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Abstract
In this paper, we study a stage-structured predator–prey model incorporating refuge
for prey and additional food for predator. By analyzing the corresponding
characteristic equations, we investigate the local stability of equilibria and the
existence of Hopf bifurcation at the positive equilibrium taking the time delay as a
bifurcation parameter. Furthermore, we obtain the direction of the Hopf bifurcation
and the stability of bifurcating periodic solutions applying the center manifold
theorem and normal form theory. Numerical simulations are illustrated to verify our
main results.
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1 Introduction
Since the first mathematical model for predator–prey was developed independently by
Lotka [1] and Volterra [2], the predator–prey models in ecology have received great atten-
tion [3–7]. Researchers studied the predator–prey models by analyzing their life history.
In the natural world, species can be divided into two stages: immaturity and maturity.
Therefore, the predator–prey models with stage structure are more reasonable than the
ones without stage structure. With the prey species as immature individual organisms,
we suppose that they are not attacked by predators, but as mature individuals, in order to
reduce their rate of encounter with predators, prey refuges play an important role in af-
fording the prey some degree of protection from predation. Kuang [4] showed that a time
delay could destroy the stability of the positive equilibrium and cause a Hopf bifurcation.
The delayed predator–prey models with stage structure or refuge have been studied by
many authors, see [8–12]. Especially, Wei and Fu [13] investigated Hopf bifurcation and
stability of a delayed predator–prey model with stage structure for prey incorporating prey
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refuge,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = ax2(t) – bx1(t) – αx1(t),

ẋ2(t) = αx1(t) – cx2(t) – dx2
2(t) – β(1–m)x2(t)y(t)

a1+b1(1–m)x2(t)+c1y(t) ,

ẏ(t) = dβ(1–m)x2(t–τ )y(t–τ )
a1+b1(1–m)x2(t–τ )+c1y(t–τ ) – ry(t),

(1.1)

where x1(t), x2(t) and y(t) denote the densities of immature prey, mature prey and predator
at time t, respectively. m is a refuge parameter with m ∈ [0, 1), τ ≥ 0 is the time delay due
to the gestation of the predator.

Prey refuge can protect the prey from the attack of predators in some degree. What will
happen if the predators cannot eat the prey? Now, additional food is very important for the
predators. In fact, additional food is an important component of most predators. Recently,
the effects of the additional food to predator in prey–predator models were investigated
[14–19]. Srinivasu et al. [14] reported the dynamics of prey–predator system in the pres-
ence of additional food for predator and discussed the effect of quality and quantity of the
additional food. Ghosh et al. [18] considered a predator–prey model with logistic growth
rate and prey refuge in presence of additional food for predator

⎧
⎨

⎩

Ṅ(t) = r1N(1 – N
K ) – c1(1–c′)e1NP

a+h2e2A′+h1e1N ,

Ṗ(t) = b1[(1–c′)e1N+e2A′]P
a+h2e2A′+h1e1N – rP,

(1.2)

where N(t) and P(t) represent the densities of the prey and predator at time t, respectively.
The parameters c′ is a refuge parameter with c′ ∈ [0, 1).

Motivated by the above work, we propose a delayed predator–prey model with stage
structure for prey incorporating refuge and providing additional food to the predator,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = ax2(t) – bx1(t) – αx1(t),

ẋ2(t) = αx1(t) – cx2(t) – dx2
2(t) – k1(1–m)e1x2(t)y(t)

a1+h2e2A′+h1e1x2(t) ,

ẏ(t) = k2[(1–m)e1x2(t–τ )+e2A′]y(t–τ )
a1+h2e2A′+h1e1x2(t–τ ) – ry(t),

(1.3)

where x1(t), x2(t) and y(t) denote the densities of immature prey species, mature prey
species and predator species at time t, respectively. a is the intrinsic growth rate of the im-
mature prey species. b, c and r denote the death rates of immature prey, mature prey and
predator, respectively. α is the transformation rate from immature prey to mature prey. d
is intra species competition rate of mature prey. m is a refuge parameter with m ∈ [0, 1),
k1(1 – m) is the capturing rate of the predator. k2 is the conversion rate of nutrients into the
production of predator species. τ ≥ 0 is the time delay due to the gestation of the preda-
tor. h1 and e1, respectively represent the handling time of the predator per unit quantity
of mature prey, ability of the predator to detect the mature prey. h2 and e2, respectively,
represent the handling time of the predator per unit quantity of additional food, the ability
of the predator to identify the additional food. A′ represents the biomass of the additional
food. All the parameters are nonnegative constants.
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Define k1 := k1
h1

, k2 := k2
h1

, a1 := a1
e1h1

, β = h2
h1

, η = e2
e1

. The model (1.3) can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = ax2(t) – bx1(t) – αx1(t),

ẋ2(t) = αx1(t) – cx2(t) – dx2
2(t) – k1(1–m)x2(t)y(t)

a1+βηA′+x2(t) ,

ẏ(t) = k2[(1–m)x2(t–τ )+ηA′]y(t–τ )
a1+βηA′+x2(t–τ ) – ry(t).

(1.4)

By denoting u1(t) = x1(t)
a1

, u2(t) = x2(t)
a1

, v(t) = k1y(t)
a1

, d1 = a1d, ξ = ηA′
a1

, the model (1.4) reduces
to the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u̇1(t) = au2(t) – bu1(t) – αu1(t),

u̇2(t) = αu1(t) – cu2(t) – d1u2
2(t) – (1–m)u2(t)v(t)

1+βξ+u2(t) ,

v̇(t) = k2[(1–m)u2(t–τ )+ξ ]v(t–τ )
1+βξ+u2(t–τ ) – rv(t),

(1.5)

where the term β and ξ are the parameters which characterize the “quality” and “quantity”
of additional food, respectively. The initial conditions for model (1.5) take the form

⎧
⎨

⎩

u1(θ ) = ϕ1(θ ) ≥ 0, u2(θ ) = ϕ2(θ ) ≥ 0, v(θ ) = ϕ3(θ ) ≥ 0,

θ ∈ [–τ , 0), ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0,
(1.6)

where (ϕ1(θ ),ϕ2(θ ),ϕ3(θ )) ∈ C{[–τ , 0], R3
+}, R3

+ = {(u1, u2, v) : u1 ≥ 0, u2 ≥ 0, v ≥ 0}.
From the fundamental theory of functional differential equations [20], the model (1.5)

has a unique solution (u1(t), u2(t), v(t)) satisfying the initial conditions (1.6). It is easy to
show that all solutions of (1.5) with initial conditions (1.6) are defined on [0, +∞) and
remain positive for all t ≥ 0.

The main contributions of the present paper are: (1) A stage-structured predator–
prey model incorporating refuge for prey and additional food for predator is formulated.
(2) The existence and local stability of equilibria and the existence of Hopf bifurcation of
the model are given. (3) The direction of the Hopf bifurcation and the stability of bifur-
cating periodic solutions are obtained by applying the center manifold theorem and the
normal form theory. (4) Numerical simulations are illustrated to show our main results.

In this paper, we assume the following conditions hold.

(H1) aα – (b + α)c > 0; (H2) aα – (b + α)c < 0;

(H3) r + (rβ – k2)ξ > 0; (H4) r + (rβ – k2)ξ < 0;

(H5) k2(1 – m) – r > 0; (H6) k2(1 – m) – r < 0;

(H7) 0 < u∗
2 <

aα – (b + α)c
d1(b + α)

; (H8) (b + α)c < aα < (b + α)
(
c + 2d1u∗

2 + A
)
;

(H9) (b + α)c < aα < (b + α)
(
c + 2d1u∗

2
)
; (H10) (b + α)

(
c + 2d1u∗

2 + A
)

< aα;

where u∗
2, A can be found in Sect. 2 and Sect. 3, respectively.

Now we give the biological interpretation of the conditions (H1)–(H10).
From (H1), we have aα > (b + α)c, which means that the prey species keeps a linear net

growth without the predator species. The condition (H3) can be rewritten in the form



Bai and Li Advances in Difference Equations         (2019) 2019:42 Page 4 of 20

r > k2ξ

1+βξ
. It means that additional food cannot ensure the survival of the predator species

without the prey species. The condition (H5) is explained that prey species can ensure the
survival of predator species without additional food even if the prey species have refuge.
It is clear that the conditions (H2), (H4), (H6) have opposite interpretation with (H1), (H3),
(H5), respectively. The term aα–(b+α)c

d1(b+α) in condition (H7) is the ratio of net growth with their
own retarded growth of prey species. This ratio is a critical value for u∗

2. The condition (H8)
can be simplified as 0 < aα – (b + α)c < (b + α)(2d1u∗

2 + A). It implies that on the one hand
the prey species keep linear net growth and on the other hand this growth is limited by
some value. Obviously, if (H9) holds, then (H8) holds. The condition (H10) shows that the
linear net growth of the prey species is higher than the limit value.

2 Equilibria of the model (1.5)
In order to obtain the equilibria of the model (1.5), we consider the prey nullcline and
predator nullcline of this model, which are given by

⎧
⎪⎪⎨

⎪⎪⎩

au2 – bu1 – αu1 = 0,

αu1 – cu2 – d1u2
2 – (1–m)u2v

1+βξ+u2
= 0,

k2[(1–m)u2+ξ ]v
1+βξ+u2

– rv = 0.

Obviously, the model (1.5) always has a trivial equilibrium E0(0, 0, 0).
If the condition (H1) holds, then the model (1.5) has a predator-extinction equilibrium

E1(ū1, ū2, 0), where ū1 = a[aα–(b+α)c]
(b+α)2d1

, ū2 = aα–(b+α)c
(b+α)d1

.
If the conditions (H1), (H3), (H5) and (H7) hold, which imply

β >
k2

r
–

1
ξ

, and 0 < m < min

{

1 –
r
k2

, 1 –
r
k2

–
d1[r + (rβ – k2)ξ ](b + α)

αk2(a – c) – bc

}

,

then there exists a unique coexisting equilibrium E2(u∗
1, u∗

2, v∗) of the model (1.5), where

u∗
1 =

a
b + α

u∗
2, u∗

2 =
r + (rβ – k2)ξ
k2(1 – m) – r

,

v∗ =
[aα – (b + α)c – d1(b + α)u∗

2](1 + βξ + u∗
2)

(1 – m)(b + α)
.

3 Local stability of the equilibria
Let E(u1, u2, v) be any arbitrary equilibrium, then Jacobian matrix at E is given by

J(u1,u2,v) =

⎛

⎜
⎜
⎝

–b – α a 0
α –c – 2d1u2 – (1–m)(1+βξ )v

(1+βξ+u2)2 – (1–m)u2
1+βξ+u2

0 k2[(1–m)(1+βξ )–ξ ]ve–λτ

(1+βξ+u2)2
k2[(1–m)u2+ξ ]e–λτ

1+βξ+u2
– r

⎞

⎟
⎟
⎠ .

(a) Trivial equilibrium point: At the trivial equilibrium point E0(0, 0, 0), the Jacobian
matrix is given by

J(0,0,0) =

⎛

⎜
⎝

–b – α a 0
α –c 0
0 0 k2ξe–λτ

1+βξ
– r

⎞

⎟
⎠ ,
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and the characteristic equation at E0 becomes

(

λ + r –
k2ξe–λτ

1 + βξ

)
[
λ2 + (b + α + c)λ + c(b + α) – aα

]
= 0, (3.1)

then the equation

λ2 + (b + α + c)λ + c(b + α) – aα = 0

has two roots, and we have λ1 + λ2 = –(b + α + c) < 0, λ1λ2 = c(b + α) – aα.
If (H1) holds, then λ1λ2 < 0, that is, E0 is an unstable saddle; If (H2) holds, then λ1λ2 > 0,

that is, Re(λi) < 0, i = 1, 2. Another root of (3.1) is determined by the equation

λ + r –
k2ξe–λτ

1 + βξ
= 0. (3.2)

Denote

f1(λ) = λ + r –
k2ξe–λτ

1 + βξ
.

If (H2) and (H3) hold, we claim that E0 is locally asymptotically stable. Otherwise, there
is a root λ satisfying Re(λ) ≥ 0, it follows from (3.2) that

Re(λ) =
k2ξ

1 + βξ
e–τ Reλ cos(τ Imλ) – r ≤ k2ξ

1 + βξ
– r < 0,

which is contradiction. Hence the equilibrium E0 is locally asymptotically stable.
If (H4) holds, it is easy to show that, for real λ, f1(0) = r – k2ξ

1+βξ
< 0, and

lim
λ→+∞ f1(λ) = +∞.

Hence, f1(λ) = 0 has a positive real root.
From the above discussions, we can get the following theorem.

Theorem 3.1 For the model (1.5):
(i) If (H1) or (H4) holds, then the trivial equilibrium E0(0, 0, 0) is unstable.

(ii) If (H2) and (H3) hold, then the trivial equilibrium E0(0, 0, 0) is locally asymptotically
stable.

Remark 3.1 It is easy to understand Theorem 3.1 from the biological meaning of (H1)–
(H4).

(b) Predator-extinction equilibrium point: At equilibrium point E1(ū1, ū2, 0), the Jaco-
bian matrix is given by

J(ū1,ū2,0) =

⎛

⎜
⎜
⎝

–b – α a 0
α –c – 2d1ū2 – (1–m)ū2

1+βξ+ū2

0 0 k2[(1–m)ū2+ξ ]e–λτ

1+βξ+ū2
– r

⎞

⎟
⎟
⎠ ,
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and the characteristic equation at E1 becomes

(

λ + r –
k2[(1 – m)ū2 + ξ ]e–λτ

1 + βξ + ū2

)
[
λ2 + (b + α + c + 2d1ū2)λ + (b + α)(c + 2d1ū2) – aα

]

= 0, (3.3)

then the equation

λ2 + (b + α + c + 2d1ū2)λ + (b + α)(c + 2d1ū2) – aα = 0

has two roots, and

λ1 + λ2 = –(b + α + c + 2d1ū2) < 0,

λ1λ2 = (b + α)(c + 2d1ū2) – aα

= aα – c(b + α).

If (H1) holds, then λ1λ2 > 0, that is Reλi < 0, i = 1, 2. Another root of (3.3) is determined
by

λ + r –
k2[(1 – m)ū2 + ξ ]

1 + βξ + ū2
e–λτ = 0. (3.4)

Denote

f2(λ) = λ + r –
k2[(1 – m)ū2 + ξ ]

1 + βξ + ū2
e–λτ .

If (H4) and (H5) hold, it is easy to show that, for real λ,

f2(0) = r –
k2[(1 – m)ū2 + ξ ]

1 + βξ + ū2

=
1

1 + βξ + ū2

[
r(1 + βξ ) – k2ξ +

[
r – k2(1 – m)

]
ū2

]

< 0,

and limλ→+∞ f2(λ) = +∞. Hence, f2(λ) = 0 has a positive real root.
If (H3) and (H6) hold, we have f2(0) > 0. We claim that E1 is locally asymptotically stable.

Otherwise, there is a root λ satisfying Reλ ≥ 0. It follows from (3.4) that

Reλ =
k2[(1 – m)ū2 + ξ ]

1 + βξ + ū2
e–τ Reλ cos(τ Imλ) – r

≤ k2[(1 – m)ū2 + ξ ]
1 + βξ + ū2

– r

= –f2(0) < 0,

which is a contradiction. Hence, when (H3) and (H6) hold, then Reλ < 0.
Based on the above discussions, the following theorem can be obtained.
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Theorem 3.2 Suppose that (H1) holds. For the model (1.5), we have:
(i) If (H4) and (H5) hold, then the predator-extinction equilibrium E1(ū1, ū2, 0) is

unstable.
(ii) If (H3) and (H6) hold, then the predator-extinction equilibrium E1(ū1, ū2, 0) is locally

asymptotically stable.

Remark 3.2 It is easy to understand Theorem 3.2 from the biological meaning of (H3)–
(H6).

(c) Co-existing equilibrium point: At the coexisting equilibrium point E2(u∗
1, u∗

2, v∗), the
Jacobian matrix is given by

J(u∗
1,u∗

2,v∗) =

⎛

⎜
⎜
⎝

–b – α a 0
α –c – 2d1u∗

2 – (1–m)(1+βξ )v∗
(1+βξ+u∗

2)2 – (1–m)u∗
2

1+βξ+u∗
2

0 k2[(1–m)(1+βξ )–ξ ]v∗
(1+βξ+u∗

2)2 e–λτ k2[(1–m)u∗
2+ξ ]e–λτ

1+βξ+u∗
2

– r

⎞

⎟
⎟
⎠ ,

and the characteristic equation at E2 becomes

λ3 +
(
b + α + c + 2d1u∗

2 + A + r – Be–λτ
)
λ2

+
[

(b + α)
(
c + 2d1u∗

2 + A
)

– aα

+
(
r – Be–λτ

)(
b + α + c + 2d1u∗

2 + A
)

+
k2C(1 – m)u∗

2
1 + βξ + u∗

2
e–λτ

]

λ

+
(
r – Be–λτ

)[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

+
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
e–λτ = 0, (3.5)

where A = (1–m)(1+βξ )
(1+βξ+u∗

2)2 v∗ > 0, B = k2[(1–m)u∗
2+ξ ]

1+βξ+u∗
2

= r > 0, and C = A – ξv∗
(1+βξ+u∗

2)2 > 0, when m <
1 – ξ

1+βξ
.

One can rewrite (3.5) so that it has the following form:

λ3 +
(
b + α + c + 2d1u∗

2 + A + r
)
λ2

+
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα + r
(
b + α + c + 2d1u∗

2 + A
)]

λ

+ r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

+ e–λτ

[

–rλ2 +
[

k2C(1 – m)u∗
2

1 + βξ + u∗
2

– r
(
b + α + c + 2d1u∗

2 + A
)
]

λ

+
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
– r

[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]
]

= 0. (3.6)

Let

P1 = b + α + c + 2d1u∗
2 + A + r,

P2 = (b + α)
(
c + 2d1u∗

2 + A
)

– aα + r
(
b + α + c + 2d1u∗

2 + A
)
,

P3 = r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]
,
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P4 =
k2C(1 – m)u∗

2
1 + βξ + u∗

2
– r

(
b + α + c + 2d1u∗

2 + A
)
,

P5 =
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
– r

[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]
.

Equation (3.6) can be written as

λ3 + P1λ
2 + P2λ + P3 + e–λτ

(
–rλ2 + P4λ + P5

)
= 0. (3.7)

Case 3.1. τ = 0.
Equation (3.7) turns to

λ3 + (P1 – r)λ2 + (P2 + P4)λ + (P3 + P5) = 0, (3.8)

then

P1 – r = b + α + c + 2d1u∗
2 + A + r – r = b + α + c + 2d1u∗

2 + A > 0,

P3 + P5 = r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

+
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2

– r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

=
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
> 0,

(P1 – r)(P2 + P4) – (P3 + P5)

=
(
b + α + c + 2d1u∗

2 + A
)
[

(b + α)
(
c + 2d1u∗

2 + A
)

– aα

+ r
(
b + α + c + 2d1u∗

2 + A
)

+
k2C(1 – m)u∗

2
1 + βξ + u∗

2
– r

(
b + α + c + 2d1u∗

2 + A
)
]

–
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2

=
(
c + 2d1u∗

2 + A
)k2C(1 – m)u∗

2
1 + βξ + u∗

2

+
(
b + α + c + 2d1u∗

2 + A
)[

(b + α)
(
c + 2d1u∗

2 + A
)

– aα
]
.

If the condition (H8) holds, then (P1 – r)(P2 + P4) – (P3 + P5) > 0. By the Routh–Hurwitz
criterion, we see that the coexisting equilibrium point E2 is locally asymptotically stable.

Case 3.2. τ > 0.
Let λ = iω (ω > 0) be a root of (3.7), then

(
–iω3 + iωP2 + P3 – P1ω

2) + (cosωτ – i sinωτ )
(
iP4ω + rω2 + P5

)
= 0. (3.9)

Separating real part and imaginary part of (3.9), we have

P4ω cosωτ –
(
rω2 + P5

)
sinωτ = ω3 – P2ω,

P4ω sinωτ +
(
rω2 + P5

)
cosωτ = P1ω

2 – P3,
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that is,

⎧
⎨

⎩

cosωτ = (rP1+P4)ω4–(rP3+P2P4–P1P5)ω2–P3P5
(P4ω)2+(P5+rω2)2 ,

sinωτ = –rω5+(P1P5–P5+rP2)ω2+(P2P5–P3P4)ω
(P4ω)2+(P5+rω2)2 .

(3.10)

Taking the square on both sides of (3.10) implies that

ω6 +
(
P2

1 – 2P2 – r2)ω4 +
(
P2

2 – 2P1P3 – P2
4 – 2rP5

)
ω2 + P2

3 – P2
5 = 0. (3.11)

Suppose ν = ω2. Then (3.11) becomes

ν3 +
(
P2

1 – 2P2 – r2)ν2 +
(
P2

2 – 2P1P3 – P2
4 – 2rP5

)
ν + P2

3 – P2
5 = 0, (3.12)

where

P2
1 – 2P2 – r2 =

(
b + α + c + 2d1u∗

2 + A + r
)2 – 2

[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα + r
(
b + α + c + 2d1u∗

2 + A
)]

– r2

= (b + α)2 +
(
c + 2d1u∗

2 + A
)2 + 2aα > 0,

P2
2 – 2P1P3 – P2

4 – 2rP5

=
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα + r
(
b + α + c + 2d1u∗

2 + A
)]2

– 2r
(
b + α + c + 2d1u∗

2 + A + r
)[

(b + α)
(
c + 2d1u∗

2 + A
)

– aα
]

– 2r
[

k2C(1 – m)(b + α)u∗
2

1 + βξ + u∗
2

– r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]
]

–
[

k2C(1 – m)u∗
2

1 + βξ + u∗
2

– r
(
b + α + c + 2d1u∗

2 + A
)
]2

.

Denoting m1 = b + α, m2 = c + 2d1u∗
2 + A, m3 = k2C(1–m)u∗

2
1+βξ+u∗

2
, we have

P2
2 – 2P1P3 – P2

4 – 2rP5

=
[
m1m2 – aα + r(m1 + m2)

]2 – 2r(m1 + m2 + r)(m1m2 – aα)

– 2r
[
m3(b + α) – r(m1m2 – aα)

]
–

[
m3 – r(m1 + m2)

]2

= (m1m2 – aα)2 + 2rm3
[
m1 + m2 – (b + α)

]
– m2

3

=
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]2

+
k2C(1 – m)u∗

2
1 + βξ + u∗

2

[

2r
(
c + 2d1u∗

2 + A
)

–
k2C(1 – m)u∗

2
1 + βξ + u∗

2

]

=
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]2

+
k2C(1 – m)u∗

2
1 + βξ + u∗

2

[

2
k2[(1 – m)u∗

2 + ξ ]
1 + βξ + u∗

2

(
c + 2d1u∗

2 + A
)

–
k2C(1 – m)u∗

2
1 + βξ + u∗

2

]

=
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]2
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+
k2

2C(1 – m)u∗
2

1 + βξ + u∗
2

×
[
(
c + 2d1u∗

2
)[

2(1 – m)u∗
2 + ξ

]
+ ξv∗ +

ξ (1 – m)u∗
2v∗

(1 + βξ + u∗
2)2

]

> 0,

P2
3 – P2

5 = (P3 + P5)(P3 – P5)

=
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2

[

r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

–
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
+ r

[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]
]

=
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2

[
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2

+
2k2(1 – m)u∗

2[(b + α)(c + 2d1u∗
2) – aα]

1 + βξ + u∗
2

+
2k2ξ [(b + α)(c + 2d1u∗

2 + A) – aα]
1 + βξ + u∗

2
+

k2ξ (1 – m)(b + α)u∗
2v∗

(1 + βξ + u∗
2)3

]

.

If (H9) holds, then we have aα < (b +α)(c + 2d1u∗
2 + A). Obviously, if (H9) holds, it implies

that P2
3 – P2

5 > 0, and (P1 – r)(P2 + P4) – (P3 + P5) > 0, then (3.11) has no positive real roots.
Therefore, by Theorem 3.4.1 in [10], all roots of (3.11) have negative real parts for all τ ≥ 0,
which implies that the positive equilibrium E2(u∗

1, u∗
2, v∗) is locally asymptotically stable for

all τ ≥ 0.
If (H10) aα > (b + α)(c + 2d1u∗

2 + A) holds, which implies that

P3 – P5 = 2r
[
(b + α)

(
c + 2d1u∗

2 + A
)

– aα
]

–
k2C(1 – m)(b + α)u∗

2
1 + βξ + u∗

2
< 0,

then P2
3 –P2

5 < 0. Hence, there exists a unique positive root ω0 satisfying (3.11). From (3.10),
we get

⎧
⎪⎨

⎪⎩

cosω0τ = (rP1+P4)ω4
0–(rP3+P2P4–P1P5)ω2

0–P3P5
(P4ω0)2+(P5+rω2

0)2 ,

sinω0τ = –rω5
0+(P1P5–P5+rP2)ω2

0+(P2P5–P3P4)ω0
(P4ω0)2+(P5+rω2

0)2 .

Denote

τn =
1
ω0

arccos
(rP1 + P4)ω4

0 – (rP3 + P2P4 – P1P5)ω2
0 – P3P5

(P4ω0)2 + (P5 + rω2
0)2 +

2nπ

ω0
, n = 0, 1, 2, . . . .

Taking τ0 = min{τn : n = 0, 1, 2, . . .}, we see that ±iω0 is a pair of purely imaginary roots of
(3.7) with τ = τn. Differentiating the two sides of (3.7) with respect to τ , it follows that

(
3λ2 + 2P1λ+ P2

)dλ

dτ
+ (–2rλ+ P4)e–λτ dλ

dτ
+

(
–rλ2 + P4λ+ P5

)
(

–τe–λτ dλ

dτ
–λe–λτ

)

= 0,

then

(
dλ

dτ

)–1

= –
3λ2 + 2P1λ + P2

λ(λ3 + P1λ2 + P2λ + P3)
+

–2rλ + P4

λ(–rλ2 + P4λ + P5)
–

τ

λ
,
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(
dλ

dτ

)–1

λ=iω0

=
3ω2

0 – P2 – 2iP1ω0

iω0(–iω3
0 + iP2ω0 + P3 – P1ω

2
0)

+
P4 – 2irω0

iω0(rω2
0 + P5 + iP4ω0)

–
τ

iω0

= [(3ω2
0 – P2)(ω3

0 – P2ω0) – 2P1ω0(P3 – P1ω
2
0)] + i[–2P1ω0(ω3

0 – P2ω0) + (3ω2
0 – P2)(P1ω

2
0 – P3)]

ω0[(ω3
0 – P2ω0)2 + (P3 – P1ω

2
0)2]

+
[–P2

4ω0 – 2rω0(P5 + rω2
0)] – i[P4(P5 + rω2

0) – 2rP4ω
2
0]

ω0[(P4ω0)2 + (P5 + rω2
0)2]

–
τ

iω0

=
E + iF

ω0[(ω3
0 – P2ω0)2 + (P3 – P1ω

2
0)2]

+
E′ – iF ′

ω0[(P4ω0)2 + (P5 + rω2
0)2]

–
τ

iω0
,

where

E =
(
3ω2

0 – P2
)(

ω3
0 – P2ω0

)
– 2P1ω0

(
P3 – P1ω

2
0
)
,

F = –2P1ω0
(
ω3

0 – P2ω0
)

+
(
3ω2

0 – P2
)(

P1ω
2
0 – P3

)
,

E′ = –P2
4ω0 – 2rω0

(
P5 + rω2

0
)
, F ′ = P4P5 – rP4ω

2
0.

Since

(
ω3

0 – P2ω0
)2 +

(
P3 – P1ω

2
0
)2 = (P4ω0)2 +

(
P5 + rω2

0
)2,

we have
(

dλ

dτ

)–1

λ=iω0

=
1
ω0

[
E + E′ + i(F – F ′)

(P4ω0)2 + (P5 + rω2
0)2 –

τ

iω0

]

.

By simple computation, we derive that

sgn

{
d Reλ

dτ

}

λ=iω0

= sgn

{

Re

(
dλ

dτ

)–1}

λ=iω0

= sgn

{
1
ω0

E + E′

(P4ω0)2 + (P5 + rω2
0)2

}

= sgn

{
3ω4

0 + 2ω2
0(P2

1 – 2P2 – r2) + (P2
2 – 2P1P3 – P2

4 – 2rP5)
(P4ω0)2 + (P5 + rω2

0)2

}

> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at ω = ω0, τ = τ0.
In conclusion, we have the following results.

Theorem 3.3 Assume that (H1), (H3), (H5), (H7) hold and m < 1 – ξ

1+βξ
. For the model

(1.5), we have:
(i) If (H9) holds, then the coexisting equilibrium E2(u∗

1, u∗
2, v∗) is locally asymptotically

stable for all τ ≥ 0.
(ii) If (H10) holds, then there exists a positive number τ0, such that E2(u∗

1, u∗
2, v∗) is

locally asymptotically stable for 0 ≤ τ < τ0 and unstable for τ > τ0. Furthermore, the
model (1.5) undergoes a Hopf bifurcation at E2 when τ = τ0.
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4 Stability of bifurcated periodic solutions
In this section, we will establish the direction and stability of periodic solutions bifurcating
from the positive equilibrium E2, and we shall derive explicit formulae for determining the
properties of the Hopf bifurcation at τ0 by using the normal form theory and the center
manifold theorem introduced by Hassard et al. [21].

For the model (1.5), expanding the nonlinear part by Taylor expansion, we rewrite (1.5)
in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = a11u1(t) + a12u2(t) + f1,

u̇2(t) = a21u1(t) + a22u2(t) + a23v(t) + f2,

v̇(t) = a31v(t) + b31u2(t – τ ) + b32v(t – τ ) + f3,

(4.1)

where

a11 = –(b + α), a12 = a, a21 = α, a22 = –c – 2d1u∗
2 –

v∗(1 – m)(1 + βξ )
(1 + βξ + u∗

2)2 ,

a23 = –
(1 – m)u∗

2
1 + βξ + u∗

2
, a31 = –r, b31 =

k2(1 – m)v∗(1 + βξ ) – k2ξv∗

(1 + βξ + u∗
2)2 ,

b32 =
k2[(1 – m)u∗

2 + ξ ]
1 + βξ + u∗

2
, f1 = 0,

f2 = a24u2
2(t) + a25u2(t)v(t) + a26u3

2(t) + a27u2
2(t)v(t),

f3 = a32u2
2(t – τ ) + a33u2(t – τ )v(t – τ ) + a34u3

2(t – τ ),

a24 = –2d1 +
2v∗(1 – m)(1 + βξ )

(1 + βξ + u∗
2)2 , a25 = –

(1 – m)(1 + βξ )
(1 + βξ + u∗

2)2 ,

a26 = –
4v∗(1 – m)(1 + βξ )

(1 + βξ + u∗
2)3 , a27 = –

4(1 – m)(1 + βξ )
(1 + βξ + u∗

2)2 ,

a32 =
2k2[(1 – m)(1 + βξ ) – ξ ]v∗

(1 + βξ + u∗
2)3 , a33 =

k2[(1 – m)(1 + βξ ) – ξ ]
(1 + βξ + u∗

2)2 ,

a34 = –
6k2[(1 – m)(1 + βξ ) – ξ ]v∗

(1 + βξ + u∗
2)4 .

The linearized model (4.1) is

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = a11u1(t) + a12u2(t),

u̇2(t) = a21u1(t) + a22u2(t) + a23v(t),

v̇(t) = a31v(t) + b31u2(t – τ ) + b32v(t – τ ).

(4.2)

Let τ = τ0 + μ, μ ∈ R, t = sτ , u1(sτ ) = û1(s), u2(sτ ) = û2(s), v(sτ ) = v̂(s), denote u1 = û1,
u2 = û2, v = v̂, then (4.1) is transformed into the model

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = (τ0 + μ)[a11u1(t) + a12u2(t)],

u̇2(t) = (τ0 + μ)[a21u1(t) + a22u2(t) + a23v(t) + f22(t)],

v̇(t) = (τ0 + μ)[a31v(t) + b31u2(t – 1) + b32v(t – 1) + f33(t)],

(4.3)
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where

f22(t) = a24u2
2(t) + a25u2(t)v(t) + a26u3

2(t) + a27u2
2(t)v(t),

f33(t) = a32u2
2(t – 1) + a33u2(t – 1)v(t – 1) + a34u3

2(t – 1).

Denote Ck[–1, 0] = {ϕ|ϕ : [–1, 0] →R
3}, each component of ϕ has a K th-order continuous

derivative. Let φ(θ ) = (φ1(θ ),φ2(θ ),φ3(θ ))T ∈ C[–1, 0] be the initial data of model (1.5).
Define the operators

Lμφ = (τ0 + μ)
[
A′φ(0) + B′φ(–1)

]
, f (μ,φ) = (τ0 + μ)(0, f22, f33),

with

A′ =

⎛

⎜
⎝

a11 a12 0
a21 a22 a23

0 0 a31

⎞

⎟
⎠ ,

B′ =

⎛

⎜
⎝

0 0 0
0 0 0
0 b31 b32

⎞

⎟
⎠

and Lμ : C[–1, 0] →R
3, f : R × C[–1, 0] →R

3. Then (4.3) can be rewritten as u′
t = Lμ(ut) +

f (μ, ut).
By the Riesz representation theorem there exists a function η(θ ,μ) of bounded variation

for θ ∈ [–1, 0] such that Lμφ =
∫ 0

–1 dη(θ ,μ)φ(θ ), for θ ∈ [–1, 0]. In fact, we can choose

η(θ ,μ) = (τ0 + μ)A′δ(θ ) + (τ0 + μ)B′δ(θ + 1),

where δ(θ ) is the Dirac function.
For φ ∈ C1[–1, 0], define

(Aμφ)(θ ) =

⎧
⎨

⎩

dφ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(θ ,μ)φ(θ ), θ = 0,

and

(Rμφ)(θ ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

f (μ, θ ), θ = 0.

The model (4.3) is equivalent to u′
t = Aμut + Rμut , where ut = u(t + θ ), θ ∈ [–1, 0].

For ϕ ∈ C1[–1, 0], define

(
A∗ψ

)
(s) =

⎧
⎨

⎩

– dψ(s)
ds , s ∈ (0, 1],

∫ 0
–1 dηT (s, 0)ψ(–s), s = 0,
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and the bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ̄(0)φ(0) –

∫ 0

–1

∫ θ

ξ=0
ψ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (4.4)

where ψ(θ ) ∈ C1[–1, 0], η(θ ) = η(θ , 0), and A0 and A∗ are adjoint operators. From the dis-
cussion in Sect. 3, we know that ±iω0τ0 are the eigenvalues of A0. Hence, they are also
eigenvalues of A∗.

Suppose that q(θ ) = (1, q1, q2)T eiω0τ0θ is the eigenvector of A0, corresponding to iω0τ0,
then q(0) = (1, q1, q2)T , and q(–1) = q(0)e–iω0τ0 . By a direct calculation, we get

τ0

⎛

⎜
⎝

a11 a12 0
a21 a22 a23

0 b31e–iω0τ0 a31 + b32e–iω0τ0

⎞

⎟
⎠

⎛

⎜
⎝

1
q1

q2

⎞

⎟
⎠ = iω0τ0

⎛

⎜
⎝

1
q1

q2

⎞

⎟
⎠ ,

then

q1 =
iω0 – a11

a12
, q2 =

(iω0 – a22)(iω0 – a11) – a21a12

a12a23
.

Similarly, we can calculate the eigenvector q∗(s) = D(1, q∗
1, q∗

2)eiω0τ0s of A∗ belong to the
eigenvector –iω0τ0, then we get

τ0D
(

1 q∗
1 q∗

2

)

⎛

⎜
⎝

a11 a12 0
a21 a22 a23

0 b31eiω0τ0 a31 + b32eiω0τ0

⎞

⎟
⎠ = –iω0τ0D

(

1 q∗
1 q∗

2

)
,

then

q∗
1 =

–a12(a31 + b32eiω0τ0 + iω0)
(a22 + iω0)(a31 + b32eiω0τ0 + iω0) – a23b31eiω0τ0

,

q∗
2 =

a12a23

(a22 + iω0)(a31 + b32eiω0τ0 + iω0) – a23b31eiω0τ0
.

We normalize q and q∗ by the condition 〈q∗(s), q(θ )〉 = 1. Clearly 〈q∗(s), q(θ )〉 = 0. In order
to ensure that 〈q∗(s), q(θ )〉 = 1, we need to determine the value of D. By (4.4), we have

〈
q∗(s), q(θ )

〉
= D̄

(
1, q̄∗

1, q̄∗
2
)
(1, q1, q2)T

–
∫ 0

–1

∫ θ

ξ=0
D̄

(
1, q̄∗

1, q̄∗
2
)
e–iω0τ0(ξ–θ ) dη(θ )(1, q1, q2)T eiω0τ0ξ dξ

= D̄
(
1 + q̄∗

1q1 + q̄∗
2q2

)
– D̄

∫ 0

–1

(
1, q̄∗

1, q̄∗
2
)
θeiω0τ0θ dη(θ )(1, q1, q2)T

= D̄
[
1 + q̄∗

1q1 + q̄∗
2q2 + τ0q̄∗

2(b31q1 + b32q2)e–iω0τ0
]
,

therefore D̄ = 1
1+q̄∗

1q1+q̄∗
2q2+τ0q̄∗

2(b31q1+b32q2)e–iω0τ0 .

In the remainder of this section, following the algorithms given in [21] and using a sim-
ilar computation process as in [22], we get the coefficients that will be used to determine
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several important qualities

g20 = 2τ0D̄
(
k11q̄∗

1 + k21q̄∗
2
)
, g11 = τ0D̄

(
k12q̄∗

1 + k22q̄∗
2
)
,

g02 = 2τ0D̄
(
k13q̄∗

1 + k23q̄∗
2
)
, g21 = 2τ0D̄

(
k14q̄∗

1 + k24q̄∗
2
)
,

where

k11 = a24q2
1 + a25q1q2, k12 = 2a24q1q̄1 + a25(q1q̄2 + q2q̄1),

k13 = a24q̄2
1 + a25q̄1q̄2,

k14 = a24
[
q̄1w(2)

20 (0) + 2q1w(2)
11 (0)

]
+ 3a26q2

1q̄1 + a27
(
q2

1q̄2 + 2q1q2q̄1
)

+ a25

[
1
2

q̄2w(2)
20 (0) + q2w(2)

11 (0) +
1
2

q̄1w(3)
20 (0) + q1w(3)

11 (0)
]

,

k21 = a32q2
1 + a33q1q2e–2iω0τ0 , k22 =

[
2a32q1q̄1 + a33(q1q̄2 + q2q̄1)

]
e–2iω0τ0 ,

k23 =
(
a32q̄2

1 + a33q̄1q̄2
)
e–2iω0τ0 ,

k24 = a32
[
q̄1w(2)

20 (–1) + 2q1w(2)
11 (–1)

]
e–iω0τ0 + 3a34q2

1q̄1e–3iω0τ0

+ a33

[
1
2

q̄2w(2)
20 (–1) + q2w(2)

11 (–1) +
1
2

q̄1w(3)
20 (–1) + q1w(3)

11 (–1)
]

e–iω0τ0 ,

and

w20(θ ) =
ig20

ω0τ0
q(0)eiω0τ0θ +

iḡ20

3ω0τ0
q̄(0)e–iω0τ0θ + E1e2iω0τ0θ

=
ig20

ω0τ0
q(θ ) +

iḡ20

3ω0τ0
q̄(θ ) + E1e2iω0τ0θ ,

w11(θ ) = –
ig11

ω0τ0
q(0)eiω0τ0θ +

iḡ11

ω0τ0
q̄(0)e–iω0τ0θ + E2

= –
ig11

ω0τ0
q(θ ) +

iḡ11

ω0τ0
q̄(θ ) + E2.

Moreover, E1 and E2 satisfy the following equations:

⎛

⎜
⎝

2iω0 – a11 –a12 0
–a21 2iω0 – a22 –a23

0 –b31e–2iω0τ0 2iω0 – a31 – b32e–2iω0τ0

⎞

⎟
⎠E1 = 2

⎛

⎜
⎝

0
k11

k21

⎞

⎟
⎠ ,

⎛

⎜
⎝

–a11 –a12 0
–a21 –a22 –a23

0 –b31 –a31 – b32

⎞

⎟
⎠E2 =

⎛

⎜
⎝

0
k12

k22

⎞

⎟
⎠ .

Furthermore, gij is expressed by the parameters and delay in (1.5). Thus, we can compute
the following values:

C1(0) =
i

2ω0τ0

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,
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μ2 = –
Re C1(0)
Re dλ(τ0)

dτ

,

β2 = 2 Re C1(0),

T2 = –
Im C1(0) + μ2 Im dλ(τ0)

dτ

ω0τ0
,

which determine the properties of bifurcation period solutions at τ = τ0 on the center
manifold. From the above discussions, we have the following result.

Theorem 4.1 For model (1.5), the following results hold:
(i) The sign of μ2 determines the directions of the Hopf bifurcation: if μ2 > 0, then the

Hopf bifurcation is supercritical and the bifurcating periodic solutions exist for
τ > τ0; if μ2 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic
solutions exist for τ < τ0.

(ii) The sign of β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable if β2 < 0; the bifurcating periodic solutions
are unstable if β2 > 0.

(iii) The sign of T2 determines the period of the bifurcating periodic solutions: the period
increases if T2 > 0 and decreases T2 < 0.

5 Numerical simulations
We perform the numerical simulations of the model (1.5) to verify our theoretical results.

Taking a = 3; b = 1
4 ; α = 1

4 ; c = 1
8 ; d1 = 1

8 ; m = 1
2 ; k2 = 3

2 ; ξ = 1
3 ; β = 1

2 ; r = 1
4 ; we see that the

conditions (H1) or (H4) hold. Theorem 3.1(i) is verified numerically in Fig. 1(a).
Taking a = 3; b = 1

4 ; α = 1
4 ; c = 2; d1 = 1

8 ; m = 1
2 ; k2 = 3

2 ; ξ = 1
3 ; β = 1

2 ; r = 2; it is clear that
the conditions (H2) and (H3) hold. Theorem 3.1(ii) is verified numerically in Fig. 1(b).

If we choose a = 4.3; b = 1
4 ; α = 2

9 ; c = 2; d1 = 1
8 ; m = 1

4 ; k2 = 3; ξ = 5; β = 1
2 ; r = 2; then the

conditions (H4) and (H5) hold. Theorem 3.2(i) is verified numerically by Fig. 2(a).
If we choose a = 7

2 ; b = 1
4 ; α = 1

2 ; c = 2; d1 = 1
8 ; m = 1

2 ; k2 = 3
2 ; ξ = 1

3 ; β = 1
2 ; r = 2; then the

conditions (H3) and (H6) hold. Theorem 3.2(ii) is verified numerically by Fig. 2(b).

Figure 1 Time series of u1(t), u2(t) and v(t) generated by the model (1.5). Three initial values are chosen as
(u1(0),u2(0), v(0)) = (0.2, 0.4, 0.9), (0.6, 1.3, 1.7), (0.01, 1.5, 2.2) marked red points, blue points and black points,
respectively. The dashed line stands for u1(t) = 0, u2(t) = 0 and v(t) = 0, respectively. (a) The trivial equilibrium
E0(0, 0, 0) is unstable. (b) The trivial equilibrium E0(0, 0, 0) is locally asymptotically stable
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Figure 2 Time series of u1(t), u2(t) and v(t) generated by the model (1.5): (a) Three initial values are chosen as
(u1(0),u2(0), v(0)) = (1.75, 2, 0.5), (2.3, 0.3, 0.1), (1.1, 1.5, 0.8) marked red points, blue points and black points,
respectively. The dashed line stands for u2(t) = 0. (b) Three initial values are chosen as
(u1(0),u2(0), v(0)) = (14, 5.2, 0.8), (10, 2, 2.4), (9, 1.3, 0.5) marked red points, blue points and black points,
respectively. The dashed line stands for u1(t) = 12.444444444446397, u2(t) = 2.666666666667100 and v(t) = 0,
respectively

Figure 3 Time series of u1(t), u2(t) and v(t) generated
by the model (1.5): Three initial values are chosen as
(u1(0),u2(0), v(0)) = (8, 0.5, 21), (2, 4, 14), (1, 6, 12)
marked red points, blue points and black points,
respectively. The dashed line stands for
u1(t) = 4.125000892829194,
u2(t) = 2.250000487010802 and
v(t) = 17.406948324710228, respectively

Taking a = 1.1; b = 1
10 ; α = 1

2 ; c = 1
10 ; d1 = 1

12 ; m = 1
4 ; k2 = 0.5; ξ = 3.5; β = 5; r = 1

8 ; we
see that the conditions m < 1 – ξ

1+βξ
, (H8) and (P1 – r)(P2 + P4) – (P3 + P5) > 0 hold. The

numerical result of Case 3.1 can be seen in Fig. 3.
When τ ≥ 0, taking a = 1.1; b = 0.1; α = 1

2 ; c = 1
10 ; d1 = 1

4 ; m = 1
3 ; k2 = 0.5; ξ = 3.5;

β = 4.5; r = 1
8 ; we see that the conditions β = 4.5 > k2

r – 1
ξ

= 3.714285714285714, 0 <
m = 1

3 < min{1 – r
k2

, 1 – r
k2

– d1[r+(rβ–k2)ξ ](b+α)
αk2(a–c)–bc } = 0.5351562500000000, m = 1

3 < 1 – ξ

1+βξ
=

0.7910447761194030 and (H9) hold. The numerical result of Theorem 3.3(i) is presented
by Fig. 4(a) for τ = 0 and Fig. 4(b) for τ = 10.

Taking a = 6; b = 0.2; α = 5
3 ; c = 1

10 ; d1 = 1
4 ; m = 1

3 ; k2 = 0.5; ξ = 3.5; β = 4.5; r = 1
8 ; we see

that (H1), (H3), (H5), (H7), (H10) hold and τ0 = 0.1509514710143546. The numerical result
of Theorem 3.3(ii) is presented by Fig. 5 for τ = 0.06 and Fig. 6 for τ = 0.5.

6 Conclusions
In this paper, we study a delayed predator–prey model with stage structure for prey incor-
porating refuge and provide additional food to the predator. By analyzing the correspond-
ing characteristic equations, we investigate the local stability of the equilibria of the model.
We discuss the existence of Hopf bifurcation by choosing time delay as a parameter. We
find that time delay can causes a stable equilibrium to become unstable one, even occur
Hopf bifurcation, when time delay passes through some critical values. Furthermore, by
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Figure 4 Time series of u1(t), u2(t) and v(t) generated by the model (1.5): Three initial values are chosen as
(u1(0),u2(0), v(0)) = (7, 0.8, 16.5), (2, 4, 10), (0.3, 6, 12) marked red points, blue points and black points,
respectively. The dashed line stands for u1(t) = 3.025001035342410, u2(t) = 1.650000564732131 and
v(t) = 11.155001498913562, respectively. (a) τ = 0. (b) τ = 10

Figure 5 Time series of u1(t), u2(t), v(t) and phase portrait of the model (1.5) with
τ = 0.06 < τ0 = 0.1509514710143546. An orbit from the initial condition (u1(0),u2(0), v(0)) = (7, 1.2, 125)
located in a sufficiently small neighborhood of the equilibrium E2(5.303571428572600, 1.650000000000400,
133.712142857161200) converges to the equilibrium E2. The simulation results indicate that the equilibrium
E2 is locally asymptotically stable

applying the normal form method and center manifold theorem, we investigate the di-
rection of Hopf bifurcation and the stability of the bifurcated periodic solutions. We give
numerical simulations to show our main results.

From Theorem 3.3, we see that, for the stability of a coexisting equilibrium point, the
refuge has to be bounded by a value which depends on the quantity and the quality of
additional food. Results obtained in this paper provide a useful platform to understand



Bai and Li Advances in Difference Equations         (2019) 2019:42 Page 19 of 20

Figure 6 Time series of u1(t), u2(t), v(t) and phase portrait of the model (1.5) with
τ = 0.5 > τ0 = 0.1509514710143546. An orbit from the initial condition (u1(0),u2(0), v(0)) = (7, 1.2, 125) located
in a sufficiently small neighborhood of the equilibrium E2(5.303571428572600, 1.650000000000400,
133.712142857161200) converges to a periodic solution. The simulation results indicate that the equilibrium
E2 is unstable and periodic solution is stable. The periodic attractor bifurcates from the equilibrium and
surrounds the equilibrium E2 as the delay τ crosses the critical value τ0 = 0.1509514710143546

the roles of refuge and additional food. Therefore, refuge and additional food can be taken
as population controllers to study the prey–predator models.

Our results can be compared with the ones in Sahoo [17] which considered the role of
additional food in eco-epidemiological system with disease in the prey. So, we can extend
our predator–prey model to an eco-epidemiological system based on [17, 23].
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