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Abstract
In this paper, we consider the extended central factorial polynomials and numbers of
the second kind, and investigate some properties and identities for these polynomials
and numbers. In addition, we give some relations between those polynomials and
the extended central Bell polynomials. Finally, we present some applications of our
results to moments of Poisson distributions.
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1 Introduction
For n ≥ 0, the central factorial numbers of the second kind are defined by

xn =
n∑

k=0

T(n, k)x[k], n ≥ 0, (see [1, 2, 20–22]), (1.1)

where x[k] = x(x + k
2 – 1)(x + k

2 – 2) · · · (x – k
2 + 1), k ≥ 1, x[0] = 1.

By (1.1), we see that the generating function of the central factorial numbers of the sec-
ond kind is given by

1
k!

(
e

t
2 – e– t

2
)k =

∞∑

n=k

T(n, k)
tn

n!
(see [1–4, 21]). (1.2)

Here the definition of T(n, k) is extended so that T(n, k) = 0 for n < k. This agreement will
be applied to all similar situations without further mention.

Then, by (1.2), we have

T(n, k) =
1
k!

k∑

j=0

(
k
j

)
(–1)k–j

(
j –

k
2

)n

, n, k ≥ 0. (1.3)
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Let us recall that the Stirling polynomials of the second kind are defined by

1
k!

ext(et – 1
)k =

∞∑

n=k

S2(n, k|x)
tn

n!
(see [10, 16, 17]), (1.4)

where k is a nonnegative integer.
When x = 0, S2(n, k) = S2(n, k|0), n, k ≥ 0, are the Stirling numbers of the second kind

given by

xn =
n∑

k=0

S2(n, k)(x)k , n ≥ 0 (see [12, 14, 15, 21]),

where (x)0 = 1, (x)k = x(x – 1) · · · (x – k + 1), k ≥ 1.
From (1.4), we note that

S2(n, k|x) =
n∑

l=k

(
n
l

)
S2(l, k)xn–l

=
1
k!

k∑

j=0

(
k
j

)
(–1)k–j(j + x)n, n, k ≥ 0. (1.5)

The Bell polynomials are given by the generating function

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
(see [5–11]). (1.6)

Then, from (1.4) and (1.6), we get

Beln(x) =
n∑

m=0

S2(n, m)xm (see [10]). (1.7)

In [17], the extended Stirling polynomials of the second kind are defined by

1
k!

ext(et – 1 + rt
)k =

∞∑

n=k

S2,r(n, k|x)
tn

n!
, (1.8)

where n, k ∈N∪ {0} and r ∈R.
When x = 0, S2,r(n, k) = S2,r(n, k|0), n, k ≥ 0, are called the extended Stirling numbers of

the second kind. Note that S2,0(n, k) = S2(n, k) and S2,0(n, k|x) = S2(n, k|x).
From (1.4) and (1.8), we note that

S2,r(n, k) =
k∑

l=0

(
n
l

)
rlS2(n – l, k – l), n, k ≥ 0 (see [17]). (1.9)

It is known that the extended Bell polynomials are defined by

ex(et–1+rt) =
∞∑

n=0

Beln,r(x)
tn

n!
(see [13, 18, 19]). (1.10)

For x = 1, Beln,r = Beln,r(1) are called the extended Bell numbers.
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Then, from (1.10), we get

Beln,r(x) =
n∑

m=0

xmS2,r(n, m) (see [17]). (1.11)

Recently, the central Bell polynomials were defined by Kim as

∞∑

n=k

Bel(c)
n (x)

tn

n!
= ex(e

t
2 –e– t

2 ) (see [1–3]). (1.12)

For x = 1, Bel(c)
n = Bel(c)

n (1) are called the central Bell numbers.
Thus, by (1.12), we get

Bel(c)
n (x) =

n∑

k=0

xkT(n, k), n ≥ 0 (see [17]). (1.13)

The purpose of this paper is to consider the extended central factorial polynomials and
numbers of the second kind, and investigate some properties and identities for these poly-
nomials and numbers. In addition, we give some relations between those polynomials and
the extended central Bell polynomials. Finally, we present some applications of our results
to moments of Poisson distributions.

2 Extended central factorial polynomials of the second kind
Motivated by (1.8), we define the extended central factorial polynomials of the second
kind by

1
k!

ext(e
t
2 – e– t

2 + rt
)k =

∞∑

n=k

T (r)(n, k|x)
tn

n!
, (2.1)

where k ∈ N ∪ {0} and r ∈ R. When x = 0, T (r)(n, k) = T (r)(n, k|0), n, k ≥ 0, are called
the extended central factorial numbers of the second kind. Note here that, when r = 0,
T(n, k|x) = T (0)(n, k|x) and T(n, k) = T (0)(n, k) are respectively the central factorial polyno-
mials of the second kind and the central factorial numbers of the second kind.

From (2.1), we note that

∞∑

n=k

T (r)(n, k|x)
tn

n!
=

∞∑

m=0

1
m!

xmtm
∞∑

l=k

T (r)(l, k)
tl

l!

=
∞∑

n=k

( n∑

l=k

(
n
l

)
T (r)(l, k)xn–l

)
tn

n!
. (2.2)

Therefore, by comparing the coefficients on both sides of (2.2), we obtain the following
theorem.

Theorem 2.1 For n, k ≥ 0, we have

T (r)(n, k|x) =
n∑

l=k

(
n
l

)
T (r)(l, k)xn–l. (2.3)
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From (2.1), we note that

∞∑

k=0

xk

k!
(
e

t
2 – e– t

2 + rt
)k =

∞∑

k=0

xk
∞∑

n=k

T (r)(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

xkT (r)(n, k)

)
tn

n!
. (2.4)

On the other hand,

∞∑

k=0

xk

k!
(
e

t
2 – e– t

2 + rt
)k = ex(e

t
2 –e– t

2 +rt) = ex(e
t
2 –e– t

2 )exrt

=
∞∑

k=0

Bel(c)
k (x)

tk

k!

∞∑

m=0

rmxm tm

m!

=
∞∑

n=0

( n∑

k=0

(
n
k

)
Bel(c)

k (x)rn–kxn–k

)
tn

n!
. (2.5)

Now, we define the extended central Bell polynomials by

ex(e
t
2 –e– t

2 +rt) =
∞∑

n=0

Bel(c,r)
n (x)

tn

n!
. (2.6)

For x = 1, Bel(c,r)
n = Bel(c,r)

n (1) are called the extended central Bell numbers.
Therefore, by combining (2.4)–(2.6), we obtain the following theorem.

Theorem 2.2 For n ≥ 0, we have

Bel(c,r)
n (x) =

n∑

k=0

xkT (r)(n, k)

=
n∑

k=0

(
n
k

)
Bel(c)

k (x)rn–kxn–k . (2.7)

In particular,

Bel(c,r)
n =

n∑

k=0

(
n
k

)
Bel(c)

k rn–k =
n∑

k=0

T (r)(n, k). (2.8)

Remark By (2.6), we get

∞∑

n=0

Bel(c,r)
n (x)

tn

n!
= extex(e

t
2 –e– t

2 +(r–1)t)

=
∞∑

k=0

xk 1
k!

ext(e
t
2 – e– t

2 + (r – 1)t
)k
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=
∞∑

k=0

( ∞∑

n=k

T (r–1)(n, k|x)
tn

n!

)
xk

=
∞∑

n=0

( n∑

k=0

xkT (r–1)(n, k|x)

)
tn

n!
. (2.9)

Comparing the coefficients on both sides of (2.9), we get

Bel(c,r)
n (x) =

n∑

k=0

xkT (r–1)(n, k|x), n ≥ 0. (2.10)

In particular,

Bel(c,r)
n =

n∑

k=0

T (r–1)(n, k|1), (2.11)

and, invoking (2.3),

Bel(c,1)
n (x) =

n∑

k=0

T(n, k|x)xk =
n∑

k=0

n∑

l=k

(
n
l

)
T(l, k)xn–l+k . (2.12)

Therefore, by (2.10)–(2.12), we obtain the following corollary.

Corollary 2.3 For n ≥ 0, we have

Bel(c,r)
n (x) =

n∑

k=0

xkT (r–1)(n, k|x).

In particular,

Bel(c,r)
n =

n∑

k=0

T (r–1)(n, k|1)

and

Bel(c,1)
n (x) =

n∑

k=0

n∑

l=k

(
n
l

)
T(l, k)xn–l+k .

From (2.1), we note that

∞∑

n=0

T (r)(n, k)
tn

n!
=

1
k!

k∑

l=0

(
k
l

)
rltl(e

t
2 – e– t

2
)k–l

=
k∑

l=0

rl

l!
tl 1

(k – l)!
(
e

t
2 – e– t

2
)k–l
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=
k∑

l=0

rl

l!
tl

∞∑

n=k

T(n – l, k – l)
tn–l

(n – l)!

=
∞∑

n=k

( k∑

l=0

(
n
l

)
rlT(n – l, k – l)

)
tn

n!
. (2.13)

By comparing the coefficients on both sides of (2.13), we obtain the following theorem.

Theorem 2.4 For n, k ≥ 0, we have

T (r)(n, k) =
k∑

l=0

(
n
l

)
rlT(n – l, k – l). (2.14)

From (2.6), we note that

e(e
t
2 –e– t

2 +rt) = e(e
t
2 –e– t

2 )ert =
∞∑

k=0

Bel(c)
k

tk

k!

∞∑

k=0

rl tl

l!

=
∞∑

n=0

( n∑

k=0

(
n
k

)
rn–kBel(c)

k

)
tn

n!
. (2.15)

Therefore, by (2.14) and (2.8), we obtain the following theorem.

Theorem 2.5 For n ≥ 0, we have

Bel(c,r)
n =

n∑

k=0

k∑

l=0

(
n
l

)
rlT(n – l, k – l). (2.16)

From (2.1), we have

∞∑

n=k

T(n, k|x)
tn

n!
=

1
k!

e(x– k
2 )t(et – 1

)k

=
1
k!

k∑

j=0

(
k
j

)
(–1)k–je(j+x– k

2 )t

=
∞∑

n=0

(
1
k!

k∑

j=0

(
k
j

)
(–1)k–j

(
j + x –

k
2

)n
)

tn

n!
. (2.17)

Therefore, by (2.17), we obtain the following theorem.

Theorem 2.6 For n ≥ 0, we have

1
k!

k∑

j=0

(
k
j

)
(–1)k–j

(
j + x –

k
2

)n

=

⎧
⎨

⎩
T(n, k|x), if n ≥ k,

0, if n < k.
(2.18)
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Now, we observe that

e(et–1+rt) = ertee
t
2 (e

t
2 –e– t

2 )

=
∞∑

k=0

e( k
2 +r)t 1

k!
(
e

t
2 – e– t

2
)k

=
∞∑

k=0

∞∑

j=0

(
k
2

+ r
)j tj

j!

∞∑

m=k

T(m, k)
tm

m!

=
∞∑

k=0

∞∑

n=k

n∑

m=k

(
n
m

)
T(m, k)

(
k
2

+ r
)n–m tn

n!

=
∞∑

n=0

( n∑

k=0

n∑

m=k

(
n
m

)
T(m, k)

(
k
2

+ r
)n–m

)
tn

n!
. (2.19)

Therefore, by (1.10) and (2.19), we obtain the following theorem.

Theorem 2.7 For n ≥ 0, we have

Beln,r =
n∑

k=0

n∑

m=k

(
n
m

)
T(m, k)

(
k
2

+ r
)n–m

. (2.20)

From (2.18), we note that

∞∑

n=0

Bel(c,r)
n

tn

n!
= erte(e

t
2 –e– t

2 ) =
∞∑

k=0

1
k!

e(r– k
2 )t(et – 1

)k

=
∞∑

k=0

1
k!

k∑

j=0

(
k
j

)
(–1)k–je(j+r– k

2 )t

=
∞∑

n=0

∞∑

k=0

1
k!

k∑

j=0

(
k
j

)
(–1)k–j

(
j + r –

k
2

)n tn

n!

=
∞∑

k=0

∞∑

n=k

T(n, k|r)
tn

n!
=

∞∑

n=0

n∑

k=0

T(n, k|r)
tn

n!
. (2.21)

Therefore, by comparing the coefficients on both sides of (2.21), we obtain the following
theorem.

Theorem 2.8 For n ≥ 0, we have

Bel(c,r)
n =

n∑

k=0

T(n, k|r). (2.22)

From (1.2), we have
∞∑

n=0

T(n, k)
tn

n!
=

1
k!

(
e

t
2 – e– t

2 + rt – rt
)k
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=
k∑

l=0

(–1)lrl

l!
tl 1

(k – l)!
(
e

t
2 – e– t

2 + rt
)k–l

=
k∑

l=0

(–1)lrl

l!
tl

∞∑

n=k

T (r)(n – l, k – l)
tn–l

(n – l)!

=
∞∑

n=k

( k∑

l=0

(
n
l

)
(–1)lrlT (r)(n – l, k – l)

)
tn

n!
. (2.23)

Therefore, by comparing the coefficients on both sides of (2.23), we obtain the following
theorem.

Theorem 2.9 For n, k ≥ 0, we have

T(n, k) =
k∑

l=0

(
n
l

)
(–1)lrlT (r)(n – l, k – l). (2.24)

Now, we observe that

1
k!

(
e

t
2 – e– t

2 + rt
)k =

1
k!

k∑

l=0

(
k
l

)
rltl(e

t
2 – e– t

2
)k–l

=
k∑

l=0

rl

l!
tl

∞∑

n=k

T(n – l, k – l)
tn–l

(n – l)!

=
∞∑

n=k

( k∑

l=0

(
n
l

)
rlT(n – l, k – l)

)
tn

n!
. (2.25)

Therefore, by (2.1) and (2.25), we obtain the following theorem.

Theorem 2.10 For n, k ≥ 0, we have

T (r)(n, k) =
k∑

l=0

(
n
l

)
rlT(n – l, k – l). (2.26)

Let m, k ∈N∪ {0}. Then we have

1
m!

(
e

t
2 – e– t

2 + rt
)m 1

k!
(
e

t
2 – e– t

2 + rt
)k

=
(

m + k
m

)
1

(m + k)!
(
e

t
2 – e– t

2 + rt
)m+k

=
(

m + k
m

) ∞∑

n=m+k

T (r)(n, m + k)
tn

n!
. (2.27)
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On the other hand,

1
m!

(
e

t
2 – e– t

2 + rt
)m 1

k!
(
e

t
2 – e– t

2 + rt
)k

=
∞∑

l=m

T (r)(l, m)
tl

l!

∞∑

j=k

T (r)(j, k)
tj

j!

=
∞∑

n=m+k

( n–k∑

l=m

(
n
l

)
T (r)(l, m)T (r)(n – l, k)

)
tn

n!
. (2.28)

Therefore, by (2.27) and (2.28), we obtain the following theorem.

Theorem 2.11 For n ≥ m + k, with m, k ≥ 0, we have

(
m + k

m

)
T (r)(n, m + k) =

n–k∑

l=m

(
n
l

)
T (r)(l, m)T (r)(n – l, k). (2.29)

For m, k ≥ 0 with m ≥ k, by (2.1), we get

∞∑

n=m
T (r)(n, m)

tn

n!
=

1
m!

(
e

t
2 – e– t

2 + rt
)m–k(e

t
2 – e– t

2 + rt
)k

=
k!(m – k)!

m!
1

(m – k)!
(
e

t
2 – e– t

2 + rt
)m–k 1

k!
(
e

t
2 – e– t

2 + rt
)k

=
1(m
k
)

∞∑

l=m–k

T (r)(l, m – k)
tl

l!

∞∑

j=k

T (r)(j, k)
tj

j!

=
1(m
k
)

∞∑

n=m

( n–k∑

l=m–k

(
n
l

)
T (r)(l, m – k)T (r)(n – l, k)

)
tn

n!
. (2.30)

By comparing the coefficients on both sides of (2.30), we obtain the following theorem.

Theorem 2.12 For n, m, k ≥ 0, with n ≥ m ≥ k, we have

(
m
k

)
T (r)(n, m) =

n–k∑

l=m–k

(
n
l

)
T (r)(l, m – k)T (r)(n – l, k). (2.31)

Next, we observe that

1
m!

(
e

t
2 – e– t

2 + rt
)m 1

k!
(
e

t
2 – e– t

2 + rt
)k

=
m∑

l=0

rl

l!
tl 1

(m – l)!
(
e

t
2 – e– t

2
)m–l

k∑

j=0

rj

j!
tj 1

(k – j)!
(
e

t
2 – e– t

2
)k–j

=
∞∑

n=m+k

n–k∑

n1=m

m∑

l=0

k∑

j=0

(
n1

l

)(
n
n1

)(
n – n1

j

)
rl+j

× T(n1 – l, m – l)T(n – n1 – j, k – j)
tn

n!
. (2.32)
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Therefore, by (2.27) and (2.32), we obtain the following theorem.

Theorem 2.13 For n, m, k ≥ 0, with n ≥ m + k, we have
(

m + k
m

)
T (r)(n, m + k)

=
n–k∑

n1=m

m∑

l=0

k∑

j=0

(
n1

l

)(
n
n1

)(
n – n1

j

)
rl+jT(n1 – l, m – l)T(n – n1 – j, k – j). (2.33)

Remark From (2.33) with r = 0, we can derive the following equation:

(
m + k

m

)
T(n, m + k) =

n–k∑

l=m

(
n
l

)
T(l, m)T(n – l, k), (2.34)

where n, m, k ≥ 0 with n ≥ m + k.

3 Application
A random variable X, taking values 0, 1, 2, . . . is said to be a Poisson random variable
with parameter λ > 0 if P(i) = P(X = i) = e–λ λi

i! , i = 0, 1, 2, . . . . Then we have
∑∞

i=0 P(i) =
e–λ

∑∞
i=0

λi

i! = 1. It is easy to show that the Bell polynomials Beln(x), n ≥ 0, are connected
with the moments of Poisson distribution as follows:

E
[
xn] = Beln(λ), n ∈N∪ {0},λ > 0.

Let X be a Poisson random variable with parameter λ > 0. Then we note that

∞∑

n=0

E
[
(X + rλ)n] tn

n!
= eλe

t
2 (e

t
2 –e– t

2 )eλrt

=
∞∑

m=0

λme
mt
2

1
m!

eλrt(e
t
2 – e– t

2
)m

=
∞∑

m=0

λm
∞∑

n=m

n∑

j=m

(
n
j

)
T(j, m|λr)

(
m
2

)n–j tn

n!

=
∞∑

n=0

( n∑

m=0

n∑

j=m

λm
(

n
j

)
T(j, m|λr)

(
m
2

)n–j
)

tn

n!
. (3.1)

Thus, by (3.1), we get

E
[
(X + rλ)n] =

n∑

m=0

n∑

j=m

λm
(

n
j

)
T(j, m|λr)

(
m
2

)n–j

.

From (2.6), we can derive the following equation:

∞∑

n=0

Bel(c,r)
n (λ)

tn

n!

= eλ(e– t
2 –1)(et–1)eλ(et–1+rt)
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=

( ∞∑

k=0

( k∑

l=0

l∑

j=0

λl
(

l
j

)
(–1)l–jS2

(
k, l| –

j
2

))
tk

k!

)( ∞∑

m=0

E
[
(X + rλ)m] tm

m!

)

=
∞∑

n=0

( n∑

k=0

k∑

l=0

l∑

j=0

λl
(

l
j

)(
n
k

)
(–1)l–jS2

(
k, l| –

j
2

)
E
[
(X + rλ)n–k]

)
tn

n!
. (3.2)

Thus, we have

Bel(c,r)
n (λ) =

n∑

k=0

k∑

l=0

l∑

j=0

λl
(

l
j

)(
n
k

)
(–1)l–jS2

(
k, l| –

j
2

)
E
[
(X + rλ)n–k],

where X is the Poisson random variable with parameter λ > 0, and n ≥ 0.

4 Conclusions
T. Kim et al. have studied the central factorial polynomials and numbers of the second
kind which are represented by some p-adic integrals on Zp and investigated some proper-
ties of these numbers and polynomials. In this paper, we introduced the extended central
factorial numbers and polynomials by means of generating functions, which are useful,
for example, in obtaining the moments of Poisson random variables. In addition, we gave
some identities for the extended central Bell polynomials in terms of those numbers and
polynomials. In more detail, in Sect. 2, we investigated some properties of the extended
central factorial numbers and polynomials in connection with the extended central Bell
numbers and polynomials, central factorial numbers and polynomials, and central facto-
rial numbers and polynomials of the second kind in Theorems 2.1–2.13. Furthermore, in
Sect. 3, we have applied our results to the moments of Poisson distribution.
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