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Abstract
In this paper, two stochastic SIRS epidemic models with standard incidence were
proposed and investigated. For the non-autonomous periodic model, the sufficient
criteria for extinction of the disease are obtained firstly. Then we show that the
stochastic system has at least one nontrivial positive T -periodic solution under some
conditions. For the model that are both disturbed by the white noise and telephone
noise, we construct a suitable Lyapunov functions to verify the existence of a unique
ergodic stationary distribution. Meanwhile, the sufficient condition for the extinction
of the disease is also established. Finally, examples are introduced to illustrate the
theoretical analysis.
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1 Introduction
In the natural world, various systems are inevitably affected by the random factors [1–
3]. Stochastic differential equations are important tools for studying random phenomena
(see e.g. [4–11]). May [12] has pointed out that because of the continuous interference of
the environment, the biological parameters in the ecosystem such as birth rates, intraspe-
cific competition coefficients, death rates and other parameters may have some degree
of random fluctuation. Parameter perturbation induced by white noise is an important
and common form to describe the effect of stochasticity [13–17]. In recent years, many
famous susceptible–infected–recovered–susceptible stochastic models have been formu-
lated (see e.g. [18–24]). In [25], a stochastic SIRS model with environment noise was pro-
posed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [A – dS(t) – βS(t)I(t)
N(t) + δR(t)] dt + σ1S(t) dB1(t),

dI(t) = [ βS(t)I(t)
N(t) – (γ + d + α)I(t)] dt + σ2I(t) dB2(t),

dR(t) = [γ I(t) – (δ + d)R(t)] dt + σ3R(t) dB3(t),

(1)

where Bi(t), denoting the white noise, are independent standard Brownian motions, σ 2
i are

the intensities of the white noise, i = 1, 2, 3. For the meaning of detailed parameters, please
see [25]. By using stochastic Lyapunov functions, the authors proved that the system (1)
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has a unique global positive solution for any initial value (S(0), I(0), R(0)) ∈ R
3
+ and also has

an ergodic stationary distribution under some conditions.
In fact, owing to the season alternation, the life cycle of the individual, the mating habits,

the food supply and so on, the birth rate, incidence rate of disease and other parameters
in system (1) will exhibit more or less periodicity rather than being constant [26–30]. So
it is more realistic to discuss the model (1) with periodic coefficients. In 2003, Green-
halgh and Moneim [31] studied a SIRS epidemic model with general seasonal variation in
the contact rate. In 2009, Martcheva [32] studied a non-autonomous multi-strain SIS epi-
demic model with periodic coefficients. In 2015, Lin et al. [33] proposed a stochastic SIR
epidemic model with seasonal variation and analyzed the existence of a nontrivial pos-
itive periodic solution. Motivated by the above work, we shall investigate the stochastic
non-autonomous SIRS epidemic model which takes the form as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [A(t) – d(t)S(t) – β(t)S(t)I(t)
N(t) + δ(t)R(t)] dt + σ1(t)S(t) dB1(t),

dI(t) = [ β(t)S(t)I(t)
N(t) – (γ (t) + d(t) + α(t))I(t)] dt + σ2(t)I(t) dB2(t),

dR(t) = [γ (t)I(t) – (δ(t) + d(t))R(t)] dt + σ3(t)R(t) dB3(t),

(2)

where A(t), d(t), β(t), δ(t), γ (t), α(t) and σi(t) stand for the continuous positive periodic
functions of period T , i = 1, 2, 3. In this paper, we intend to prove the existence of nontrivial
positive T-periodic solutions under sufficient conditions of system (2).

In the real world, besides white noise, the system may be disturbed by many other
noises. For example, telephone noise often causes the system to switch from one state
to another [34, 35]. Recently, a large number of researchers have widely concerned the
stochastic models with regime switching (see e.g. [36–40]). In 1978, Slatkin [41] devel-
oped and analyzed a population model in a markovian environment. In 1999, Mao [42]
investigated the stability of stochastic differential equations with markovian switching.
In 2016, Zhao et al. [43] have studied a stochastic phytoplankton allelopathy model under
regime switching. The telephone noise is usually described by Markov chains. Let (r(t))t≥0

be a continuous-time Markov chain taking values in a finite state space S = {1, 2, . . . , m}.
Coupling the Markov chain r(t) into model (1), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = [A(r(t)) – d(r(t))S(t) – β(r(t))S(t)I(t)
N(t) + δ(r(t))R(t)] dt

+ σ1(r(t))S(t) dB1(t),

dI(t) = [ β(r(t))S(t)I(t)
N(t) – (γ (r(t)) + d(r(t)) + α(r(t)))I(t)] dt

+ σ2(r(t))I(t) dB2(t),

dR(t) = [γ (r(t))I(t) – (δ(r(t)) + d(r(t)))R(t)] dt + σ3(r(t))R(t) dB3(t).

(3)

When the model is affected by severe stochastic interference such as rainfall or nutrition,
etc., the parameter switch one state r(t) = i into another state r(t) = j and it will switch into
the next regime until the next major environmental change. For any k ∈ S, A(k), d(k), β(k),
δ(k), γ (k), α(k) and σi(k) (i = 1, 2, 3) are positive constants. Another goal of this paper is to
prove the existence of a unique ergodic stationary distribution of the positive solution to
the system (3).

This paper is arranged as follows. In Sect. 2, we give some basic knowledge which are
used in this paper. In Sect. 3, for the system (2), the criteria for extinction of the disease
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are obtained and then we show that the system has at least one nontrivial positive T-
periodic solution under some conditions. In Sect. 4, for the system (3), we proposed a
sufficient condition of the disease extinction. Meanwhile, the existence of a unique ergodic
stationary distribution is proved. Finally, we conclude the main result briefly and make
some numerical simulations in Sect. 5.

2 Preliminaries
In this paper, let (Ω ,F , {F}t≥0,P) be a complete probability space and let r(t), t ≥ 0 be a
right-continuous Markov chain on Ω taking values in the finite state space S = {1, 2, . . . , m}.
For each vector g = (g(1), . . . , g(m)), set ĝ = mink∈S{g(k)} and ǧ = maxk∈S{g(k)}. Supposed
that the generator Γ = (qij)m×m of the Markov chain is given by

P
(
r(t + 	t) = j|r(t) = i

)
=

⎧
⎨

⎩

qij	t + o(	t), if i �= j,

1 + qij	t + o(	t), if i = j,

where 	t > 0, qij > 0, i �= j is the transition rate from state i to j while
∑m

j=1 qij = 0. Suppose
further that the Markov chain r(t) is irreducible and has a unique stationary distribution
π = (π1,π2, . . . ,πm), which is the solution of the system of linear equations πΓ = 0 subject
to

∑m
h=1 πh = 1 and πh > 0 for all h ∈ S. For any vector � = (� (1),� (2), . . . ,� (m))T , we

have

lim
t→∞

1
t

∫ t

0
�

(
r(s)

)
ds =

∑

k∈S
πk� (k).

Consider the following equation:

dx(t) = f
(
t, x(t)

)
dt + g

(
t, x(t)

)
dB(t), x ∈ R

n, (4)

where functions f and g are T-periodic in t.

Lemma 2.1 ([37]) Assume that system (4) has a unique global solution. If there has a func-
tion V (t, x) ∈ C2 which is T-periodic in t such that

(i) inf|x|>M
V (t, x) → ∞ as M → ∞ (5)

and

(ii) LV (t, x) ≤ –1 outside some compact set, (6)

where we define the operator L by

LV (t, x) = Vt(t, x) + Vx(t, x)f (t, x) +
1
2

trace
(
gT (t, x)Vxx(t, x)g(t, x)

)
.

Then for system (4) there exists a T-periodic solution.
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Lemma 2.2 The following differential equations:
⎧
⎨

⎩

m′
1(t) = d(t)m1(t),

m′
2(t) = (δ(t) + d(t))m2(t) – δ(t)m1(t),

(7)

have a unique positive T-periodic solution (m1(t), m2(t))T , where d(t), δ(t) are continuous,
positive and non-constant functions of period T .

The proof is similar to Lemma 3.1 in Liu et al. [28], here we omit it.
Now we are in the position to give some results of the stationary distribution for stochas-

tic system under regime switching. Let (X(t), r(t)) be the diffusion process defined by the
equation as follows:

⎧
⎨

⎩

dX(t) = b(X(t), r(t)) dt + τ (X(t), r(t)) dB(t),

X(0) = x0, r(0) = r0,
(8)

where B(·) denotes the p-dimensional Brownian motion and r(·) is the right-continuous
Markov chain in the above discussion, and b(·, ·) : Rn × S → R

n, τ (·, ·) : Rn × S → R
n×p,

satisfying τ (x, k)τT (x, k) = (dij(x, k))n×n � D(x, k). For any k ∈ S, let V (·, k) be any twice
continuously differentiable function, the operator L is defined

LV (x, k) =
n∑

i=1

bi(x, k)
∂V (x, k)

∂xi
+

1
2

n∑

i,j=1

dij(x, k)
∂2V (x, k)
∂xi ∂xj

+
m∑

l=1

qklV (x, l).

Lemma 2.3 ([37]) Assume that system (8) satisfies the conditions as follows:
(i) qij > 0 for each i �= j;

(ii) for any k ∈ S, D(x, k) = (dij(x, k))n×n is symmetric and obey

κ0|ξ |2 ≤ 〈
D(x, k)ξ , ξ

〉 ≤ κ–1
0 |ξ |2 for all ξ ∈R

n,

with some constant κ0 ∈ (0, 1] for any x ∈R
n;

(iii) there exists a nonempty open set D with compact closure, and for any k ∈ S, there is
a nonnegative function V (·, k) : DC →R such that

LV (x, k) ≤ –1 for any (x, k) ∈DC × S.

Then (X(t), r(t)) of system (8) is positive recurrent and ergodic. Moreover, the system has a
unique stationary distribution μ(·, ·) such that, for any Borel measurable function f (·, ·) :
R

n × S→R satisfying

m∑

k=1

∫

Rn

∣
∣f (x, k)

∣
∣μ(dx, k) < +∞,

we have

P

(

lim
t→+∞

1
t

∫ t

0
f
(
X(s), r(s)

)
ds =

m∑

k=1

∫

Rn
f (x, k)μ(dx, k)

)

= 1.
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3 Extinction of the disease and the periodic solution for system (2)
For the non-autonomous stochastic system (2), we investigate the extinction criteria of
the disease, firstly. Define R1(t) = β(t) – (γ (t) + d(t) + α(t) + σ 2

2 (t)
2 ) and 〈f 〉T = 1

T
∫ T

0 f (s) ds,
where f is an integral function on [0, +∞). Then we have the following conclusion.

Theorem 3.1 The disease I(t) will go to extinction exponentially almost surely when
〈R1(t)〉T < 0.

Proof Applying the generalized Itô formula to model (2) yields

d ln I =
[

β(t)S
S + I + R

–
(

γ (t) + d(t) + α(t) +
σ 2

2 (t)
2

)]

dt + σ2(t) dB2(t)

≤
[

β(t) –
(

γ (t) + d(t) + α(t) +
σ 2

2 (t)
2

)]

dt + σ2(t) dB2(t).

Let M(t) :=
∫ t

0 σ2(t) dB2(t), based on the strong law of large numbers for martingales (see
[44]), then limt→∞ M(t)

t = 0 a.s. Thus,

lim sup
t→∞

ln I
t

≤ lim sup
t→∞

1
t

∫ t

0

[

β(s) –
(

γ (s) + d(s) + α(s) +
σ 2

2 (s)
2

)]

ds

=
1
T

∫ T

0

[

β(s) –
(

γ (s) + d(s) + α(s) +
σ 2

2 (s)
2

)]

ds

=
〈
R1(t)

〉

T < 0,

therefore

lim
t→∞ I(t) = 0 a.s. �

Next, we consider the existence of nontrivial positive T-periodic solution of system (2).
To simplify, we denote gu = supt∈[0,+∞) g(t), gl = inft∈[0,+∞) g(t), where g is a bounded func-
tion on [0, +∞).

Define

R2(t) = 3 3
√

A(t)β(t)d(t) +
(
m1(t) – 1

)
A(t) –

(

γ (t) + 2d(t) + α(t) +
σ 2

1 (t) + σ 2
2 (t)

2

)

,

where m1(t) is the solution of system (7). Then we get the following theorem.

Theorem 3.2 If 〈R2(t)〉T > 0, then system (2) admits at least one positive T-periodic solu-
tion.

Proof To prove Theorem 3.2, we should construct a C2-function V (t, x) which is T-
periodic in t and a closed set U ∈R

3
+ satisfy the conditions in Lemma 2.1.

Take 0 < θ < min{ 2dl

(σ 2
1 )u∨(σ 2

2 )u∨(σ 2
3 )u , 1} and K > 0 such that

� =: dl –
θ

2
((

σ 2
1
)u ∨ (

σ 2
2
)u ∨ (

σ 2
3
)u) > 0, (9)
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τ =: –K
〈
R2(t)

〉

T + δu + 2du + βu + H +
(σ 2

1 )u + (σ 2
3 )u

2
≤ –2, (10)

where

H = sup
(S,I,R)∈R3

+

{

Au(S + I + R)θ –
�

2
(S + I + R)θ+1

}

.

Define

V (S, I, R, t) =
1

θ + 1
(S + I + R)θ+1 + K

(
– ln S – ln I – m1(t)(S + I)

– m2(t)R + S + I + R – ω(t)
)

– ln S – ln R

=: V1 + KV2 + V3 + V4,

where V1 = 1
θ+1 (S + I + R)θ+1, V2 = – ln S – ln I – m1(t)(S + I) – m2(t)R + S + I + R – ω(t),

V3 = – ln S, V4 = – ln R, m1(t), m2(t) are given in Lemma 2.2, ω(t) is a T-periodic function
defined on [0, +∞) satisfying ω′(t) = 〈R2(t)〉T – R2(t) and ω(0) = 0. Obviously, V (S, I, R, t)
is T-periodic in t and

lim inf
k→+∞,(S,I,R)∈R3

+\Uk
V (S, I, R, t) = +∞,

where Uk = ( 1
k , k) × ( 1

k , k) × ( 1
k , k). Therefore, condition (i) of Lemma 2.1 is satisfied. Next,

we prove that condition (ii) of Lemma 2.1 is true.
Using Itô’s formula, we get

LV1 = (S + I + R)θ
(
A(t) – d(t)S –

(
d(t) + α(t)

)
I – d(t)R

)

+
θ

2
(S + I + R)θ–1(σ 2

1 (t)S2 + σ 2
2 (t)I2 + σ 2

3 (t)R2)

≤ A(t)(S + I + R)θ – d(t)(S + I + R)θ+1

+
θ

2
(
σ 2

1 (t) ∨ σ 2
2 (t) ∨ σ 2

3 (t)
)
(S + I + R)θ+1

= A(t)(S + I + R)θ –
(

d(t) –
θ

2
(
σ 2

1 (t) ∨ σ 2
2 (t) ∨ σ 2

3 (t)
)
)

(S + I + R)θ+1

≤ H –
1
2
�(S + I + R)θ+1,

LV2 = –
(

A(t)
S

– d(t) –
β(t)I

N
+

δ(t)R
S

)

–
(

β(t)S
N

–
(
γ (t) + d(t) + α(t)

)
)

– m1(t)
(
A(t) – d(t)S + δ(t)R –

(
γ (t) + d(t) + α(t)

)
I
)

– m′
1(t)(S + I)

– m2(t)
(
γ (t)I –

(
δ(t) + d(t)

)
R
)

– m′
2(t)R – ω′(t) +

σ 2
1 (t) + σ 2

2 (t)
2

+ A(t) – d(t)(S + I + R) – α(t)I

≤ –
A(t)

S
–

β(t)S
S + I + R

– d(t)(S + I + R) – m1(t)A(t) + γ (t) + d(t) + α(t)

+
σ 2

1 (t) + σ 2
2 (t)

2
–

(
m′

1(t) – m1(t)d(t)
)
S –

[
m′

2(t) + m1(t)δ(t) –
(
δ(t)
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+ d(t)
)
m2(t)

]
R –

[
m′

1(t) – m1(t)
(
γ (t) + d(t) + α(t)

)
+ m2(t)γ (t) + α(t)

]
I

– ω′(t) + A(t) + d(t) +
β(t)I

N

≤ –3 3
√

A(t)β(t)d(t) – m1(t)A(t) + A(t) + 2d(t) + γ (t) + α(t)

+
σ 2

1 (t) + σ 2
2 (t)

2
+

(

m1(t)γ (t) + m1(t)α(t) – m2(t)γ (t) – α(t) +
β(t)
N

)

I

– ω′(t)

≤ –
〈
R2(t)

〉

T +
(

mu
1γ

u + mu
1α

u – ml
2γ

l – αl +
βu

N

)

I,

LV3 = –
A(t)

S
+ d(t) +

β(t)I
N

–
δ(t)R

S
+

σ 2
1 (t)
2

≤ –
Al

S
+ du + βu +

(σ 2
1 )u

2
,

and

LV4 = –
γ (t)I

R
+ δ(t) + d(t) +

σ 2
3 (t)
2

≤ –
γ lI
R

+ δu + du +
(σ 2

3 )u

2
.

Hence

LV ≤ H –
1
2
�(S + I + R)θ+1 + K

(
βu

N
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I

– K
〈
R2(t)

〉

T –
Al

S
+ du + βu +

(σ 2
1 )u

2
–

γ lI
R

+ δu + du +
(σ 2

3 )u

2

≤ –
�

2
Sθ+1 –

Al

S
–

�

2
Iθ+1 + K

(
βu

N
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I

–
�

2
Rθ+1 –

γ lI
R

+ τ .

Define a bounded closed set

Uε =
{

(S, I, R) ∈R
3
+ : ε ≤ S ≤ 1

ε
, ε2 ≤ I ≤ 1

ε2 , ε3 ≤ R ≤ 1
ε3

}

,

where ε > 0 is small enough. In the set R3
+\Uε , one can choose ε sufficiently small and

satisfying

–
Al

ε
+ K̃ + τ ≤ –1, (11)

τ + K
(
mu

1γ
u + mu

1α
u – ml

2γ
l – αl)ε2 + Kβuε ≤ –1, (12)

–
γ l

ε
+ K̃ + τ ≤ –1, (13)

–
�

2εθ+1 + K̃ + τ ≤ –1, (14)

–
�

4ε2(θ+1) + K̃ + τ ≤ –1, (15)

–
�

2ε3(θ+1) + K̃ + τ ≤ –1, (16)
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where K̃ is a positive constant which of the following can be found in Eq. (18). For conve-
nience, one can divide UC

ε into the following six domains:

U1 =
{

(S, I, R) ∈R
3
+, 0 < S < ε

}
, U2 =

{
(S, I, R) ∈ R

3
+, 0 < I < ε2, S ≥ ε

}
,

U3 =
{

(S, I, R) ∈R
3
+, 0 < R < ε3, I ≥ ε2}, U4 =

{

(S, I, R) ∈R
3
+, S >

1
ε

}

,

U5 =
{

(S, I, R) ∈R
3
+, I >

1
ε2

}

, U6 =
{

(S, I, R) ∈R
3
+, R >

1
ε3

}

.

Clearly, UC
ε = U1 ∪ · · · ∪ U6. Now we show that LV (S, I, R, t) ≤ –1 on UC

ε × R, which is
equivalent to prove it on these six domains.

Case 1. If (S, I, R, t) ∈ U1 ×R, from (11), we get

LV ≤ –
Al

S
+ K

(
βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I –
�

4
Iθ+1 + τ

≤ –
Al

ε
+ K̃ + τ ≤ –1, (17)

where

K̃ = sup
(S,I,R)∈R3

+

{

K
(

βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I –
�

4
Iθ+1

}

. (18)

Case 2. If (S, I, R, t) ∈ U2 ×R, from (12), one can see that

LV ≤ KβuI
S + I + R

+ K
(
mu

1γ
u + mu

1α
u – ml

2γ
l – αl)I + τ

≤ Kβuε + K
(
mu

1γ
u + mu

1α
u – ml

2γ
l – αl)ε2 + τ ≤ –1. (19)

Case 3. If (S, I, R, t) ∈ U3 ×R, from (13), one can derive that

LV ≤ –
γ lI
R

+ K
(

βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I –
�

4
Iθ+1 + τ

≤ –
γ l

ε
+ K̃ + τ ≤ –1. (20)

Case 4. If (S, I, R, t) ∈ U4 ×R, from (14), we get

LV ≤ –
�

2
Sθ+1 + K

(
βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I –
�

4
Iθ+1 + τ

≤ –
�

2εθ+1 + K̃ + τ ≤ –1. (21)

Case 5. If (S, I, R, t) ∈ U5 ×R, (15) implies that

LV ≤ –
�

4
Iθ+1 –

�

4
Iθ+1 + K

(
βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I + τ

≤ –
�

4ε2(θ+1) + K̃ + τ ≤ –1. (22)
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Case 6. If (S, I, R, t) ∈ U6 ×R, from (16), one obtains

LV ≤ –
�

2
Rθ+1 –

�

4
Iθ+1 + K

(
βu

S + I + R
+ mu

1γ
u + mu

1α
u – ml

2γ
l – αl

)

I + τ

≤ –
�

2ε3(θ+1) + K̃ + τ ≤ –1. (23)

By (17), (19), (20), (21), (22) and (23), one can get

LV (S, I, R, t) ≤ –1, (S, I, R, t) ∈ UC
ε ×R.

So, condition (ii) for Lemma 2.1 is true. By Lemma 2.1, Theorem 3.2 is proved. �

4 Extinction of the disease and the ergodic stationary distribution for
system (3)

For the system with regime switching, we will explore the extinction of the disease and
the existence of an ergodic stationary distribution. Let (S(t), I(t), R(t), r(t)) be the solution
of system (3) with initial value (S(0), I(0), R(0), r(0)) ∈R

3
+ × S.

Define

R∗
1 =

∑m
k=1 πkβ(k)

∑m
k=1 πk(γ (k) + d(k) + α(k) + σ 2

2 (k)
2 )

,

then we have the following.

Theorem 4.1 If R∗
1 < 1, then limt→∞ I(t) = 0 a.s.

Proof By Itô’s formula, we get

d ln I =
[

β(r(t))S
S + I + R

–
(

γ
(
r(t)

)
+ d

(
r(t)

)
+ α

(
r(t)

)
+

σ 2
2 (r(t))

2

)]

dt

+ σ2
(
r(t)

)
dB2(t). (24)

Integrating both sides of Eq. (24) leads to

ln I(t) – ln I(0)
t

≤ 1
t

∫ t

0

[

β
(
r(s)

)
–

(

γ
(
r(s)

)
+ d

(
r(s)

)
+ α

(
r(s)

)
+

σ 2
2 (r(s))

2

)]

ds

+
1
t

∫ t

0
σ2

(
r(s)

)
dB2(s). (25)

From the ergodic property of r(t), one can get

lim
t→∞

1
t

∫ t

0

[

β
(
r(s)

)
–

(

γ
(
r(s)

)
+ d

(
r(s)

)
+ α

(
r(s)

)
+

σ 2
2 (r(s))

2

)]

ds

=
m∑

k=1

πkβ(k) –
m∑

k=1

πk

(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)

.
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So, (25) implies that

lim sup
t→∞

ln I(t)
t

≤
m∑

k=1

πk

(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)
(
R∗

1 – 1
)

< 0 a.s.

Hence we have

lim
t→∞ I(t) = 0 a.s. �

Next, we shall establish sufficient conditions for the existence of an ergodic stationary
distribution of system (3).

Let

R∗
2 =

∑m
k=1 πk[c1(k)A(k) + β(k)]

∑m
k=1 πk(γ (k) + d(k) + α(k) + σ 2

2 (k)
2 )

,

where c1(k) is the solution of the following linear system:

⎧
⎨

⎩

c1(k)d(k) –
∑m

l=1 qklc1(l) – β(k) = 0, k = 1, 2, . . . , m,

–c1(k)δ(k) + c2(k)(δ(k) + d(k)) –
∑m

l=1 qklc2(l) = 0, k = 1, 2, . . . , m.
(26)

By the literature [34], system (26) has a unique solution

(
c1(1), c1(2), . . . , c1(m), c2(1), c2(2), . . . , c2(m)

)T � 0.

Then we have

Theorem 4.2 If R∗
2 > 1, then system (3) has a unique ergodic stationary distribution.

Proof To prove Theorem 4.2, we just have to verify that conditions (i), (ii) and (iii) in
Lemma 2.3 be satisfied. First, assumption qij > 0 for i �= j in Sect. 2 implicates that the con-
dition (i) holds. Second, the diffusion matrix D(S, I, R, k) = diag{σ 2

1 (k)S2,σ 2
2 (k)I2,σ 2

3 (k)R2}
of model (3) is positive definite, which shows that condition (ii) in Lemma 2.3 is satisfied.
Next, we will show condition (iii) is satisfied by constructing suitable Lyapunov function.
Let us define

V (S, I, R, k) =
1

ξ + 1
(S + I + R)ξ+1 + M

(
–c1(k)(S + I) – c2(k)R – ln I – ω(k)

)

– ln S – ln R,

where c1(k), c2(k) are the solution of the system (26), ξ ∈ (0, 1) and M > 0 satisfy ρ := d̂ –
ξ

2 (σ̌ 2
1 ∨ σ̌ 2

2 ∨ σ̌ 2
3 ) > 0, and E +2ď+ β̌ + δ̌+ σ̌ 2

1 +σ̌ 2
3

2 –MΣm
k=1πk(γ (k)+d(k)+α(k)+ σ 2

2 (k)
2 )(R∗

2 –1) ≤
–2, E and ω(k) will be defined later.

Denote

V1 =
1

ξ + 1
(S + I + R)ξ+1,
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V2 = –c1(k)(S + I) – c2(k)R – ln I – ω(k),

V3 = – ln S,

V4 = – ln R.

Applying the generalized Itô formula, we have

LV1 ≤ E –
ρ

2
(S + I + R)ξ+1,

where E = supS+I+R∈R+{Ǎ(S + I + R)ξ – ρ

2 (S + I + R)ξ+1}. Furthermore,

LV2 = –c1(k)
(
A(k) – d(k)S + δ(k)R –

(
γ (k) + d(k) + α(k)

)
I
)

– (S + I)
m∑

l=1

qklc1(l) – c2(k)
(
γ (k)I –

(
δ(k) + d(k)

)
R
)

– R
m∑

l=1

qklc2(l)

–
(

β(k)S
N

–
(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

))

–
m∑

l=1

qklω(l)

≤ –c1(k)A(k) – β(k) +
(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)

–
m∑

l=1

qklω(l)

+

(

c1(k)d(k) –
m∑

l=1

qklc1(l) – β(k)

)

S

+

(

c1(k)
(
γ (k) + d(k) + α(k)

)
– c2(k)γ (k) –

m∑

l=1

qklc1(l)

)

I

+

(

–c1(k)δ(k) + c2(k)
(
δ(k) + d(k)

)
–

m∑

l=1

qklc2(l)

)

R

+ β(k)S +
β(k)I

N
+

β(k)R
N

≤ –R0k –
m∑

l=1

qklω(l) +
(
c1(k)

(
γ (k) + α(k)

)
+ β(k) – c2(k)γ (k)

)
I

+ β(k)S +
β(k)I

N
+

β(k)R
N

, (27)

where

R0k = c1(k)A(k) + β(k) –
(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)

.

Let ω = (ω(1),ω(2), . . . ,ω(m))T be the following Poisson system’s solution:

Γ ω =

( m∑

l=1

πkR0k

)

�1 – R̃0,
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where R̃0 = (R01, R02, . . . R0m)T . This shows that

–R0k –
m∑

l=1

qklω(l) = –
m∑

k=1

πkR0k

= –
m∑

k=1

πk

(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)
(
R∗

2 – 1
)
.

Substituting this equality into (27), one has

LV2 ≤ –
m∑

k=1

πk

(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)
(
R∗

2 – 1
)

+
(
č1(γ̌ + α̌) + β̌

– ĉ2γ̂
)
I + β̌S +

β̌I
N

+
β̌R
N

,

LV3 = –
A(k)

S
+

β(k)I
N

–
δ(k)R

S
+ d(k) +

σ 2
1 (k)
2

,

and

LV4 = –
γ (k)I

R
+ δ(k) + d(k) +

σ 2
3 (k)
2

.

Consequently, one can get

LV ≤ –
ρ

2
Sξ+1 + Mβ̌(S + 1) –

Â
S

–
ρ

2
Iξ+1 + M

[
č1(γ̌ + α̌) + β̌ – ĉ2γ̂

]
I

–
ρ

2
Rξ+1 –

γ̂ I
R

+ E + 2ď + β̌ + δ̌ +
σ̌ 2

1 + σ̌ 2
3

2

– M
m∑

k=1

πk

(

γ (k) + d(k) + α(k) +
σ 2

2 (k)
2

)
(
R∗

2 – 1
)
.

Consider the bounded open set D = ( 1
η

,η) × ( 1
η

,η) × ( 1
η

,η) ⊂ R
3
+, where η is a positive

number. From the discussing above, we derive that, for a sufficiently large η,

LV (S, I, R, k) ≤ –1, for all (S, I, R, k) ∈ DC × S.

By virtue of Lemma 2.3, one can see that system (3) has a solution which is a stationary
Markov process. The proof is completed. �

5 Conclusions and numerical simulations
In this paper, we proposed a stochastic non-autonomous SIRS epidemic model with pe-
riodic coefficients (model (2)), and a stochastic epidemic model perturbed by telegraph
noise (model (3)). Then the dynamic behaviors of the two models are studied.

Firstly, for system (2), there are the following properties:
(1) If 〈R1(t)〉T < 0, then the disease will go to extinction almost surely.
(2) If 〈R2(t)〉T > 0, then system (2) has at least one positive T-periodic solution.
Secondly, system (3) possesses the following properties:
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(1) If R∗
1 < 1, the disease I(t) will go to extinction exponentially with probability 1.

(2) If R∗
2 > 1, then the solution of system (3) has a unique ergodic stationary distribution.

To verify the correctness of the theoretical analysis, we will give some examples with
computer simulations.

Example 1 First, we consider system (2) and let

A(t) = 0.1 sin t + 1.1, d(t) = 0.1 sin t + 0.2, β(t) = 0.1 sin t + 0.9,

α(t) = 0.1 sin t + 0.2, γ (t) = 0.1 sin t + 0.2, δ(t) = 0.1 sin t + 0.2,

σ1(t) = 0.1 sin t + 0.01, σ2(t) = 0.1 sin t + 1.2, σ3(t) = 0.1 sin t + 0.01.

Case (a). Simple calculation shows that

〈
R1(t)

〉

T = –0.4284 < 0.

From Theorem 3.1, we know that the disease goes to extinction (see Fig. 1).
Case (b). We only change the intensity of the noise σ2(t) = 0.1 sin t + 0.2. Then direct

computation leads to 〈R2(t)〉T = 0.2573 > 0. From Theorem 3.2, we can see that system (2)
has at least one positive T-periodic solution (see Fig. 2).

Figure 1 Sample paths of (S(t), I(t),R(t)) with initial
conditions (S(0), I(0),R(0)) = (3, 2.5, 2)

Figure 2 Sample paths of (S(t), I(t),R(t)) with initial
conditions (S(0), I(0),R(0)) = (0.3, 0.3, 0.3)
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Example 2 In model (3), if the Markov chain r(t) take values in S = {1, 2} with the gener-
ator

Γ =

(
–1 1
1 –1

)

.

Then the unique stationary distribution of r(t) is (π1,π2) = ( 1
2 , 1

2 ). Choose parameters

A(1) = 1.4, β(1) = 1, d(1) = 0.2, γ (1) = 0.3, α(1) = 0.1,

δ(1) = 0.2, A(2) = 2, β(2) = 0.8, d(2) = 0.15, γ (2) = 0.25,

α(2) = 0.2, δ(2) = 0.1, σ1(1) = 0.05, σ2(1) = 1.3,

Figure 3 Sample paths of (S(t), I(t),R(t)) with initial
conditions (S(0), I(0),R(0)) = (1.5, 2.5, 2.5)

Figure 4 Computer simulation of a single path of Markov chain r(t) and its corresponding solutions
(S(t), I(t),R(t)) for the system (3). The last three pictures are the histograms of the path
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σ3(1) = 0.05, σ1(2) = 0.1, σ2(2) = 1.5, σ3(2) = 0.2.

Case (a). By direct calculation, we get R∗
1 = 0.5678 < 1. Then from Theorem 4.1, we know

the disease I(t) finally go to extinction (see Fig. 3).
Case (b). We only change the intensity of the noise σ2(1) = 0.15, σ2(2) = 0.2. Then we

have R∗
2 = 2.0560 > 1, one can derived that model (3) has a unique stationary distribution.

Figure 4(a) shows the Markov chain switching process and Fig. 4(b) shows the process
of changing system variables over time. From Fig. 4(c), Fig. 4(d) and Fig. 4(e), we can see
system (3) has a stationary distribution.
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