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Abstract
This paper pursues an adaptive fuzzy control scheme for a class of nonlinear systems
with stochastic switching. A general controller and adaptive mechanism are designed
by utilizing Lyapunov function approach and backstepping technique. It is
demonstrated that the presented control method can guarantee that all the signals in
the closed-loop system are semi-globally uniformly ultimately bounded (SUUB) and
the tracking error is convergent to a neighborhood of the origin. Finally, the
simulation results verify the feasibility of the control strategy presented in this paper.
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1 Introduction
As is well known, a common Lyapunov function (CLF) guarantees that the switched sys-
tem is stable under arbitrary switching [1]. As an impactful approach for the stability anal-
ysis, CLF has been widely employed for control synthesis of switched linear systems [2–6].
For instance, [7] used the classic quadratic Lyapunov function and solved the stabilization
problem for a class of stochastic nonlinear strict-feedback systems. Based on CLF method
for a class of switched nonlinear systems, [8, 9] have investigated three state feedback con-
trol methods; however, the nonlinear functions of the above control systems are known.
Additionally, the backstepping technique is used for the global stabilization problem for
switched nonlinear systems in strict-feedback form under arbitrary switchings [8]. The
adaptive backstepping approach is a recursive design methodology for controller design.
It constructs associated Lyapunov functions and feedback control laws, and its main pur-
pose is to design the adaptive laws and virtual control functions to counteract the unknown
nonlinearity of system [10]. In recent years, in view of several classes of switched nonlinear
systems, some backstepping control design methods have been proposed. Nevertheless,
few of them take into account the uncertainties that exist extensively in practical switched
nonlinear systems [6, 11].

In the last few decades, as a typical hybrid system, switched systems have been a great
concern with their increasing significance in engineering practice, such as multiagent sys-
tems, aircraft-control systems and circuit and power systems [12, 13]. Switched systems
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present switching between a set of subsystems resting with changing environmental fac-
tors. The system detects and breaks down various parameters in the changing environ-
ment, and then switches to the subsystem matching with the environment. So far, the
controller design and stability analysis of switched systems have proposed remarkable re-
sults [2, 14–20]. In the actual control system, the dynamic characteristics of controlled
objects such as production process, production equipment and transmission system are
difficult to describe by accurate mathematical model. With the change of working envi-
ronment, the components of the control system may be aged or damaged, and the char-
acteristics of the controlled object also change. All these factors lead to some inevitable
errors between the mathematical model of the controlled object and the actual object. For
example, in large power systems, due to the large dimension, many systems contain un-
modeled dynamic, uncertain parameters and random noise. In the actual operation, the
system will also be affected by various harmonic and load disturbances. These random
uncertainties of the power system bring about security risks to the normal operation of
the power system. All of the above systems can be described by switching system. Since
stochastic switched systems integrate the characteristics and difficulties of stochastic sys-
tems and switched systems, it is very difficult to analyze the stability and application of
stochastic switched systems.

Obviously, stochastic disturbance is considered as one of the unstable sources of con-
trol systems which usually exists in many practical systems [21–23]. So, for a determinis-
tic nonlinear system, the control for stochastic nonlinear system is much more difficult.
Therefore, the research on control design and stability analysis for nonlinear stochastic
systems is a significant and challenging subject, and it has been a topic of great concern in
the last few years [24–28]. Specifically, some control methods based on adaptive backstep-
ping technique for deterministic nonlinear systems [29–32] have been successfully gener-
alized to nonlinear stochastic systems [33–39]. For instance, an output-feedback backstep-
ping controller was developed for a class of stochastic nonlinear systems in [40], the state
feedback controller is designed for nonlinear stochastic systems with Markovian switching
[41] and [42] presented the backstepping control design approaches. Nevertheless, these
methods are only suitable for those nonlinear stochastic systems with known nonlinear
dynamic models. Adaptive output-feedback control methods for a class of uncertain non-
linear stochastic systems were proposed by utilizing the fuzzy logic system (FLS) and the
stability of the control systems was discussed in [35]. The results of [35] were extended to
a class of uncertain large-scale nonlinear stochastic systems. The approaches [17, 20] de-
creased the adjustable parameters. The presented controller in [43] has a simple structure
because the unknown virtual control signals were directly approximated via FLS. From the
above, adaptive fuzzy control approach plays an important role in dealing with uncertain
nonlinear systems.

Motivated by the above discussions, this paper presents an adaptive fuzzy tracking con-
trol method for a class of uncertain strict-feedback switched nonlinear systems with com-
pletely unknown nonlinear functions. In the design process, the unknown nonlinear func-
tions are approximated by utilizing FLS, an adaptive fuzzy control has been proposed by
the backstepping technique and CLF method. Compared with the previous results, the
advantages of this paper can be summarized as follows.

1. This paper studies the tracking control problem of switched nonlinear uncertain
systems, which is different from the available methods on switched nonlinear
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systems. The stochastic disturbance is considered and all system functions studied in
this paper are unknown completely. Therefore, compared with existing work, the
controlled system is more general and the control design is more challenging.

2. There are two kinds of adaptive fuzzy backstepping control approaches proposed in
this paper for a class of switched nonlinear uncertain systems. We propose a design
approach with multiple adaptive laws in the first place. After that, another approach
with only one adaptive law is presented in order to avoid too many parameters. In
addition, we use the norm of the unknown weight vector of FLS basis function rather
than the weight vector elements themselves as the estimated parameter at each step,
which significantly reduces the number of adaptive parameters. Therefore, the
presented control design approach becomes more practical to use.

The remainder of manuscript is organized as follows. The preliminaries and problem
formulation are addressed in Sect. 2. A novel adaptive fuzzy control scheme is introduced
in Sect. 3. A simulation example is developed in Sect. 4, Finally, conclusions are given in
Sect. 5.

2 Preliminaries and problem formulation
The following notations are used in this paper. R+ means the set of all non-negative real
numbers, Rn represents the real n-dimensional space, and Rn×r stands for the set of all
n × r real matrices. ‖X‖ indicates the Euclidean norm of a vector x. C2,1 represents the
set of all the functions V (x, t) which belong to C2 with respect to x and belong to C1 with
respect to t. Tr(A) means a trace of the matrix A.

2.1 Stochastic stability
Consider a stochastic nonlinear system of the following form:

dx = f (x, t) dt + g(x, t) dω, (1)

where x ∈ Rn is the state variable, f : Rn × R+ → Rn, h : Rn × R+ → Rn×r are continuous
functions, and ω represents an independent r-dimension standard Brownian motion de-
fined on the complete probability space (Ω , F , {Ft}t≥0, P) with Ω representing a sample
space, and F being a sample σ -field, {Ft}t≥0 representing a filtration and P representing a
probability measure.

Definition 1 ([44]) For the twice continuously differentiable function V(x, t), the differ-
ential operator L is defined as:

LV =
∂V
∂x

f +
∂V
∂t

+
1
2

Tr

{
hT ∂2V

∂x2 h
}

. (2)

Remark 1 The term 1
2 Tr{hT ∂2V

∂x2 h} is called Itô correction term, ∂2V
∂x2 will be more difficult

to construct the common virtual control function and the unified adaptive mechanism for
uncertain switched stochastic systems than that of deterministic system.

Lemma 1 ([45]) Consider the dynamic system as follows:

˙̂ς = –γ ς̂ (t) + χρ(t),
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where γ > 0, χ > 0 and ρ(t) > 0 is a function, then, for bounded initial condition ∀ς̂ (t0) ≥ 0,
ς (t) ≥ 0 for ∀t ≥ t0.

Lemma 2 ([34]) Suppose there is a function V(x, t) ∈ C2,1, and constants p > 0 and q > 0,
class k∞ functions ᾱ1 and ᾱ2, such that

⎧⎨
⎩

ᾱ1(‖x‖) ≤ V(x, t) ≤ ᾱ2(‖x‖),

LV ≤ –pV (x, t) + q,

for ∀x ∈ Rn and ∀t > 0. Then there exists an unique strong solution of system (1) for each
x0 ∈ Rn and the system is bounded in probability.

Lemma 3 (Young’s inequality [46]) For ∀(x, y) ∈ R2, there is an inequality as follows:

xy ≤ εm

m
|x|m +

1
nεn |y|n,

where ε > 0, m > 1, n > 1 and (m – 1)(n – 1) = 1.

2.2 Problem formulation
Consider a class of switched nonlinear system in the following form:

dxj =
[
hj,τ (t)xj+1 + fj,τ (t)(x̄j)

]
dt + ψT

n,τ (t)(x̄j) dω,

j = {1, 2, . . . , n – 1} ∈ I,

dxn =
[
hn,τ (t)uτ (t) + fn,τ (t)(x̄n)

]
dt + ψT

n,τ (t)(x̄n) dω,

y = x1,

(3)

where xj = (x1, x2, . . . , xj)T ∈ Rj, j = 1, 2, . . . , n is the system state, τ (t) = k (k ∈ M) implies
that the kth subsystem is active, ω is defined in (1), y is the system output; τ (t) : [0, +∞) →
M = {1, 2, . . . , m} is the switching signal; ur ∈ R denotes the control input of the rth sub-
system. For any j = 1, 2, . . . , n and r = 1, 2, . . . , m, fj,r(x̄j) is an unknown smooth nonlinear
function being the system uncertainty, and hj,r > 0 is a constant.

Assumption 1 ([47]) The tracking target yv(t) and its time derivatives up to the nth order
are continuous and bounded.

Remark 2 When we do not consider the unknown functions and the tracking control
problem, system (3) will be reduced to system (1) in [17], So, the system studied in this
note is more general.

Assumption 2 ([48]) For j ∈ I , there exist unknown constants bk and bK such that

0 < bk ≤ |hj,rxj+1| ≤ bK < ∞, ∀xj+1 ∈ Rj × R.

In addition, the sign of hj,rxj+1 is known, and the sign of hn,ruσ (t) is unknown. Without loss
of generality, it is further assumed that hj,rxj+1 ≥ bk > 0.
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Remark 3 In the existing researches on pure-feedback nonlinear systems, it is usually con-
sidered that the sign of hn,ruτ (t) is known. Therefore, Assumption 2 is reasonable, it is a
meaningful work for the stochastic nonlinear systems.

2.3 Fuzzy logic systems
In the process of controller design and stability analysis, the FLS is adopted in order to
approximate the unknown functions.

Consider the jth IF-THEN rule of the following form:
Rj: IF x̄1 is Γ

j
1 and . . . and x̄n is Γ

j
n , then y is Pj , j = 1, 2, . . . ,ℵ,

where x = [x̄1, x̄2, . . . , x̄n]T ∈ Rn, and y ∈ R are input and output of the FLS, respectively.
Γ

j
1 , Fj

2, . . . ,Γ j
n and Pj are fuzzy sets in R. By using the singleton fuzzification, the product

inference and the center-average defuzzification, the fuzzy logic system can be expressed
as

y(x̄) =

∑ℵ
j=1 ιj

∏n
i=1 μ

Γ
j
i
(x̄i)∑ℵ

j=1[
∏n

i=1 μ
Γ

j
i
(x̄i)]

,

where ℵ is the number of IF-THEN rules, �j is the point at which fuzzy membership
function μPj (�j) = 1. Let

ζl(x̄) =

∏n
i=1 μ

Γ
j
i
(x̄i)∑ℵ

j=1[
∏n

i=1 μ
Γ

j
i
(xi)]

,

where ζ (x̄) = [ζ1(x̄), ζ2(x̄), . . . , ζℵ(x̄)]T and 
 = [ϕ1,ϕ2, . . . ,ϕℵ]T , ϕj = maxy∈R μ
j
P(y). Then the

fuzzy logic system can be described as

y = ϕTζ (x̄). (4)

Lemma 4 ([49]) Let f (x̄) be a continuous function defined on a compact set Ω . Then, for
∀ε > 0, there exists a fuzzy logic system (4) such that

sup
x̄∈Ω

∣∣f (x̄) – 
Tζ (x̄)
∣∣ ≤ ε.

Remark 4 Lemma 4 shows that real continuous function f (x̄) can be expressed as a linear
combination of bounded error ε-based function vectors ζ (x̄). That is, f (x̄) = 
Tζ (x̄) + ξ (ε),
|ξ (ε)| < ε, it plays an important role in the whole process of adaptive laws design. It is noted
that 0 < ζ Tζ ≤ 1.

3 Main results
In this section, the adaptive fuzzy control scheme of system (3) is proposed by combining
the FLS with adaptive backstepping technique and CLF approach. In Sect. 3.1, a specific
design process will be given. In each step, we will design a virtual control function σi via
using a proper CLF Vi, and the control law uk will finally be designed. In Sect. 3.2, in order
to avoid repetition, a final CLF will be only adopted to prove the design procedure.



Liu et al. Advances in Difference Equations         (2019) 2019:33 Page 6 of 25

3.1 Adaptive control design under multiple adaptive laws
In this section, a multiple adaptive control method based on backstepping technique is
presented for the system (3). The backstepping design procedure contains n steps and it
is developed via the following coordinate transformation:

z1 = x1 – yv, zi = xi – σj–1, j = 1, 2, . . . , n, (5)

where σj–1 is considered an intermediate control function.
Define: ȳ(t)

v = [yv, y(1)
v , . . . , y(j)

v ]T , j = 1, 2, . . . , n, with y(j)
v denoting the jth derivative of yv.

At step j of the design process, the unknown function f̂j,r is approximated by a FLS

j,r(xj). For this purpose, define a constant ςj = ‖
j,r‖2

bk
, j = 1, 2, . . . , n, denote ς̂j as the es-

timation of ςj, and the estimation error is ς̃j = ςj – ς̂j.
Now, we give detailed backstepping design process in the following steps.
Step 1. For stochastic pure-feedback system (3), according to the tracking error z1 =

x1 – yv, the error dynamic is

dz1 =
[
h1,rx2 + f1,r(x̄1) – ẏv

]
dt + ψT

1,r(x̄1) dω. (6)

To stabilize the subsystem (6), we choose such a stochastic Lyapunov function candidate
defined by

V1 =
1
4

z4
1 +

bk

2�1
ς̃2

1 ,

where �1 > 0 is a design constant. By (2), (5) and (6), one has

LV1 = z3
1
[
h1,r(z2 + σ1) + f1,r(x̄1) – ẏv

]

+
3
2

z2
1ψ

T
1,rψ1,r –

bk

�1
ς̃1 ˙̂ς1. (7)

From Lemma 3 and Assumption 2, the following inequalities hold:

3
2

z2
1ψ

T
1,rψ1,r ≤ 3

4
l–2
1 z4

1‖ψ1,r‖4 +
3
4

l2
1, (8)

h1,rz3
1z2 ≤ 3

4
bK z4

1 +
bK

4
z4

2, (9)

where l1 > 0 is a design constant. Then substituting (8) and (9) into (7) yields

LV1 ≤ z3
1

[
f1,r +

3
4

bK z1 + h1,rσ1 – ẏv +
3
4

l2
1

+
3
4

l–2
1 z1‖ψ1,r‖4

]
+

bK

4
z4

2 –
bk

�1
ς̃1 ˙̂ς1. (10)

Define f̂1,r = f1,r + 3
4 bK z1 – ẏv + 3

4 l–2
1 z1‖ψ1,r‖4 + (k1 + 3

4 )z1, where k1 > 0 is a design constant.
Then the inequality (10) can be constructed as

LV1 ≤ –k1z4
1 + z3

1h1,rσ1 + z3
1 f̂1,r –

3
4

z4
1 +

3
4

l2
1

+
bK

4
z4

2 –
bk

�1
ς̃1 ˙̂ς1. (11)
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f̂1,r contains the unknown function f1,r and ϕ1. According to Lemma 4, for ∀ε1,r > 0, there
exists a FLS 
T

1,rζ1,r(X̄1) such that

f̂1,r = 
T
1,rζ1,r(X̄1) + ξ1,r(X̄1),

∣∣ξ1,r(X̄1)
∣∣ ≤ ε1,r ,

where X̄1 = (x1, yv, ẏv).

Remark 5 Note that the FLS is directly used to approximate unknown nonlinear function
f̂1,r rather than only the unknown function f1,r . This method will be used in the remaining
design steps.

In the method of Young’s inequality, it follows that

z3
1 f̂1,r = z3

1

T

1,r

‖
1,r‖‖
1,r‖ζ1,r – z3
1ξ1,r

≤ bkz6
1

2a2
1,r

‖
1,r‖2

bk
ζ T

1,rζ1,r +
1
2

a2
1,r +

3
4

z4
1 +

1
4
ε4

1,r

=
bk

2a2
1,r

z6
1ς1ζ

T
1,rζ1,r +

1
2

a2
1,r +

3
4

z4
1 +

1
4
ε4

1,r , (12)

where a1,r is a design parameter and ς1 = ‖
1,r‖2

bk
is an unknown constant.

Let us take the virtual control signal as

σ1 = –k1z1 –
1

2a2
1,min

ς̂1z3
1ζ

T
1,rζ1,r . (13)

The adaptation law is defined as

˙̂ς1 =
�1

2a2
1,r

z6
1ζ

T
1,rζ1,r – γ1ς̂1, ς̂1(0) ≥ 0, (14)

where γ1 > 0 is a design constant.
By Assumption 2, Lemma 1, and the virtual control signal (13), we obtain

z3
1h1,rσ1 ≤ –k1bkz4

1 –
bk

2a2
1,r

z6
1ς̂1ζ

T
1,rζ1,r . (15)

Substituting (12), (13), (14), (15) into (11), we have

LV1 ≤ –k1(1 + bk)z4
1 +

bK

4
z4

2 +
3
4

l2
1 +

1
4
ε2

1,r

+
bkγ1

�1
ς̃1ς̂1 +

1
2

a2
1,r. (16)

It is noted that

bkγ1

�1
ς̃1ς̂1 ≤ –

bkγ1

2�1
ς̃2

1 +
bkγ1

2�1
ς2

1 . (17)
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Combining (16) with (17) gives

LV1 ≤ –c1z4
1 –

bkγ1

2�1
ς̃2

1 + �1 +
bK

4
z4

2, (18)

where c1 = k1(1 + bk) and �1 = 3
4 l2

1 + 1
2 a2

1,r + 1
4ε4

1,r + bkγ1
2�1

ς2
1 .

Step 2. Define z2 = x2 – σ1 and with the Itô formula one has

dz2 =
[
h2,r(x3) + f2,r(x̄2) – Lσ1

]
dt

+
(

ψ2,r –
∂σ1

∂x1
ψ2,r

)T

dω,

with

Lσ1 =
∂σ1

∂x1

[
h1,r(x2) + f1,r(x̄2)

]
+

∂σ2

∂ς̂1
˙̂ς1

+
1∑

j=0

∂σ1

∂y(j)
v

y(j+1)
v +

1
2

∂2σ1

∂x2
1

ψT
1,rψ1,r.

Consider the stochastic Lyapunov function as follows:

V2 = V1 +
1
4

z4
2 +

bk

2�2
ς̃2

2 ,

where �2 > 0 is a design constant. Similar to the analysis of (7), the following result holds:

LV2 = LV1 + z3
2
[
h2,r(z3 + σ2) + f2,r(x̄2) – Lσ1

]

+
3
2

z2
2

(
ψ2,r –

∂σ1

∂x1
ψ1,r

)T(
ψ2,r –

∂σ1

∂x1
ψ1,r

)

–
bk

�2
ς̃2 ˙̂ς2. (19)

Note that

3
2

z2
2

∥∥∥∥ψ2,r –
∂σ1

∂x1
ψ1,r

∥∥∥∥
2

≤ 3
4

l–2
2 z4

2

∥∥∥∥ψ2,r –
∂σ1

∂x1
ψ1,r

∥∥∥∥
4

+
3
4

l2
2, (20)

h2,rz3
2z3 ≤ 3

4
bK z4

2 +
bK

4
z4

3, (21)

where l2 > 0 is a design constant. Substituting (18), (20) and (21) into (19), one derives

LV2 ≤ –c1z4
1 –

bkγ1

2�1
ς̃2

1 + �1 +
3
4

l2
2 +

bK

4
z4

3 –
bk

�2
ς̃2 ˙̂ς2

+ z3
2

[
h2,rσ2 + f2,r(x̄2) +

3
4

bK z2 +
1
4

bkz2

– Lσ1 +
3
4

l–2
2 z2

∥∥∥∥ψ2,r –
∂σ1

∂x1
ψ1,r

∥∥∥∥
4]

. (22)
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Set

f̂2,r = f2,r – Lσ1 +
3
4

l–2
2 z2

∥∥∥∥ψ2,r –
∂σ1

∂x1
ψ1,r

∥∥∥∥
4

+ bK z2 +
(

k2 +
3
4

)
z2,

with k2 > 0 being a design parameter. Furthermore, (22) can be rewritten as

LV2 ≤ –c1z4
1 –

bkγ1

2�1
ς̃2

1 + �1 + z3
2h2,rσ2 – k2z4

2 +
3
4

l2
2

+ z3
2 f̂2,r –

3
4

z4
2 +

bK

4
z4

3 –
bk

�2
ς̃2 ˙̂ς2. (23)

f̂2,r contains the unknown function f1,r , ψ1,r and ψ2,r , f̂2,r cannot be realized in prac-
tical applications. The FLS 
T

2,rζ2,r(X̄2) is thus used to approximate f̂2,r , where X̄2 =
[x̄T

2 , ς̂1, ȳ(2)T
v ]T ∈ Ωz2 ⊂ R6. According to Lemma 4, f̂2,r can be described as

f̂2,r = 
T
2,rζ2,r(X̄2) + ξ2,r(X̄2),

∣∣ξ2,r(X̄2)
∣∣ ≤ ε2,r ,

where ∀ε2,r > 0 is a constant. In addition, using the same method used in (12) yields

z3
2 f̂2,r ≤ bk

2a2
2,r

z6
2ς2ζ

T
2,rζ2,r +

1
2

a2
2,r +

3
4

z4
2 +

1
4
ε4

2,r , (24)

where a2,r > 0 is a design parameter and ς2 = ‖
2,r‖2

bk
is an unknown constant.

The virtual control signal is given by

σ2 = –k2z2 –
1

2a2
2,min

ς̂2z3
2ζ

T
2,rζ2,r . (25)

Define the adaptive law as follows:

˙̂ς2 =
�2

2a2
2,r

z6
2ζ

T
2,rζ2,r – γ2ς̂2, ς̂2(0) ≥ 0, (26)

where γ2 > 0 is a design constant.
Similar to (15) and (17), it is easy to obtain

z3
2h2,rσ ≤ –k2bkz4

2 –
bk

2a2
2,r

z6
2ς̂2ζ

T
2,rζ2,r , (27)

bkγ2

�2
ς̃2ς̂2 ≤ –

bkγ2

2�2
ς̃2

2 +
bkγ2

2�2
ς2

2 . (28)

Substituting (24), (25), (26), (27), (28) into (23) results in

LV2 ≤ –
2∑

i=1

(
ciz4

i +
bkγi

2�i
ς̃2

i

)
+

2∑
i=1

�i +
bK

4
z4

3,

where ci = ki(1 + bk) and �i = 3
4 l2

i + 1
2 a2

i,r + 1
4ε4

i,r + bkγi
2�i

ς2
i , i = 1, 2.
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Step j. (3 ≤ j ≤ n – 1) Considering zj = xj – σj–1 and Itô’s formula, we have

dzj =
(
hj,r(xj+1) + fj,r(x̄j) – Lσj–1

)
dt

+

(
ψj,r –

j–1∑
i=1

∂σj–1

∂xi
ψi,r

)T

dω,

where

Lσj–1 =
j–1∑
i=1

∂σj–1

∂xi

[
hi,r(xi+1) + fi,r(x̄i)

]

+
j–1∑
i=1

∂σj–1

∂ς̂i
˙̂ςi +

j–1∑
i=0

∂σj–1

∂y(i)
v

y(i+1)
v

+
1
2

j–1∑
p,q=1

∂2σj–1

∂xp∂xq
ψT

p,rψq,r .

The Lyapunov function is constructed in the following form:

Vj = Vj–1 +
1
4

z4
j +

bk

2�j
ς̃2

j ,

where �j > 0 is a design constant.
By following the same process used in Step 1, it follows that

LVj = LVj–1 + z3
j
[
hj,r(zj+1 + σj) + fj,r(x̄j) – Lσj–1

]

–
bk

�j
ς̃j ˙̂ςj +

3
2

z2
j

(
ψj,r –

j–1∑
i=1

∂σj–1

∂xi
ψi,r

)T(
ψj,r

–
j–1∑
i=1

∂σj–1

∂xi
ψi,r

)
. (29)

From the completion of squares and Lemma 3, the following inequalities hold:

3
2

z2
j

∥∥∥∥∥ψj,r –
j–1∑
i=1

∂σj–1

∂xi
ψi,r

∥∥∥∥∥
2

≤ 3
4

l2
j

+
3
4

l–2
j z4

j

∥∥∥∥∥ψj,r –
j–1∑
i=1

∂σj–1

∂xi
ψi,r

∥∥∥∥∥
4

, (30)

hj,rz3
j zj+1 ≤ 3

4
bK z4

j +
bK

4
z4

j+1, (31)

where lj is a design constant. Combining the above inequalities with (29) gives

LVj ≤ –
j–1∑
i=1

(
ciz4

i +
bkγi

2�1
ς̃2

i

)
+

j–1∑
i=1

�i +
3
4

l2
j – kjz4

j

+ z3
j gj,rσj + z3

j f̂j,r –
3
4

z4
j +

bK

4
z4

j+1 –
bk

�j
ς̃j ˙̂ςj, (32)
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where f̂j,r is defined as

f̂j,r = fj,r – Lσj–1 +
3
4

l–2
j zj

∥∥∥∥∥ψj,r –
j–1∑
i=1

∂σj–1

∂xi
ψi,r

∥∥∥∥∥
4

+ bK zj +
(

kj +
3
4

)
zj,

with kj > 0 being a design parameter. Similarly, a FLS 
T
j,rζj,r(X̄j) is applied to approximating

f̂j,r , where X̄j = [x̄T
j , ς̂j–1, ȳ(j)T

v ]T ∈ Ωzj ⊂ R3j with ¯̂ςj–1 = [ς̂1, ς̂2, . . . , ς̂j–1]T . From Lemma 4, f̂j,r

satisfies

f̂j,r = 
T
j,rζj,r(X̄j) + ξj,r(X̄j),

∣∣ξj,r(X̄j)
∣∣ ≤ εj,r ,

where ∀εj,r > 0 is a constant. In addition, similar to (12), the following inequality can be
got:

z3
j f̂j,r ≤ bk

2a2
j,r

z6
j ςjζ

T
j,rζj,r +

1
2

a2
j,r +

3
4

z4
j +

1
4
ε4

j,r , (33)

where ςj = ‖
j,r‖2

bk
is an unknown constant and aj,r is a design parameter.

Then the virtual control signal and the adaptation law are constructed as

σj = –kjzj –
1

2a2
j,min

ς̂jz3
j ζ

T
j,rζj,r , (34)

˙̂ςj =
�j

2a2
j,r

z6
j ζ

T
j,rζj,r – γjς̂j, ς̂j(0) ≥ 0, (35)

where γj > 0 is a design constant. Similar to (15) and (17), it follows that

z3
j hj,rσj ≤ –kjbkz4

j –
bk

2a2
j,r

z6
j ς̂jζ

T
j,rζj,r , (36)

bkγj

�j
ς̃jς̂j ≤ –

bkγj

2�j
ς̃2

j +
bkγj

2�j
ς2

j . (37)

We substitute (33), (34), (35), (36), (37) into (32), and we have

LVj ≤ –
j∑

i=1

(
ciz4

i +
bkγi

2�i
ς̃2

i

)
+

j∑
i=1

�i +
bK

4
z4

j+1, (38)

where ci = ki(1 + bk) and �i = 3
4 l2

i + 1
2 a2

i,r + 1
4ε4

i,r + bkγi
2�i

ς2
i , i = 1, 2, . . . , j.

Step n. By (5) and Itô’s formula, it is deduced that

dzn =
(
hn,ruτ (t) + fn,r(x̄n) – Lσn–1

)
dt

+

(
ψn,r –

n–1∑
i=1

∂σn–1

∂xi
ψi,r

)T

dω, (39)
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where

Lσn–1 =
n–1∑
i=1

∂σn–1

∂xi

[
hi,r(xi+1) + fi,r(x̄i)

]

+
n–1∑
i=1

∂σn–1

∂ς̂i
˙̂ςi +

n–1∑
i=0

∂σn–1

∂y(i)
v

y(i+1)
v

+
1
2

n–1∑
p,q=1

∂2σn–1

∂xp∂xq
ψT

p,rψq,r . (40)

Consider the stochastic Lyapunov function of the form

Vn = Vn–1 +
1
4

z4
n +

bk

2�n
ς̃2

n , (41)

where �n > 0 is a design constant.
Repeating a similar procedure to Step 1, one has

LVn = LVn–1 + z3
n
[
hn,rur + fn,r(x̄n) – Lσn–1

]

+
3
2

z2
n

(
ψn,r –

n–1∑
i=1

∂σn–1

∂xi
ψi,r

)T(
ψn,r

–
n–1∑
i=1

∂σn–1

∂xi
ψi,r

)
–

bk

�n
ς̃n ˙̂ςn. (42)

Similar to (30), one can obtain

3
2

z2
n

∥∥∥∥∥ψn,r –
n–1∑
i=1

∂σn–1

∂xi
ψi,r

∥∥∥∥∥
2

≤ 3
4

l2
n

+
3
4

l–2
n z4

n

∥∥∥∥∥ψn,r –
n–1∑
i=1

∂σn–1

∂xi
ψi,r

∥∥∥∥∥
4

, (43)

where ln is a design constant. Substituting (38), (39), (40), (41), (43) into (42) yields

LVn ≤ –
n–1∑
i=1

(
ciz4

i +
bkγi

2�1
ς̃2

i

)
+

n–1∑
i=1

�i +
3
4

l2
n – knz4

n

+ z3
ngn,rur + z3

nf̂n,r –
3
4

z4
n –

bk

�n
ς̃n ˙̂ςn, (44)

where f̂n,r is defined as

f̂n,r = fn,r +
3
4

l–2
n zn

∥∥∥∥∥ψn,r –
n–1∑
i=1

∂σn–1

∂xi
ψi,r

∥∥∥∥∥
4

+
1
4

bK z4
n +

(
kn +

3
4

)
z4

n – Lσn–1,
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with kn > 0 being a design parameter. Similarly, for ∀εn,r > 0, the unknown function f̂n,r can
be approximated by the FLS 
T

n,rζn,r(X̄n). From Lemma 3, one has

z3
nf̂n,r ≤ bk

2a2
n,r

z6
nςnζ

T
n,rζn,r +

1
2

a2
n,r +

3
4

z4
n +

1
4
ε4

n,r , (45)

where ςj = ‖
j,r‖2

bk
is an unknown constant and an,r is a design parameter.

Then the control law and the adaptation law are designed as

ur = –knzn –
1

2a2
n,min

ς̂nz3
nζ

T
n,rζn,r , (46)

˙̂ςn =
�n

2a2
n,r

z6
nζ

T
n,rζn,r – γnς̂n, ς̂n(0) ≥ 0, (47)

where γn > 0 is a design constant.
According to (45), (46), (47) and Assumption 2, (44) can be written in the following form:

LVn ≤ –
n∑

i=1

(
ciz4

i +
bkγi

2�i
ς̃2

i

)
+

n∑
i=1

�i, (48)

where ci = ki(1 + bk) and �i = 3
4 l2

i + 1
2 a2

i,r + 1
4ε4

i,r + bkγi
2�i

ς2
i , i = 1, 2, . . . , n.

Defining c = min{4ci,γi, i = 1, 2, . . . , n} and w =
∑n

i=1 �i, (47) becomes

LVn ≤ –cVn + w, t ≥ 0. (49)

According to the definition of Vn and Lemma 2, zi and ς̃i are bounded in probability.
In addition, from [50], the following inequality is obtained:

dE(Vn(t))
dt

≤ –cE
(
Vn(t)

)
+ w, t ≥ 0, (50)

where E(·) indicates an expectation operator. Then it satisfies

0 ≤ E
[
Vn(t)

] ≤
(

Vn(0) –
w
c

)
e–ct +

w
c

, (51)

which means that

E
[
Vn(t)

] ≤ w
c

, t → ∞. (52)

From (51) and (52), we have

E

( n∑
i=1

z4
i

)
≤ 4E[Vn(t) ≤ 4w

c
, t → ∞. (53)

Therefore, zi eventually is convergent to the compact set Ωz which is defined as

Ωz =

{
zi |

n∑
i=1

[|zi|4
] ≤ 4w

c

}
. (54)
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Thus far, the design of adaptive fuzzy control based on backstepping technology has been
completed. The main result will be presented by Theorem 1.

Theorem 1 Consider a class switched stochastic nonlinear system (3), under Assumptions
1 and 2, for bounded initial conditions, parameter adaptive laws (35), the control law (46),
and the intermediate control signals (47), guarantee that all the signals in the closed-loop
system are SUUB and the tracking error is convergent to a neighborhood of the origin.

Remark 6 In [43], the adaptive tracking problem for a class of switched nonlinear sys-
tems was investigated. By combining the backstepping technique with the approximation
scheme of FLS, a design approach with multiple adaptive laws was developed. In this pa-
per, Theorem 1 generalizes the result of Theorem 1 in [43]. Considering the stochastic
disturbances, the systems in this paper are more common.

3.2 Adaptive control design under one adaptive law
In this subsection, we will propose a controller design method with one adaptive law. For
a stochastic pure-feedback system (3), according to

zj = xj – σj–1, (55)

the error dynamic is

dzj =
[
hj,r(x(j+1)) + fj,r(x̄j–1) – Lσ1

]
dt

+

(
ψj,r –

j–1∑
j=1

∂σj–1

∂xi
ψi,r

)T

dω, (56)

where

Lσj–1 =
j–1∑
i=1

∂σj–1

∂xi

[
hi,r(xi+1) + fi,r(x̄i)

]

+
j–1∑
i=1

∂σj–1

∂ς̂
˙̂ς +

j–1∑
i=0

∂σj–1

∂y(i)
v

y(i+1)
v

+
1
2

j–1∑
p,q=1

∂2σj–1

∂xp∂xq
ψT

p,rψq,r .

A stochastic Lyapunov function is taken as

V =
n∑

i=1

1
4

z4
i +

bk

2�
ς̃2,

where � > 0 is a design constant, and ς̃ = ς – ς̂ is a parameter error, define a constant
ς = ‖
n,r‖2

bk
.

Applying (2), (55) and (56), one has

LV =
n–1∑
j=1

[
z3

j
(
hj,r(zj+1 + σj) + fj,r(xj) – Lσj–1

)
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+
3
2

z2
j

(
ψj –

j–1∑
i=1

∂σj–1

∂xi
ψi

)T(
ψj –

j–1∑
i=1

∂σj–1

∂xi
ψi

)

–
bm

�
ς̃ ς̂

]
+ z3

n
(
gn,rur + fn,r(xn) – Lσn–1

)

+
3
2

z2
n

(
ψn –

n–1∑
i=1

∂σn–1

∂xi
ψi

)T(
ψn –

n–1∑
i=1

∂σn–1

∂xi
ψi

)

–
bm

�
ς̃ ς̂ . (57)

Based on Lemma 3 and Assumption 2, the following inequalities are obtained:

3
2

z2
j

∥∥∥∥∥ψj,r –
j–1∑
i=1

∂σj–1

∂xi
ψi,r

∥∥∥∥∥ ≤ 3
4

l2
j

+
3
4

l–2
j z4

j

∥∥∥∥ψj,r –
∂σj–1

∂xi
ψi,r

∥∥∥∥
4

, (58)

hj,rz3
j zj+1 ≤ 3

4
bK z4

j +
bK

4
z4

j+1, (59)

where lj is a design constant.
Design the control laws as

ur = –knzn –
1

2a2
n,min

ς̂z3
nζ

T
n,rζn,r , (60)

where a2
n,min = min{an,r : r ∈ M} and an,r > 0 is design parameter, kn > 0 is a design constant,

ς̂ is the estimation of ς =
∑n

j=1
‖
j,r‖

bk

2
, 
j,max = max{
j,r : r ∈ M} and the unknown function

f̂j,r(X̄) can be approximated by 
n,r in FLS 
T
n,rζn,r(X̄).

The adaptive law is defined as the solution of differential equation as follows:

˙̂ς =
�

2a2
i,r

z6
i ζ

T
i,rζi,r – γ ς̂ , (61)

where �, ai,r > 0 and γi > 0 are design parameters, a2
i,min = min{an,r : r ∈ M} and the selection

of ς̂ is needed to satisfy ς̂ (0) ≥ 0 such that ς̂ ≥ 0.
Define the functions as

f̂j,r = fj,r – Lσj–1 +
3
4

l–2
j zn

∥∥∥∥∥ψj –
j–1∑
i=1

∂σj–1

∂xi
ψi

∥∥∥∥∥
4

, (62)

f̂n,r = fn,r – Lσn–1 +
3
4

l–2
n zn

∥∥∥∥∥ψn –
n–1∑
i=1

∂σn–1

∂xi
ψi

∥∥∥∥∥
4

+
3
4

bkz4
n. (63)
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Substituting (58), (59), (60), (61), (62), (63) into (57) gives

LVn ≤
n∑

i=1

(
ciz4

i +
bkγ

2�
ς̃2

)
+

n∑
i=1

�i, (64)

where ci = (–kibk +bK + 3
4 )z4

n and �i = 3
4 l2

i + 1
2 a2

i,r + 1
4ε2

i,r + bkγi
2�i

ς2, i = 1, 2, . . . , n. The remaining
part of the proof is similar to (48), (49), (50), (51), (52), (53), (54), which is omitted here.

Theorem 2 Consider a class switched stochastic nonlinear system (3), under Assumptions
1 and 2, for bounded initial conditions, the control law (60), and the intermediate control
signals (61), guarantee that all the signals in the closed-loop system are SUUB and the
tracking error converging to a neighborhood of the origin.

Remark 7 In [43], the adaptive tracking problem for a class of switched nonlinear systems
was investigated. By combining the backstepping technique with the approximation ap-
proach of FLS, a design scheme with only one adaptive laws was developed. In this paper,
it is noted that Theorem 2 generalizes the result of Theorem 2 in [43].

4 Simulation example
In this section, a simulation example is proposed in order to certify the control perfor-
mance and the feasibility of the presented method in the previous sections.

Example 1 Given the following second-order stochastic nonlinear switched systems:

dx1 =
[
h1,τ (t)x2 + f1,τ (t)(x̄1)

]
dt + ψ1,τ (t)(x̄1) dω,

dx2 =
[
h2,τ (t)uτ (t) + f2,τ (t)(x̄2)

]
dt + ψ2,τ (x̄2) dω,

y = x1,

where τ (t) : [0,∞] → {1, 2}, h11 = 2, h12 = 1, h21 = 2, h22 = 1, f12 = 2x1 cos(x1), f21 =
(x1)2 cos2(x2), f11 = x1, f22 = 2 sin2(x1)x2

2, ψ11 = x2
1

1+x2
1

, ψ12 = 0.03x2
1

1+x2
1

, ψ21 = 0.6 sin(2x1x2), ψ22 =
0.05x2

2
1+x2

1
. The purpose of control is to design a common adaptive fuzzy controller uk such

that all signals in the closed-loop are bounded in probability and y follows a desired refer-
ence signal yv under arbitrary switchings, where yv = sin t. In the simulation, first, we de-
sign the controllers under multiple adaptive laws by Theorem 1. The initial conditions are
x1(0) = 0.05, x2(0) = 0.05, x3 = 0, and ς̂1(0) = ς̂2(0) = 0. We choose k1 = 2, k2 = 1, a1,1 = 0.25,
a1,2 = 3, a2,1 = 0.3, a2,2 = 2.5, �1 = 10, �2 = 3, γ1 = γ2 = 0.02. Second, we design the con-
troller under one adaptive law by Theorem 2. The initial conditions are taken as x1(0) = 0.1,
x2(0) = 0.05, x3 = 0.5, ς̂ (0) = 0.5. We choose k1 = 2, k2 = 1, a1,1 = 0.25, a1,2 = 3, a2,1 = 1.5,
a2,2 = 2, � = 2, γ = 0.025.

Choose the following membership functions which are used to construct the fuzzy con-
troller:

μF1
j
(xj) = exp

(
–0.5(x + 3)2),

μF1
j
(xj) = exp

(
–0.5(x + 2)2),
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Figure 1 Tracking performances of Example 1

μF1
j
(xj) = exp

(
–0.5(x + 1)2),

μF1
j
(xj) = exp

(
–0.5x2),

μF1
j
(xj) = exp

(
–0.5(x – 1)2),

μF1
j
(xj) = exp

(
–0.5(x – 2)2),

μF1
j
(xj) = exp

(
–0.5(x – 3)2).

According to Theorem 1, ς̂1, ς̂2 and ur are selected, respectively, thus:

˙̂ς1 =
�1

2a2
1,1

z6
1ζ

T
1,1ζ1,1 – γ1ς̂1,

˙̂ς2 =
�2

2a2
2,1

z6
2ζ

T
2,1ζ2,1 – γ2ς̂2,

u1 = –k2z2 –
1

2a2
2,1

ς̂2z3
2ζ

T
2,1ζ2,1,

u2 = –k2z2 –
1

2a2
2,2

ς̂2z3
2ζ

T
2,2ζ2,2,

where z1 = x1 – yv, z2 = x2 – σ1.
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Figure 2 Responses of the state variable x2 of Example 1

The virtual control function σ1 is defined by

σ1 = –k1z1 –
1

2a2
1,1

ς̂1z3
1ζ

T
1,1ζ1,1.

The above is the controller design based on Theorem 1. Next, another design based on
Theorem 2 is proposed. According to Theorem 2, ς̂ and ur are selected, respectively, as

˙̂ς =
�

2a2
1,1

z6
1ζ

T
1,1ζ1,1 +

�

2a2
2,1

z6
2ζ

T
2,1ζ2,1 – γ ς̂ ,

u1 = –k2z2 –
1

2a2
2,1

ς̂2z3
2ζ

T
2,1ζ2,1,

u2 = –k2z2 –
1

2a2
2,2

ς̂2z3
2ζ

T
2,2ζ2,2,

where z1 = x1 – yv, z2 = x2 – σ1.
The virtual control function σ1 is defined by

σ1 = –k1z1 –
1

2a2
1,1

ς̂z3
1ζ

T
1,1ζ1,1.
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Figure 3 Responses of the adaptive laws of Example 1

The simulation results are shown in Figs. 1–4, respectively. Figure 1 demonstrates the
system output y and reference signal yv. Figure 2 exhibits the trajectory of the state variable
x2. Figure 3 illustrates the trajectory of adaptive law. Figure 4 displays he trajectory of the
control signal uk . Figure 5 certifies the evolution of switching signal. From Fig. 1, Fig. 2,
Fig. 3, it can be seen that the output y of both controllers can track the target signal yv well,
and all the closed-loop signals remain bounded.

Remark 8 For the same initial conditions, simulations were run by using the two con-
trollers mentioned above. Figure 1 shows the tracking performances of the two adaptive
controllers proposed in this paper, respectively. Figure 6 shows the tracking error under
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Figure 4 Responses of the control input signal of Example 1

Figure 5 Responses of the control switching signal of Example 1

the action of two adaptive controllers. From Figs. 1 and 6, it can be seen that two con-
trollers proposed in this paper can achieve the system stability, but the controllers in The-
orem 1 work better than the one proposed in Theorem 2. The main reason may be that
the control design process in Theorem 2 cannot deal with the mismatching nonlinear term
well.



Liu et al. Advances in Difference Equations         (2019) 2019:33 Page 21 of 25

Figure 6 Responses of the tracking error of Example 1

Example 2 Some continuous stirred tank reactor with two modes feed stream can be
modeled as the following switched system after some manipulations [51]:

⎧⎨
⎩

ẋ1 = x2 + fσ (t),1(x1),

ẋ2 = u,

where σ : [0, +∞) → 1, 2, f1,1(x1) = 0.5x1 and f1,2(x1) = 2x1. Further, it is supposed that
there exists multiplicative white noise in the above system due to fσ (t),1, and as a result, we
have the following stochastic nonlinear system:

dx1 =
[
h1,τ (t)x2 + f1,τ (t)(x̄1)

]
dt + ψ1,τ (t)(x̄1) dω,

dx2 = uτ (t) dt,

y = x1,

where τ (t) : [0,∞] → {1, 2}, h11 = 2, h12 = 1, f11 = x1, f12 = 2x1 cos(x1), ψ11 = x2
1

1+x2
1

, ψ12 =
0.03x2

1
1+x2

1
. In the simulation, choose the fuzzy systems as those in Example 1 and the reference

signal yv = sin t. The initial conditions are x1(0) = 0.05, x2(0) = 0.05, x3 = 0, and ς̂1(0) =
ς̂2(0) = 0. We choose k1 = 2, k2 = 1, a1,1 = 0.25, a1,2 = 3, a2,1 = 0.3, a2,2 = 2.5, �1 = 10, �2 =
3, γ1 = γ2 = 0.02. Figures 7–11 show the simulation results. Figure 7 shows the tracking
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Figure 7 Tracking performances of Example 2

Figure 8 Responses of the state variable x2 of Example 2

Figure 9 Responses of the control input signal of Example 2

results. Figures 8–10 show that the variables x2, ur and ς̂ are bounded. Figure 11 shows
the switching signal.
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Figure 10 Responses of the adaptive laws of Example 2

Figure 11 Responses of the control switching signal of Example 2

5 Conclusion
This paper studied the adaptive tracking control problem for a class of stochastic nonlinear
systems under arbitrary switchings. It was noted that the nonlinear functions and stochas-
tic disturbances of the system were completely unknown. For the sake of releasing the
computational burden, the unknown nonlinear function of the system was estimated by
employing the approximation property of FLS, then the adaptive backstepping technique
was used to construct a class of adaptive fuzzy control. Under arbitrary switching condi-
tions, the presented controller could ensure that all the signals in the closed-loop system
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remained bounded in probability and the system output converged to a small neighbor-
hood of the reference signal. Finally, simulation results further showed the effectiveness
of the proposed approaches.
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