2

)2

+

(
p
5

)

ap–5(–b)
(

Λ(μ + α)
μ2

)4

+ · · · +

(
p

p – 1

)

a(–b)
(

Λ(μ + α)
μ2

)p–2

= ap – b
[(

p
1

)

ap–1 +

(
p
3

)

ap–3
(

Λ(μ + α)
μ2

)2

+ · · ·

+

(
p

p – 1

)

a
(

Λ(μ + α)
μ2

)p–2]

= ap – b
p–1∑

i=1,3,...

(
p
i

)

ap–i
(

Λ(μ + α)
μ2

)i–1

= ap – b
p–1∑

k=0

(
p

2k + 1

)

ap–(2k+1)
(

Λ(μ + α)
μ2

)2k

= ap –
μ + α

μ

p–1∑

k=0

(
p

2k + 1

)

ap–(2k+1)
(

Λ(μ + α)
μ2

)2k 〈
I(t)

〉

� ap – �1
〈
I(t)

〉
.

Case II. When p is an odd number, let p = 2n – 1, n ∈ N . Then

(a – b)p ≥
(

p
0

)

ap +

(
p
1

)

ap–1(–b) +

(
p
3

)

ap–3(–b)3 + · · ·

+

(
p

p – 2

)

a2(–b)p–2 + Cp
p(–b)p
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≥
(

p
0

)

ap +

(
p
1

)

ap–1(–b) +

(
p
3

)

ap–3(–b)
(

Λ(μ + α)
μ2

)2

+

(
p
5

)

(–b)
(

Λ(μ + α)
μ2

)4

+ · · · +

(
p

p – 2

)

a2(–b)
(

Λ(μ + α)
μ2

)p–3

+

(
p
p

)

(–b)
(

Λ(μ + α)
μ2

)p–1

= ap – b
[(

p
1

)

ap–1 +

(
p
3

)

ap–3
(

Λ(μ + α)
μ2

)2

+ · · ·

+

(
p

p – 2

)

a2
(

Λ(μ + α)
μ2

)p–3

+

(
p
p

)(
Λ(μ + α)

μ2

)p–1]

= ap – b
p∑

i=1,3

(
p
i

)

ap–i
(

Λ(μ + α)
μ2

)i–1

= ap – b
p∑

k=0

(
p

2k + 1

)

ap–(2k+1)
(

Λ(μ + α)
μ2

)2k

= ap –
μ + α

μ

p∑

k=0

(
p

2k + 1

)

ap–(2k+1)
(

Λ(μ + α)
μ2

)2k 〈
I(t)

〉

� ap – �2
〈
I(t)

〉
,

where b = μ+α

μ
〈I(t)〉 < Λ(μ+α)

μ2 is used. Then we have

ln I(t) – ln I(0)
t

≥ β

(
Λ

μ
–

Θ(t)
μ

)p

–
(

(μ + α + γ ) +
σ 2

2

(
Λ

μ

)2p)

– β�i
〈
I(t)

〉
+

M(t)
t

, (19)

where

i =

⎧
⎨

⎩

1 if p is even,

2 if p is odd.

The inequality (19) can be rewritten as

〈
I(t)

〉≥ 1
β�i

[

β

(
Λ

μ
–

Θ(t)
μ

)p

–
(

(μ + α + γ ) +
σ 2

2

(
Λ

μ

)2p)]

–
1

β�i

[
ln I(t) – ln I(0)

t
–

M(t)
t

]

. (20)

By Lemma 2.4, we get limt→+∞ M(t)
t = 0 almost surely. According to Remark 2.1, one sees

that I(t) ≤ Λ
μ

. Thus one has limt→+∞ I(t)
t = 0 and limt→+∞ ln I(t)

t = 0 almost surely as I(t) ≥ 1,
and limt→+∞ Θ(t) = 0 almost surely. Taking the inferior limit of both sides of (20) yields

lim inf
t→+∞

〈
I(t)

〉≥ μ + α + γ

β�i

(
R∗ – 1

)
.
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Figure 1 Time series for S(t), I(t) of deterministic system, with
Λ = 0.25,μ = 0.2,β = 0.5,γ = 0.79,α = 0.4,p = 2, whereR = 0.5621 < 1

Figure 2 Time series for the paths S(t), I(t) for deterministic system with
Λ = 0.45,μ = 0.2,β = 0.5,γ = 0.79,α = 0.4,p = 2, whereR = 1.8210 > 1

Let � = max{�i, i = 1, 2}. We have

lim inf
t→+∞

〈
I(t)

〉≥ μ + α + γ

β�

(
R∗ – 1

)
.

Thus, we get the permanence theorem as follows.

Theorem 4.2 If R∗ > 1, then the infectious disease I is permanent in mean, moreover,
I satisfies

lim inf
t→+∞

〈
I(t)

〉≥ μ + α + γ

β�

(
R∗ – 1

)
.
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Figure 3 Comparison illustration for S(t), I(t) of deterministic system and stochastic system with
σ = 0.4,Λ = 0.45,μ = 0.2,β = 0.5,γ = 0.79,α = 0.4,p = 2, whereR = 1.8210 > 1

Remark 4.3 Theorem 4.1 and Theorem 4.2 show that the condition for the disease to go to
extinction or permanence strongly depends on the intensity of white noise disturbances.
And small white noise disturbances will be beneficial to long-term prevalence of the dis-
ease, conversely, large white noise disturbances may cause the epidemic disease to die out.

5 Numerical simulation
In the following, by employing the Euler Maruyama (EM) method [63, 65], we make
some numerical simulations to illustrate the extinction and persistence of the diseases
in stochastic system and corresponding deterministic system for comparison.

We set parameters as μ = 0.2,β = 0.5,γ = 0.79,α = 0.4, p = 2, in system (1). Then we
obtain

⎧
⎨

⎩

Ṡ(t) = Λ – 0.2S(t) – 0.5S2(t)I(t) + 0.79I(t),

İ(t) = 0.5S2(t)I(t) – 1.39I(t).
(21)

If Λ = 0.25, by simple calculation, we have R = 0.5621 < 1, then according to Theorem 3.1,
system (21) has a unique stable ‘diseases-extinction’ equilibrium point E0(1.25, 0), which
implies the disease goes to extinction (see Fig. 1). If Λ = 0.45, we have R = 1.8210 >
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Figure 4 Comparison illustration for S(t), I(t) of deterministic system and stochastic system with
σ = 0.3,Λ = 0.45,μ = 0.2,β = 0.5,γ = 0.79,α = 0.4,p = 2, whereR = 1.8210 > 1,R∗ = 0.9913 < 1

1. Then according Theorem 3.1, system (21) has a unique stable positive equilibrium
E∗(1.6673, 0.1942), which implies that the disease of system (21) is permanent (see Fig. 2).

Next, to show the effect of stochastic perturbation on the spread of the disease, based
on the deterministic system with persistent disease (see Fig. 2), we consider the stochastic
system as follows:

⎧
⎨

⎩

Ṡ(t) = Λ – 0.2S(t) – 0.5S2(t)I(t) + 0.79I(t) – σS2(t)I(t) dB(t),

İ(t) = 0.5S2(t)I(t) – 1.39I(t) + σS2(t)I(t) dB(t).
(22)

First, we let σ = 0.4, the condition I in Theorem 4.1 is satisfied, the by Theorem 4.1, the
disease will die out under a large white noise perturbation (see Fig. 3). If let σ = 0.3, by a
direct calculation, we get R∗ = 0.9913 < 1, obviously, the condition II in Theorem 4.1 is
satisfied, the by Theorem 4.1, the disease will die out under a large white noise perturba-
tion (see Fig. 4). While if we let σ = 0.1, by a direct calculation, we have R∗ = 1.7289 > 1,
then the disease is persistent by Theorem 4.2 (see Fig. 5). Moreover, Fig. 5 shows the solu-
tion of the stochastic system oscillate around the positive equilibrium of the deterministic
system.
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Figure 5 Comparison illustration for S(t), I(t) of deterministic system and stochastic system with
σ = 0.1,Λ = 0.45,μ = 0.2,β = 0.5,γ = 0.79,α = 0.4,p = 2, whereR = 1.8210 > 1,R∗ = 1.7289 > 1

6 Conclusion
The aim of this paper is to make contributions to understand the dynamics of SIS epi-
demic models with nonlinear incidence rate. First, we expand a deterministic SIS epidemic
model by introducing the extra mortality. For the modified system, by analyzing the stabil-
ity of equilibria, we define a threshold which determines the extinction and permanence
of the epidemic disease. Second, we establish a stochastic system by introducing the white
noise disturbance into the deterministic system. For the stochastic system, we define a
new threshold associated with its deterministic counterpart and analyze the dynamics
of the system based on the new threshold by using the theory of stochastic differential
equations. Our results show that there exists a significant difference of threshold of the
stochastic system from its deterministic counterpart. The difference caused by the intro-
duction of stochastic white noise makes the extinction conditions of the diseases in the
stochastic system are weaker than that of the corresponding deterministic model. How-
ever, in the present model, the nonlinear incidence rate takes the form βSp(t)I(t), which
is a special case of the nonlinear incidence rate βSp(t)Iq(t) with q = 1, p ∈ N , for the more
general case p, q ∈ R+, we do not give an effective analysis method at present. The analysis
of this scheme in such case is left to our further study.
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