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1 Introduction
Fractional calculus has drawn people’s attention extensively. This is because of its exten-
sive development of the theory and its applications in various fields, such as physics, engi-
neering, chemistry and biology; see [1–9]. To be compared with integer derivatives, frac-
tional derivatives are used for a better description of considered material properties, and
the design of mathematical models by the differential equations of fractional order can
more accurately describe the characteristics of the real-world phenomena; see [4, 7, 8].
Recently, many papers about the solvability for fractional equations have appeared; see
[10–18].

Furthermore, the study of fractional systems has also been a topic focused on; see [19–
25]. Although the coupled systems of fractional boundary value problems have been con-
sidered by some authors, coupled systems with multi-order fractional orders are seldom
discussed. The orders of the nonlinear fractional systems which are considered in the ex-
isting papers belong to the same interval (n, n + 1] (n ∈N

+); see [19–24].
Zhao et al. [25] investigated the solvability for nonlinear systems with mixed fractional

orders via the Guo–Krasnosel’skii fixed point theorem

⎧
⎪⎪⎨

⎪⎪⎩

–RLDα

0+ x(t) = f (t, y(t)), 0 < t < 1,
RLDβ

0+ y(t) = g(t, x(t)), 0 < t < 1,

x(0) = x(1) = x′(0) = y(0) = y(1) = y′(0) = y′(1) = 0,

(1)

where 2 < α ≤ 3, 3 < β ≤ 4, RLDα

0+ , RLDβ

0+ are the standard Riemann–Liouville fractional
derivatives, and f , g : (0, 1] × [0, +∞) → [0, +∞) are continuous, f (t, 0) ≡ 0, g(t, 0) ≡ 0.
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However, we can see the fact, in Remark 3.2 [25] that the conditions f (t, 0) ≡ 0 and g(t, 0) ≡
0 are too strong for the nonlinear systems. Therefore, we will study some new results for
the problem (1) without the conditions f (t, 0) ≡ 0 and g(t, 0) ≡ 0.

Motivated by all the work above, in this paper we consider the existence of boundary
value problem for multi-order nonlinear differential system (1) without the conditions
f (t, 0) ≡ 0 and g(t, 0) ≡ 0. Our analysis relies on the Schauder fixed point theorem and
the Banach contraction principle. Some sufficient conditions of the existence of boundary
value problem for the multi-order nonlinear fractional differential systems are given. Our
results in this paper improve some well-known results in [25]. Finally, we present examples
to demonstrate our results.

The plan of the paper is as follows. Section 2 gives some preliminaries to prove our
main results. Section 3 considers the solvability of multi-order nonlinear system (1) by the
Schauder fixed point theorem and the Banach contraction principle. Section 4 presents
illustrative examples to verify our new results, which is followed by a brief conclusion in
Sect. 5.

2 Preliminaries
In this section, we give some definitions and lemmas about fractional calculus; see [25–
27].

Definition 2.1 ([26]) The Riemann–Liouville fractional derivative of order γ > 0 of a con-
tinuous function f : (0, +∞) →R is denoted by

RLDγ

0+ x(t) =
1

Γ (n – γ )

(
d
dt

)n ∫ t

0

x(s)
(t – s)α–n+1 ds,

where n = [γ ] + 1, [γ ] denotes the integer part of the number γ .

Definition 2.2 ([26]) The Riemann–Liouville fractional integral of order γ > 0 of a func-
tion f : (0, +∞) →R is denoted by

Iγ

0+ x(t) =
1

Γ (γ )

∫ t

0
(t – s)γ –1x(s) ds.

For the solutions of fractional equations which are expressed based on Green’s function
refer to Lemma 2.3 and Lemma 2.5 in [25].

Lemma 2.1 The function G1(t, s) defined by (2.3) in [25] has the following properties:
(C1) G1(t, s) > 0, for t, s ∈ (0, 1);
(C2) q1(t)k1(s) ≤ Γ (α)G1(t, s) ≤ (α – 1)k1(s), for t, s ∈ (0, 1), where q1(t) = tα–1(1 – t),

k1(s) = s(1 – s)α–1.

Lemma 2.2 The function G2(t, s) defined by (2.6) in [25] has the following properties:
(D1) G2(t, s) > 0, for t, s ∈ (0, 1);
(D2) (β – 2)q2(t)k2(s) ≤ Γ (β)G2(t, s) ≤ M0k2(s), for t, s ∈ (0, 1), where M0 = max{β – 1,

(β – 2)2}, q2(t) = tβ–2(1 – t)2, k2(s) = s2(1 – s)β–2.

We recall the following fixed point theorem for our main results.
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Lemma 2.3 ([27]) Let E be a Banach space with C ⊂ E close and convex. Assume U is a
relatively open subset of C with 0 ∈ U and A : U → C is a continuous compact map. Then
either

(E1) A has a fixed point in U ; or
(E2) there exist a u ∈ ∂U , and a λ ∈ (0, 1) with u = λAu.

3 Main results
In this section, we establish the existence of multi-order nonlinear fractional systems (1).

I = [0, 1], and C(I) denotes the space of all continuous real functions defined on I . P =
{x(t)|x ∈ C(I)} denotes a Banach space endowed with the norm ‖x‖P = maxt∈I |x(t)|. We
define the norm by ‖(x, y)‖P×P = max{‖x‖P,‖y‖P} for (x, y) ∈ P × P, then (P × P,‖ · ‖P×P) is
a Banach space.

Consider the following system:

⎧
⎨

⎩

x(t) =
∫ 1

0 G1(t, s)f (s, y(s)) ds,

y(t) =
∫ 1

0 G2(t, s)g(s, x(s)) ds.
(2)

Then we have the following results.

Lemma 3.1 Suppose that f , g : I × [0, +∞) → [0, +∞) are continuous. Then (x, y) ∈ P × P
is a solution of (1) if and only if (x, y) ∈ P × P is a solution of system (2).

This proof can be referred to that of Lemma 3.3 in [24], so it is omitted.
Let T : P × P → P × P be the operator defined by

T(x, y)(t) =
(∫ 1

0
G1(t, s)f

(
s, y(s)

)
ds,

∫ 1

0
G2(t, s)g

(
s, x(s)

)
ds

)

=:
(
T1y(t), T2x(t)

)
, t ∈ I.

By the continuity of the functions G1, G2, f and g , it implies that T is continuous. Fur-
thermore, from Lemma 3.1, the fixed point of T is equivalent to the solution of system
(1).

Next define the following notation:

Ā =
(∫ 1

0

(α – 1)k1(s)
Γ (α)

ds
)–1

, B̄ =
(∫ 1

0

M0k2(s)
Γ (β)

ds
)–1

.

Theorem 3.1 Let f , g : I × [0, +∞) → [0, +∞) be continuous functions. Assume that the
following conditions are satisfied:

(H1) There exist two nonnegative functions a1(t), b1(t) ∈ L(0, 1) and two nonnegative con-
tinuous functions p(x), q(x) : [0, +∞) → [0, +∞) such that f (t, x) ≤ a1(t) + p(x),
g(t, x) ≤ b1(t) + q(x);

(H2) limx→+∞ p(x)
x < Ā, limx→+∞ q(x)

x < B̄.
Then the system (1) has a solution.
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Proof Let e1 = 1
2 (Ā – limx→+∞ p(x)

x ). By hypothesis (H2), we find that there exists c1 > 0 such
that

p(x) ≤ (Ā – e1)x, for x ≥ c1.

Set M = max{p(x) : x ∈ [0, c1]}. Then there exists c2 > c1 such that M
c2

≤ Ā – e1, so we get

p(x) ≤ (Ā – e1)c2, for x ∈ [0, c2].

Thus, for any c ≥ c2 and u ∈ [0, c], we obtain

p(x) ≤ (Ā – e1)c.

Let e2 = 1
2 (B̄ – limx→+∞ q(x)

x ). In the same way, there exists c3 > 0 such that, for any c ≥ c3

and x ∈ [0, c], we get

q(x) ≤ (B̄ – e2)c.

Define

X =
{(

x(t), y(t)
)|x(t), y(t) ∈ P,

∥
∥
(
x(t), y(t)

)∥
∥

P×P ≤ c, t ∈ I
}

,

where

c = max

{

c2, c3,
Ā
e1

h1,
B̄
e2

h2

}

and

h1 = max
t∈I

∫ 1

0
G1(t, s)a1(s) ds, h2 = max

t∈I

∫ 1

0
G2(t, s)b1(s) ds.

Observe that X is a ball in the Banach space P × P. Moreover, for any (x, y) ∈ X, f (t, y(t)),
g(t, x(t)) are bounded, and p(y(t)) ≤ (Ā – e1)c, q(x(t)) ≤ (B̄ – e2)c.

Now we verify that T : X → X. From hypothesis (H2), for any (x, y) ∈ X, we obtain

∣
∣T1y(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, y(s)

)
ds

∣
∣
∣
∣

=
∫ 1

0
G1(t, s)f

(
s, y(s)

)
ds

≤
∫ 1

0
G1(t, s)a1(s) ds +

∫ 1

0
G1(t, s)p

(
y(s)

)
ds

≤ h1 + (Ā – e1)c
∫ 1

0
G1(t, s) ds

≤ h1 + (Ā – e1)c
∫ 1

0

(α – 1)k1(s)
Γ (α)

ds
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≤ h1 + (Ā – e1)cA–1

≤ e1

Ā
c +

(

1 –
e1

Ā

)

c = c.

Similarly,

∣
∣T2x(t)

∣
∣ ≤ h2 + (B̄ – e2)c

∫ 1

0
G2(t, s) ds

≤ h2 + (B̄ – e2)c
∫ 1

0

M0k2(s)
Γ (β)

ds

≤ h2 + (B̄ – e2)cB̄–1

≤ e2

B̄
c +

(

1 –
e2

B̄

)

c = c.

Thus, ‖T1y‖P ≤ c, ‖T2x‖P ≤ c. That is, we get ‖T(x, y)‖P×P ≤ c. Notice that T1y(t), T2x(t)
are continuous on I . Therefore, we obtain T : X → X.

Next we verify T is a completely continuous operator. In fact, we fix

M = max
t∈I

f
(
t, y(t)

)
, N = max

t∈I
g
(
t, x(t)

)
.

For (x, y) ∈ X, t, τ ∈ I , t < τ , we get

∣
∣T1y(t) – T1y(τ )

∣
∣

=
∣
∣
∣
∣

∫ 1

0

(
G1(t, s) – G1(τ , s)

)
f
(
s, y(s)

)
ds

∣
∣
∣
∣

≤ M
[∫ t

0

∣
∣G1(t, s) – G1(τ , s)

∣
∣ds +

∫ τ

t

∣
∣G1(t, s) – G1(τ , s)

∣
∣ds

+
∫ 1

τ

∣
∣G1(t, s) – G1(τ , s)

∣
∣ds

]

≤ M
(∫ 1

0

(1 – s)α–1(τ – t)
Γ (α)

ds +
∫ τ

0

(τ – s)α–1

Γ (α)
ds –

∫ t

0

(t – s)α–1

Γ (α)
ds

)

=
M

Γ (α + 1)
(
(τ – t) +

(
τα – tα

))
.

Similarly,

∣
∣T2x(t) – T2x(τ )

∣
∣ ≤ N

Γ (β + 1)
((

τβ–2 – tβ–2) + 2
(
τβ–1 – tβ–1) +

(
τβ – tβ

))
.

Since the functions tα , tβ , tβ–1, tβ–2 are uniformly continuous on I , from the above analysis,
TX is an equicontinuous set. Furthermore, TX ⊂ X. Therefore, T is a completely continu-
ous operator. Hence, by Schauder fixed point theorem, the system (1) has one solution. �

Theorem 3.2 Let f , g : I × [0, +∞) → [0, +∞) be continuous functions. Assume that one
of the following conditions is satisfied:
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(H3) There exist two nonnegative functions a2(t), b2(t) ∈ L(0, 1) such that f (t, x) ≤ a2(t) +
d1|x|ρ1 , g(t, x) ≤ b2(t) + d2|x|ρ2 , where di ≥ 0, 0 < ρi < 1 for i = 1, 2;

(H4) f (t, x) ≤ d1|x|ρ1 , g(t, x) ≤ d2|x|ρ2 where di > 0, ρi > 1 for i = 1, 2.
Then the system (1) has a solution.

Proof Let (H4) be valid. Then we define

Y =
{(

x(t), y(t)
)|x(t), y(t) ∈ P,

∥
∥
(
x(t), y(t)

)∥
∥

P×P ≤ r, t ∈ I
}

,

where

r ≥ max

{(
2d1

Ā

) 1
1–ρ1

,
(

2d2

B̄

) 1
1–ρ2

, 2l1, 2l2

}

and

l1 = max
t∈I

∫ 1

0
G1(t, s)a2(s) ds, l2 = max

t∈I

∫ 1

0
G2(t, s)b2(s) ds.

Next, we verify T : Y → Y . By hypothesis (H3), for any (x, y) ∈ Y , we obtain

∣
∣T1y(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, y(s)

)
ds

∣
∣
∣
∣

=
∫ 1

0
G1(t, s)f

(
s, y(s)

)
ds

≤
∫ 1

0
G1(t, s)a2(s) ds + d1rρ1

∫ 1

0
G1(t, s) ds

≤ l1 + d1rρ1

∫ 1

0

(α – 1)k1(s)
Γ (α)

ds

= l1 + d1rρ1 Ā–1

≤ r
2

+
r
2

= r.

Similarly,

∣
∣T2x(t)

∣
∣ ≤ l2 + d2rρ2

∫ 1

0
G2(t, s) ds

≤ l2 + d2rρ2

∫ 1

0

M0k2(s)
Γ (β)

ds

= l2 + d2rρ2 cB̄–1

≤ r
2

+
r
2

= r.

Therefore, ‖T1y‖P ≤ r, ‖T2x‖P ≤ r. That is, we have ‖T(x, y)‖P×P ≤ r. Notice that T1y(t),
T2x(t) are continuous on I . Thus, we get T : Y → Y .

Next, let (H4) be valid. Then we choose

0 < r ≤ min

{(
Ā
d1

) 1
ρ1–1

,
(

B̄
d2

) 1
ρ2–1

}

.
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Similarly, we can obtain

‖T1y‖P ≤ d1rρ1 Ā–1 ≤ r, ‖T2x‖P ≤ d2rρ2 B̄–1 ≤ r.

That is, we have ‖T(x, y)‖P×P ≤ r. And T1y(t), T2x(t) are continuous on I . Thus, we get
T : Y → Y . By Theorem 3.1, we see that T is a completely continuous operator. Hence, by
the Schauder fixed point theorem, the system (1) has one solution. �

Theorem 3.3 Let f , g : I × [0, +∞) → [0, +∞) be continuous functions. Assume that one
of the following conditions is satisfied:

(H5) There exist two nonnegative functions a3(t), b3(t) ∈ L(0, 1) such that |f (t, x1) –
f (t, x2)| ≤ a3(t)|x1 – x2|, |g(t, x1) – g(t, x2)| ≤ b3(t)|x1 – x2|, t ∈ [0, 1] and f , g sat-
isfies f (0, 0) = 0, g(0, 0) = 0.

(H6) Suppose that λ = max{λ1,λ2} < 1, where

λ1 =
∫ 1

0

(α – 1)k1(s)a3(s)
Γ (α)

ds, λ2 =
∫ 1

0

M0k2(s)b3(s)
Γ (β)

ds.

Then the system (1) has a unique solution.

Proof For any (x1, y1), (x2, y2) ∈ P × P, we get

∣
∣T1y1(t) – T1y2(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G1(t, s)f

(
s, y1(s)

)
ds –

∫ 1

0
G1(t, s)f

(
s, y2(s)

)
ds

∣
∣
∣
∣

=
∫ 1

0
G1(t, s)

∣
∣f

(
s, y1(s)

)
– f

(
s, y2(s)

)∣
∣ds

≤
∫ 1

0
G1(t, s)a3(s)‖y1 – y2‖P ds

≤
∫ 1

0

(α – 1)k1(s)a3(s)
Γ (α)

ds‖y1 – y2‖P

= λ1‖y1 – y2‖P.

Similarly,

∣
∣T2x1(t) – T2x2(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G2(t, s)g

(
s, x1(s)

)
ds –

∫ 1

0
G2(t, s)g

(
s, x2(s)

)
ds

∣
∣
∣
∣

=
∫ 1

0
G2(t, s)

∣
∣g

(
s, x1(s)

)
– g

(
s, x2(s)

)∣
∣ds

≤
∫ 1

0
G2(t, s)b3(s)‖x1 – x2‖P ds

≤
∫ 1

0

M0k2(s)b3(s)
Γ (β)

ds‖x1 – x2‖P

= λ2‖x1 – x2‖P.

Thus, ‖T1y1 – T1y2‖P ≤ λ1‖y1 – y2‖P , ‖T2x1 – T2x2‖P ≤ λ2‖x1 – x2‖P .
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Therefore, for the Euclidean distance d on R
2, we have

d
(
T(x1, y1), T(x2, y2)

)
=

√
(T1y1 – T1y2)2 + (T2x1 – T2x2)2

=
√

‖T1y1 – T1y2‖2
P + ‖T2x1 – T2x2‖2

P

≤
√

(
λ1‖y1 – y2‖P

)2 +
(
λ2‖x1 – x2‖P

)2

≤ λ

√

‖y1 – y2‖2
P + ‖x1 – x2‖2

P

= λd
(
(x1, y1), (x2, y2)

)
.

Thus, T is a contraction since λ < 1.
By the Banach contraction principle, T has a unique fixed point which is a solution of

the system (1). �

Remark 3.1 In this paper, we give some new results for the system (1) without conditions
f (t, 0) ≡ 0 and g(t, 0) ≡ 0. Our results in this paper improve some well-known results in
[25].

4 Example
In this section, we will present examples to illustrate the main results.

Example 4.1 Consider the following system:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–RLD
5
2
0+ x(t) = 2t + 28(t – 1

2 )2y, 0 < t < 1,
RLD

7
2
0+ y(t) = t2 + 100(t – 1

2 )2x, 0 < t < 1,

x(0) = x(1) = x′(0) = y(0) = y(1) = y′(0) = y′(1) = 0.

(3)

Choose a1(t) = 3t, b1(t) = 2t2 and p(x) = 7x, q(x) = 25x. So (H1) holds. Since Ā = 7.7545,
B̄ = 26.1714, thus (H2) holds. By Theorem 3.1, the system (3) has a solution.

Remark 4.1 In Example 4.1 and Example 4.2 of [25], the systems (4.1) and (4.2) with con-
ditions f (t, 0) ≡ 0 and g(t, 0) ≡ 0 are considered. However, in Example 4.1 of this paper,
f (t, y) = 2t + 28(t – 1

2 )2, g(t, y) = t2 + 100(t – 1
2 )2, we can easily see that f (t, 0) �≡ 0 and

g(t, 0) �≡ 0. Thus, it is clear that one cannot deal with the system (3) of this paper by the
method presented [25].

Example 4.2 Consider the following system:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–RLD
5
2
0+ x(t) = (t – 1

4 )4(y(t))ρ1 , 0 < t < 1,
RLD

7
2
0+ y(t) = (t – 1

4 )4(x(t))ρ2 , 0 < t < 1,

x(0) = x(1) = x′(0) = y(0) = y(1) = y′(0) = y′(1) = 0,

(4)

where 0 < ρi < 1 or ρi ≥ 1 for i = 1, 2.

Note that a2(t) = b2(t) = 0 and d1 = d2 = 81
256 . By Theorem 3.2, the system (4) has a solu-

tion.
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5 Conclusion
We have considered the solvability of some class of multi-order nonlinear fractional dif-
ferential systems in this paper. Some sufficient conditions for multi-order nonlinear dif-
ferential systems have been established by fixed point theorems. Our results improve the
work presented in [25].

In future work, one can study the stability and the stabilization problems for multi-order
nonlinear fractional differential systems which concern the existence of solutions.
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