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Abstract
In this paper, we derive seed and 1-soliton solutions of the Q2 equation in the
Adler–Bobenko–Suris list. The seed solutions of Q2 are obtained using those of Q1(δ)
and an non-auto Bäcklund transformation connecting them. Then using an auto
Bäcklund transformation, two types of Q2 one-soliton solutions are obtained based
on its seed solutions. These obtained solutions are new and cannot be derived as
degenerations from any known soliton solutions.
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1 Introduction
Integrable systems involve the study of physically relevant nonlinear equations, which in-
cludes many families of well-known, highly important partial and ordinary differential
equations. Over the past two decades, research in discrete integrable systems has under-
gone a truly remarkable development (see for instance the monograph [1]). One of the key
achievements was the introduction of multi-dimensional consistency [2–4] as a defining
criterion for discrete integrability, which can be seen as the discrete analog of the com-
patible hierarchies in continuous integrable theory. It turns out that quad-equations, two-
dimensional lattice equations defined on square lattices, are said to be integrable, if they
are three-dimensional consistent, geometrically meaning that the equations can be con-
sistently embedded around a cube (CAC). This led, up to few other assumptions, to the
classification of integrable affine linear quad-equations [5], known as the Adler–Bobenko–
Suris (ABS) list. The list contains 9 equations, named Q4, Q3(δ), Q2, Q1(δ), A2, A1(δ),
H3(δ), H2 and H1. Most of these equations were known or related to known equations.
For example, Q4 is a fully discretized version of the famous Krichever–Novikov equation
[6, 7], Q3(δ) is related to the Nijhoff–Quispel–Capel equation [8, 9], Q1(0), H3(0) and H1
are, respectively, the lattice Schwarzian Korteweg–de Vries (KdV) equation, the lattice
potential modified KdV equation and the lattice potential KdV equation [10].

Amongst the equations in the ABS list, Q2 is somewhat mysterious. It was unknown
before the ABS classification; so far its solutions have only been obtained either as degen-
eration of Q3(δ) [9, 11–13] or from solutions of Q1(δ) using appropriate transformations
[14]. Partly due to its complexity, one rarely finds solution results obtained directly from
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Figure 1 (a) Lattice on (n,m) plane. (b) Consistent cube

the equation itself. The Q2 equation reads

p(u – û)(̃u –̂ũ) – q(u – ũ)(̂u –̂ũ) = pq(q – p)
(

u + ũ + û +̂ũ – p2 + pq – q2), (1.1)

where˜and ̂ serve as shifts in a Z
2 lattice, i.e.,

u ≡ un,m, ũ ≡ un+1,m, û ≡ un,m+1, ̂ũ ≡ un+1,m+1,

and p, q are the lattice parameters associated with n, m respectively. See Fig. 1(a).
Due to the CAC property, the lattice equation admits the following copies:

p(u – u)(̃u –˜u) – k(u – ũ)(u –˜u) = pk(k – p)
(

u + ũ + u +˜u – p2 + pk – k2), (1.2a)

k(u – û)(u –̂u) – q(u – u)(̂u –̂u) = kq(q – k)
(

u + u + û +̂u – k2 + kq – q2). (1.2b)

Here ¯ denotes shifts in the third direction associated with the lattice parameter k (see
Fig. 1(b)). The above equations also define an auto Bäcklund transformation (BT) of Q2
[5], namely, given u as a solution, u solves Q2 as well provided that u and u are connected
through (1.2a)–(1.2b). In the auto BT approach, u is commonly known as a seed solution,
while ū as a new solution generated from u.

One particular aim of this paper is to derive one-soliton solutions (1SSs) of Q2 by means
of the auto BT (1.2a)–(1.2b). This requires knowledge of its seed solutions, which have
not been well understood either in the literature. For instance the fixed-point method
[15] only provides a solution of Q2 that is a special case of a more general solution (see
Sect. 2.3). Our approach to obtaining Q2’s seed solutions is based on an non-auto BT
between Q1(δ) and Q2 [16]. There exist two different types of (seed) solutions of Q1(δ)
such as the exponential type cf. [15] and the rational type [15, 17]. These solutions allow
one to derive exponential and rational types of seed solutions of Q2, and in turn, lead to
different 1SSs of Q2. Note that although the idea of this paper is clear, the “integration”
of the BT (1.2a)–(1.2b) to get 1SS is highly nontrivial. We also note that the solutions of
Q2 we obtain here are essentially new, as they cannot be reduced as reductions of known
results.

The paper is organized as follows. We will first make use of known solutions of Q1(δ)
and the non-auto BT between Q1(δ) and Q2 to derive seed solutions for Q2. Fixed point
idea will also be discussed. These will be done in Sect. 2. Then in Sect. 3 we derive three
1SSs for Q2 from different seed solutions. Section 4 serves for conclusions.
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2 Seed solutions
We derive seed solutions of Q2 from those of Q1(δ). The Q1(δ) equation reads [5]

p(w – ŵ)(w̃ – ̂w̃) – q(w – w̃)(ŵ – ̂w̃) = δ2pq(q – p), (2.1)

and is connected to Q2 by the following non-auto BT (Miura transformation) [16]:

δ(w – w̃)(u – ũ) = –p
(

δ2u + δ2ũ – 2ww̃
)

+ δp2(w + w̃ + p), (2.2a)

δ(w – ŵ)(u – û) = –q
(

δ2u + δ2û – 2wŵ
)

+ δq2(w + ŵ + q). (2.2b)

2.1 Exponential case
Q1(1) has an exponential-type solution, cf. [15]

w0SS
n,m =

1
2
(

Aαnβm + A–1α–nβ–m)

, (2.3)

where A is an arbitrary non-zero constant, and α, β are connected to p, q through

p =
(1 – α)2

2α
, q =

(1 – β)2

2β
. (2.4)

Inserting w0SS
n,m into (2.2a)–(2.2b) with δ = 1 and extracting out the common factors, the

BT (2.2a)–(2.2b) are reduced to

Zn,mu – Zn+1,mũ =
1 – α

2
(

Aαnβm + A–1α–nβ–m)

+ Zn,m – Zn+1,m – P,

Zn,mu – Zn,m+1û =
1 – β

2
(

Aαnβm + A–1α–nβ–m)

+ Zn,m – Zn,m+1 – Q,

where

Zn,m =
Aαnβm – 1
Aαnβm + 1

, P =
(α2 – 1)(α2 – 4α + 1)

4α2 ,

Q =
(β2 – 1)(β2 – 4β + 1)

4β2 .
(2.5)

By integrating the above two equations w.r.t. n and m, respectively, one gets

Z0,mu0,m – Zn,mun,m

=
1
2
(

–Aαnβm + A–1α–nβ–m)

+
1
2
(

Aβm – A–1β–m)

+ Z0,m – Zn,m – Pn,

Zn,0un,0 – Zn,mun,m

=
1
2
(

–Aαnβm + A–1α–nβ–m)

+
1
2
(

Aαn – A–1α–n) + Zn,0 – Zn,m – Qm.

Then a combination of them yields a solution of Q2

u0SS
n,m =

1
2
(

Aαnβm + A–1α–nβ–m + 4
)

+ Z–1
n,m(Pn + Qm + r), (2.6)

where r is another constant.
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2.2 Rational case
Again based on the BT (2.2a)–(2.2b), solutions of Q2 can be derived using rational solu-
tions of Q1(δ). For simplicity, we only consider the two lowest order rational solutions of
Q1(δ) [17]. Higher order rational solutions can in theory be used, but with more compli-
cations. Introduce a linear function

xi = ain + bim + ζi, (2.7)

where

p = a2, q = b2 (2.8)

and ζi is a constant. One imposes the following relation between u and w:

u = y +
w2

δ2 , (2.9)

where δ is a parameter and y is to be determined. It follows from the BT (2.2a)–(2.2b) that

ỹ =
w̃ – w – δp
w̃ – w + δp

y +
1
δ2 (w + δp – w̃)(w + δp + w̃), (2.10a)

ŷ =
ŵ – w – δq
ŵ – w + δq

y +
1
δ2 (w + δq – ŵ)(w + δq + ŵ). (2.10b)

Submitting a Q1(δ) solutiona [17] w = δ(x2
1 + c0) (c0 is a constant) into (2.10a)–(2.10b)

yields

ỹ =
x1

x̃1
y – 4ax1

(

x1x̃1 + a2 + c0
)

, ŷ =
x1

x̂1
y – 4bx1

(

x1x̂1 + b2 + c0
)

.

Introducing a new variable z = yx1, then the above system can be reduced to

z̃ = z – 4ax1x̃1
(

x1x̃1 + a2 + c0
)

, ẑ = z – 4bx1x̂1
(

x1x̂1 + b2 + c0
)

,

which can be integrated

z = –
4
5

x5
1 –

4
3

c0x3
1 +

4
3

c0x3 +
4
5

x5. (2.11)

As a result, one obtains a rational solution of Q2 via (2.9)

u =
1
5

x4
1 +

2
3

c0x2
1 +

4c0x3

3x1
+

4x5

5x1
+ c2

0. (2.12)

Using another rational solution of Q1(δ) [17]

w =
x3

1 – x3

3
– δ2x1, (2.13)

then y satisfies

ỹ =
(x1 – δ)(̃x1 + δ)
(x1 + δ)(̃x1 – δ)

y –
a
δ2 (x1 – δ)(̃x1 + δ)

(

w + w̃ + δa2),
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ỹ =
(x1 – δ)(̂x1 + δ)
(x1 + δ)(̂x1 – δ)

y –
b
δ2 (x1 – δ)(̂x1 + δ)

(

w + ŵ + δb2),

which can be integrated by introducing z = x1–δ

x1+δ
y. The equation for z reads

z̃ = z –
a
δ2 (x1 – δ)(̃x1 – δ)

(

w + w̃ + δa2),

ẑ = z –
b
δ2 (x1 – δ)(̂x1 – δ)

(

w + ŵ + δb2),

which leads to

z = –
1

9δ2 x6
1 +

4
15δ

x5
1 +

1
3

x4
1 +

2
9δ2 x3

1x3 –
4δ

3
x3

1 –
2
3δ

x2
1x3

+ δ2x2
1 +

2
3

x1x3 –
1

9δ2 x2
3 –

2δ

3
x3 +

2
5δ

x5. (2.14)

Therefore, we obtain a second rational solution of Q2 via (2.9)

u =
1

45δ(x1 – δ)
[

30
(

x3
1 – x3

)

δ3 – 15
(

x4
1 + 2x1x3

)

δ2

+ 3
(

–x5
1 + 10x2

1x3 + 6x5
)

δ + 2x6
1 + 18x1x5 – 10x2

3 – 10x3
1x3

]

. (2.15)

Both (2.12) and (2.15) go to infinity when n, m → ±∞, which is depicted in Fig. 2.
There is a third polynomial solution of Q1(δ), cf. [15]

w = αn + βm + γ , (2.16)

obeying the parametrizations

p =
c0

a2 – δ2 , q =
c0

b2 – δ2 , α = pa, β = qb, (2.17)

with γ , δ, c0 being constants. Using the ansatz (2.9), through (2.10a)–(2.10b), one has

y = –
wc0

δ3 +
1

2δ4 c2
0 + y0, (2.18)

Figure 2 Background solutions of rational type. (a) Solution (2.12), (b) solution (2.15); where a = 0.5, b = 0.5,
c0 = 2, ζ1 = ζ3 = ζ5 = 1, δ = 1,m ∈ [–40, 40], waves in red, blue and black stand for n = –5, 0, 5, respectively
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with y0 satisfying

ỹ0 =
a – (±δ)
a + (±δ)

y0, ŷ0 =
b – (±δ)
b + (±δ)

y0.

The function y0 can be integrated as discrete exponentials, which leads to a Q2 solution
through (2.9) and (2.18). However, it is interesting that one can verify the following:

u =
w2

δ2 +
c2

0
4δ4 +

(

a – δ

a + δ

)n(b – δ

b + δ

)m

γ +
0 +

(

a + δ

a – δ

)n(b + δ

b – δ

)m

γ –
0 +

4γ +
0 γ –

0 δ4

c2
0

, (2.19)

is a solution of Q2 as well, where γ ±
0 are constants and a reparametrization γ → γ + c0

δ2 is
used. We note that the above solution with c0 = δ2 coincides with the seed solution (zero-
soliton solution) of Q2 derived as a degeneration of Q3(δ) (see (5.8) in [9]). Inversely, we
find this solution as a seed solution generate the same 1SS as obtained in [9] in the auto-BT
process, and hence will not be considered in the next section.

Besides, note that there is a degeneration approach from Q2 equation (1.1) to Q1(δ)
equation (2.1), via [9, 18]

u → δ2

4ε2 +
w
ε

, ε → 0. (2.20)

Imposing the above limit on (2.12) together with taking c0 → δ
2ε

+ c0, (2.12) leads to

w = δ

(

x3
1 + 2x3

3x1
+ c0

)

. (2.21)

This is a new solution to Q1(δ), which was not found in [14, 17, 18]. For the solution (2.15),
we again make use of (2.20) and together setting δ → δ

ε
, c3 → 3δ

8ε
+ c3, (2.15) turns to be

w = –
δ(4x3

1 – 4x3 – 3x1)
6

,

which is nothing new but Q1( 1
2 ) (2.13) multiplied by δ. For (2.19), through (2.20) and

γ → γ ′δ2

ε
+ γ , γ + → γ +

ε
, γ – → γ –

ε
, where γ ′2 +

4δ2γ +γ –

c2
0

=
1
4

,

from (2.19) we arrive at

w = 2γ ′(αn + βm + γ ) +
(

a – δ

a + δ

)n(b – δ

b + δ

)m

γ +
0 +

(

a + δ

a – δ

)n(b + δ

b – δ

)m

γ –
0 ,

which is the same as obtained in [9].

2.3 Fixed-point solution
Fixed-point solutions, stationary solutions of quad-equations along a third lattice direc-
tion, can also be used to solve the equations themselves [19]. This idea has been applied
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to the equations in the ABS list [9, 15]. In this idea u is considered to be u, i.e. k is not sig-
nificant in generating solitons and then u is solved usually as a background solution (seed
solution) of solitons. By this idea the BT (1.2a)–(1.2b) of Q2 yields its fixed point version

(u – ũ)2 = p(p – k)
(

2u + 2̃u – p2 + pk – k2), (2.22a)

(u – û)2 = q(q – k)
(

2u + 2̂u – k2 + kq – q2). (2.22b)

Solving them with parametrization (2.17) and k = –c0/δ2 yields the Q2 solution (2.19) with
γ ±

0 = 0.

3 One-soliton solutions of Q2
In this section, the solutions (2.6), (2.12) and (2.15) are used as seed solutions in the auto
BT approach to generating 1SSs.

3.1 General procedure
Suppose u (denoted by uθ conventionally, cf. [15, 19–22]) is a seed solution of Q2 and de-
note uθ as a shifted u in the third direction in the light of the CAC property. In fact, the
CAC property of Q2 indicates its solution u(n, m) can be consistently embedded into a
3-dimension cube (see Fig. 1(b)). Although there is no explicit independent variable l in
u(n, m), one can introduce a bar shift (shift in l-direction) for it according to˜or ̂ shifts.
For example, for w defined in (2.3), we have w̃ = 1

2 (Aαnβmα + A–1α–nβ–mα–1) and α is re-
lated to p (the spacing parameter of n-direction) as in (2.4). Then w should be accordingly
defined as w = 1

2 (Aαnβms + A–1α–nβ–ms–1) and s is related to the spacing parameter k of
l-direction by k = (1 – s)2/2s, which is coincident with (2.4). For xi defined in (2.7), we have
xi = xi + ci where we suppose c2 = k to coincide with (2.8).

One imposes u as a solution of Q2 in the formb

u = uθ + v. (3.1)

Then the BT (1.2a)–(1.2b) is reduced to difference equations for v

ṽ =
Ev

v + F
, v̂ =

Gv
v + H

, (3.2)

where

E = ũ –˜uθ +
k
p

(u – ũ) + k(k – p), F = –u + uθ +
k
p

(u – ũ) – k(k – p), (3.3a)

G = û –̂uθ +
k
q

(u – û) + k(k – q), H = –u + uθ +
k
q

(u – û) – k(k – q). (3.3b)

The difference system (3.2) can be linearized using v = f
g , which leads to

˜Φ = Λ

(

E 0
1 F

)

Φ , ̂Φ = Λ

(

G 0
1 H

)

Φ , Φ =

(

f
g

)

, (3.4)

where Λ is some “balancing” factor to be determined to guarantee the compatibility
̂
˜Φ = ˜

̂Φ . Then it remains to integrate the linear difference system (3.4) so that v = f
g , hence

ū, can be derived. The so-obtained ū gives a 1SS of Q2.
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3.2 1SS from exponential seed solution (2.6)
Using the background form (2.6) and its shift we have

uθ =
1
2
(

Aαnβms + A–1α–nβ–ms–1 + 4
)

+
Aαnβms + 1
Aαnβms – 1

(Pn + Qm + K + r). (3.5)

Similar to the parametrizations of α, β and P, Q, s and K satisfy

k =
(1 – s)2

2s
, K =

(s2 – 1)(s2 – 4s + 1)
4s2 , (3.6)

as k is understood as the lattice parameter in the ¯ direction. Following the ansatz de-
scribed above (3.1)–(3.4), direct but hard computations lead to the difference system

˜Φ =

(

S · Un+1,mVn,m
Un,mVn+1,m

0
1

Un,m
� · Vn+1,m

Vn,m

)

Φ , ̂Φ =

(

T · Un,m+1Vn,m
Un,mVn,m+1

0
1

Un,m
Ω · Vn,m+1

Vn,m

)

Φ , (3.7)

where

Un,m =
Aαnβm + 1

Aαnβm – 4
2Zn,m

+
2(Pn + Qm + r)

(Aαnβm – 1)( 1
Aαnβm – 1)

, Vn,m =
Aαnβms – 1
Aαnβm – 1

,

S =
(1 – s)(1 – αs)

(1 – α)s
, � =

(1 – s)(α – s)
(1 – α)s

,

T =
(1 – s)(1 – βs)

(1 – β)s
, Ω =

(1 – s)(β – s)
(1 – β)s

,

and the balancing factor takes Λ = 1/Un,m. Integrating the first equation in (3.7), one gets

fn,m =
Un,mV0,m

U0,mVn,m
Snf0,m,

gn,m =
1
s

Vn,m
V0,m

U0,m

(

Sn – �n

1 – s2 +
Sn

Aαnβms – 1
–

�n

Aβms – 1

)

f0,m +
Vn,m

V0,m
�ng0,m,

where the expression of gn,m is obtained using the identity

1
Vn–j,mVn–1–j,m

=
1
s2

[

1 +
1 – s
1 – α

(

1 – αs
Aαn–jβms – 1

–
α – s

Aαn–1–jβms – 1

)]

.

Similarly expressions can be derived solving the second equation in (3.7). Let

ρn,m =
(

S
�

)n( T
Ω

)m

ρ0,0 =
(

1 – αs
α – s

)n(1 – βs
β – s

)m

ρ0,0, (3.8)

we can obtain v in the form

vn,m =
Un,mV0,0
U0,0Vn,m

v0,0ρn,m/ρ0,0

Vn,mV0,0
sU0,0

(– 1–ρn,m/ρ0,0
1–s2 + ρn,m/ρ0,0

Aαnβms–1 – 1
As–1 )v0,0 + Vn,m

V0,0

. (3.9)
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After a reparametrization of ρ0,0, we get

vn,m =
Un,m

V 2
n,m

· ρn,m

1 + 1
1–s2 · Aαnβm–s

Aαnβms–1 · ρn,m
, (3.10)

which, together with (3.5), forms a 1SS of Q2. Reparametrising A to A
s one obtains

u1SS
n,m =

1
2

(

1
Aαnβm + Aαnβm + 4 +

(

s
Aαnβm +

Aαnβm

s
– 4

)(

A2α2nβ2m

s2 – 1
)

Γn,m

)

+ (Pn + Qm + r)
(

1 + 2
(Aαnβm – 1)(1 – s2 + sρn,m)

(1 – s2)ρn,m
Γn,m

)

+
Aαnβm + 1
Aαnβm – 1

K , (3.11)

where

Γn,m =
1

Aαnβm – 1
· (1 – s2)ρn,m

(Aαnβm – 1)(1 – s2) + (Aαnβms–1 – s)ρn,m
. (3.12)

3.3 1SSs from rational seed solutions (2.12) and (2.15)
We continue computing 1SSs of Q2 using the rational seed solutions (2.12) and (2.15). We
will skip computational details and just put the main results.

From the seed solution (2.12), the terms defined in (3.3a)–(3.3b) and (3.4) are in the
forms

E = SUn+1,m
ϕn,m

ϕn+1,m
, F = �Un,m

ϕn+1,m

ϕn,m
,

G = TUn,m+1
ϕn,m

ϕn,m+1
, H = ΩUn,m

ϕn,m+1

ϕn,m
, (3.13)

S =
s(a + s)

a
, T =

s(b + s)
b

, � =
s(s – a)

a
, Ω =

s(s – b)
b

, Λ = 1/Un,m,

where

ϕn,m =
x1 + s

x1
, Un,m =

zn,m

x2
1

,

with zn,m (2.11) and k = s2. Then, by solving the system (3.4), we have

vn,m =
fn,m

gn,m
=

2sUn,mρn,m

ϕ2
n,m(1 + x1–s

x1+s ρn,m)
, ρn,m =

(

s + a
s – a

)n( s + b
s – b

)m

ρ0,0. (3.14)

Thus the so-obtained 1SS of Q2 is

u1SS
n,m = uθ +

2szn,mρn,m

(x2
1 – s2)ρn,m + (x1 + s)2 , (3.15)

where uθ is a bar-shifted u (2.12) and zn,m given in (2.11). We depict its shape and motion,
after removing the background uθ , in Fig. 3(a). One can find the wave asymptotically is
governed by zero on one direction and by 2szn,m

x2
1–s2 on the other direction.
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Figure 3 One-soliton solutions of Q2 without backgrounds. (a) Solution (3.15), (b) solution (3.17); where
a = –0.5, b = –0.5, s = 4.5, ρ0,0 = 0.5, c0 = 1, ζ1 = ζ3 = ζ5 = 1, δ = –3,m ∈ [–15, 40], waves in red, blue and black
stand for n = –5, 0, 5, respectively

For the seed solution (2.15), one obtains similar expressions (3.13) and

S =
2sδ(a + s)

a
, T =

2sδ(b + s)
b

, � =
2sδ(s – a)

a
,

Ω =
2sδ(s – b)

b
, Λ = 1/Un,m,

where

ϕn,m =
x1 + s – δ

x1 – δ
, Un,m =

zn,m

(x1 – δ)2 , k = s2,

with zn,m (2.14). Solving (3.4) yields

vn,m =
4δsUn,mρn,m

ϕ2
n,m(1 + x1–s–δ

x1+s–δ
ρn,m)

, ρn,m =
(

s + a
s – a

)n( s + b
s – b

)m

ρ0,0, (3.16)

which leads to another 1SS of Q2 in the form

u1SS
n,m = uθ +

4δszn,mρn,m

[(x1 – δ)2 – s2]ρn,m + (x1 – δ + s)2 , (3.17)

where uθ is a bar-shifted u (2.15) and zn,m given in (2.14). We depict its shape and mo-
tion, after removing the background uθ , in Fig. 3(b). This is a moving wave asymptotically
governed by zero on one direction and by 4δszn,m

(x1–δ)2–s2 on the other direction.

4 Conclusions
In this short paper, we manage to provide explicit formulas of solutions of the Q2 equa-
tion (1.1) in the ABS list, at the cost of a considerable computational effort (in particular,
to determine the balancing factor Λ). We derive seed solutions of Q2 in Sect. 2 using solu-
tions of Q1(δ) and a non-auto BT connecting them. The results are then used in Sect. 3 to
derive 1SSs of Q2 using an auto BT approach. Both the auto BT and the non-auto BT are
realizations of the CAC property. The seed and the associated soliton solutions belong to
either exponential type or rational type of solutions. They are essentially new solutions, i.e.
(2.12), (2.15), (3.15) and (3.17), as they cannot be obtained as degenerated cases of known
solutions.
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Here we have relaxed the definition of “solitons” as it is hard to remove background (seed
solution) from an 1SS and leave a pure soliton form. As an example we may have an extra
glance at the 1SS (3.15), in which uθ is a background. The remaining soliton part takes a
form

v =
2szn,m
(x1+s)2 ρn,m

1 + x1–s
x1+s ρn,m

,

with the soliton parameter s, which looks much neater than (3.10) derived from the expo-
nential case. This is again different from the pure soliton form sρn,m

1+ρn,m
(cf. (3.15) in [15]).

In addition, although rational solutions can usually be interpreted as some limits of soli-
tons, so far in the literature we do not know any solutions that can yield the above form
by imposing suitable limits.

In comparison with other equations in the ABS list, Q2 is rather special and needs fur-
ther investigations. For instance, its bilinear form, continuous counterpart, geometric in-
terpretations or physical significance have not been fully understood. In particular, a sys-
tematic approach to generating N-soliton solutions of given type is yet to be understood,
into which we hope our results could provide insight.
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