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Abstract

In this paper, we investigate second order evolution differential equation in the frame
of sequential conformable derivatives with nonlocal condition. First, we establish
Duhamel’s formula in terms of a standard cosine family of linear operators. Then, we
prove some results concerning the existence, uniqueness, stability, and regularity of
mild solution concept. Moreover, we present a concrete application of the main
results.
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1 Introduction

Differential equations with nonlocal conditions play a crucial role in numerous fields of
science, physics, engineering, and so on. The theory of such equations with respect to
different types of derivatives has been investigated by many authors. For the well-known
classical derivative, the second order Cauchy problem with nonlocal condition was studied
by Herndndez [11]. In recent years, fractional differential equations have been increasingly
used to formulate many problems in biology, chemistry, and other areas of applications
[13-15, 17]. For Caputo’s fractional derivative, a fractional Cauchy problem of order 8 €
(1,2) with nonlocal condition was treated in [18] by Shur et al. Mainly, they studied the
existence and uniqueness of the corresponding mild solution. For physical interpretations
of nonlocal condition, we refer to [8, 9, 16].

The conformable derivative was introduced by Khalil e al. [12]. It is well commented
in a nice paper of Al-Refai et al. [5] in which they study the Sturm-Liouville eigenvalue
problems with respect to the conformable derivative. Moreover, many interesting prob-
lems, associated with the conformable derivative, have been investigated. For more details,
we refer to the works [1-4, 7, 10].

The notion of sequential fractional derivative was considered in the famous book [14,
p- 209] in which a complete study of some special class of sequential differential equations
with respect to Caputo’s derivative was given. Attracted by this type of problem, many au-
thors have been interested in the sequential differential equations with respect to various
fractional derivative types [6, 22, 23].
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Motivated by such problems, here in the same way, we are concerned with a sequen-
tial second order Cauchy problem with nonlocal condition in the framework of the con-
formable derivative. Precisely, we are interested in the following sequential evolution con-
formable differential equations of second order with nonlocal condition:

a* [d“x(t)] =Ax(t) +f(t,x(2)), O0<t<7, O<ac<l,

e L
x(0) = xo + g(x), (1.1)
L0 = xy + h(x).

The functional framework of problem (1.1) is described as follows. The parameter ¢ be-
longs to an interval [0, ], where 7 is a fixed positive real number. The operator A is the
infinitesimal generator of a cosine family {C(¢), S(¢)};cr acting on a Banach space (X, || - ||).
The elements xy and x; are two fixed vectors in the Banach space X. The function f, con-
sidered in equation (1.1), is defined on the set [0, 7] X X and has its values in X. We denote
by C = C([0, 7], X) the Banach space of continuous functions from [0, 7] onto X equipped
with the norm |x| = sup{||lx(¢)|, ¢ € [0, ]}. We give precisely that g and / are two functions
defined on C with values in X.

Based on the fact that the sequential problem (1.1) is well adapted with the fractional
Laplace transform [1], we will be interested in the mild solutions of the above nonlocal
Cauchy problem. Our method shares similarities with the standard techniques used in
the classical cases [11, 21]. Precisely, we use the classical cosine family to elaborate a for-
mula of Duhamel type. This formula leads us to treating our problem by using fixed point
theory. Concretely, under the compactness of the cosine family associated with the op-
erator A and the boundedness condition for the function f(¢,x), we prove that problem
(1.1) admits at least one solution. Furthermore, by adding some contraction conditions,
we prove the uniqueness of the mild solution and its continuous dependance with respect
to initial data. Moreover, under some regularity conditions for the function f(¢,x) com-
bined with a suitable condition on the domain D(A), we obtain the differentiability of the
mild solution with respect to the conformable derivative.

This paper is summarized as follows. In Sect. 2, we review some tools related to the
conformable derivative as well as some needed results. Section 3 will be devoted to the
statements and the proof of the main results. In Sect. 4, as application, we study a concrete
sequential conformable second order partial differential equation with nonlocal condition.
In Sect. 5, we tried to discuss the problem of a definition for «-cosine family.

2 Preliminaries
We start this by recalling some concepts on conformable calculus [12].

Definition 2.1 The conformable derivative of x of order « at ¢ > 0 is defined as

dx(t) . x(t+et'™Y) —x(p)
= lim ———M—M—— 7,
dt e—0 £

When the limit exists, we say that x is («)-differentiable at ¢.
d%x(t)

o~ exists, then we define

If x is ()-differentiable and lirr(;
t—0*

d*x(0) i d*x(t)
= lim .
dte t—0*  dt*
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The («)-fractional integral of a function x is given by

I°(x)(t) = /ts‘)‘lx(s) ds.
0

Theorem 2.1 Ifx is a continuous function in the domain of I, then we have

(@)

pr x(t).

The following definition gives us the adapted Laplace transform to the conformable
derivative [1].

Definition 2.2 The fractional Laplace transform of order « starting from 0 of x is defined
by

Lo (D) () = /0 e () .

The action of the fractional Laplace transform on the conformable derivative is given by
the following proposition.

Proposition 2.1 Ifx(t) is differentiable, then we have

of A% B
I (E>(t)—x(t)—x(0),

d“x(t)
L. (W>(” = AL (%(0) (%) - ().

Now, we recall some results concerning the cosine family theory [21].

Definition 2.3 A one-parameter family (C(¢));cr of bounded linear operators on X is
called a strongly continuous cosine family if and only if:

1. C(0)=1I;

2. C(s+1t)+C(s—1t) =2C(s)C(¢) for all £,s € R;

3. t+—> C(t)x is continuous for each fixed x € X.

We define also the sine family by

S(t)x := /t C(s)xds.
0

The infinitesimal generator A of a strongly continuous cosine family ((C(£)):er, (S(¢))zer)
on X is defined by

D(A) = {x € X,t—> C(t)x is a twice continuously differentiable function},

d*C(0)x
Av=—1n

We end this section with the following results.

Page 3 0f 13
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Proposition 2.2 The following assertions are true.
1. There exist constants K > 1 and w > 0 such that

/S texp(w|r|)

2. Ifxe X and t,s € R, then /;t S(r)xdr € D(A) and

|S(t)—S(s)| <K dr forallt,seR.

A /tS(r)xdr = C(t)x — C(s)x.

3. Ift— C(t)x is differentiable, then S(t)x € D(A) and %ﬁ”x = AS(t)x.
4. For A such that Re()) > w, we have

22 e p(A), (p(A) : is the resolvent set ofA),

A(A21 —A)_lx = / eMCxdt, xeX,
0
1 +00
(WI-A) x= / e MS(txdt, xeX.
0

3 Main results
Before presenting our main results, we introduce the following assumptions:
(H1) The function f(¢,-) : X — X is continuous, and for all > 0, there exists a function
wr € L*([0, 7], R*) such that sup ||f(t,x)|| < u,(¢) forall t € [0,7];

llxll<r

(H2) The function f(-,x) : [0, 7] — X is continuous for all x € X;
(H3) There exists a constant /1 > 0 such that ||g(y) —g(x)|| < 1|y —«]| for all x,y € C;
(Hy) There exists a constant / > 0 such that || () — h(x)|| < |y — x| for all x,y € C.

3.1 Existence and uniqueness of the mild solution
Using the fractional Laplace transform in equation (1.1), we get

Lo (x())(A) = A(A? —A)f1 [x0 +g(x)] + (A2 —A)f1 [%1 + h(x)]
+ (A2 = A) Lo (f (£,20))) ).

According to the inverse fractional Laplace transform, we find Duhamel’s formula

(1) = c<§)[xo +g)] +S<§)[x1 h()] + /0 sa-ls(’fa ;Sa)j(s,x(s)) ds

Taking o = 1, we will have the standard one [11, 21]. Thus, we can introduce the following

definition.

Definition 3.1 We say that x € C is a mild solution of equation (1.1) if the following as-
sertion is true:

x(t) = C(%) [%0 +g(x)] + S(%) [x1 + h(x)] + /0 s"“15<ta ;Sa )/(s,x(s)) ds,

te0,t].
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Theorem 3.1 If (S(t)):-0 is compact and (Hy)—(H,) are satisfied, then the Cauchy problem
(1.1) has at least one mild solution provided that

o) s (C)

Proof Choosing

+ 1y sup <1.

te[0,7]

[y sup

te[0,7]

tCl
r> ( sup ‘C(—)‘[onﬂ + ”g(O)”]
te[0,7] o
t_a o
s(—)‘[f—mrumqoﬁ]w + |l [l + | A(0) H])
te[0,7] o o

t t
/(1—11 sup C(—)‘ -1, sup S(—) ),
telo,7] (o4 te(0,7] (o4

and let B, = {x € C, |x| < r}. Next, for x € B, define the operators I} and I, by

+ sup

o

Ix)(t) = C(%) [x0 +g(x)] + S<§)[x1 +h(x)], telo,],

I(x)(t) = /Ots"‘_lS(ta ;So{ )j(s,x(s)) ds, telo,t].

By using assumptions (H;)—(Ha), we show that I (x) + I'»(y) € B, whenever x,y € B,. More-

over, the operator I is a contraction on B,.

Now, we will show that I, is continuous and compact.

Continuity of I,. Let (x,,) C B, such that x, — x in B,. Then, by using assumption (H3),
we obtain [|s*71[£(s,x,(s)) — F(s,2(s)]|l < 2u,(s)s*7! and f(s,x,(s)) —> f(s,%(s)) as n —>
+00.

Also, we have

¥ —s*

Iy (x,)(8) — Do(x)(2) = /0 s“lS(—> [f (s:%u(s)) —f (s:x(s)) ] ds, te[0,].

o

Accordingly, we obtain

|Iy(%4) — Da(x)| < sup
te[0,7]

tﬂt T
S(;) ‘ / s Hf(s, xn(s)) —f(s,x(s)) || ds.
0
By using the Lebesgue dominated convergence theorem, we get
im_|1y(x,) — Do()[ = 0.

Compactness of Iy. Claim 1: We prove that {I(x)(¢),x € B,} is relatively compact in X.
For some fixed ¢ € ]0, t[ let ¢ € ]0, ¢[, x € B, and define the operator I'; by

(t“—a”‘)é o
L)) = /0 sa-ls<ta : )/(S,x(s)) ds.

o

Page 5 of 13
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The relative compactness of {I7y (x)(¢),x € B,} in X is guaranteed by the compactness of

(%)

Therefore, we conclude that {I(x)(¢),x € B,} is relatively compact in X. It is clear that the

(S(£))¢s0. Using assumption (H;), we have

8(1

o

|15 ) (@) = Ro@)(©) | < |rlzoooe,re) sup
te[0,7]

set {I(x)(0),x € B,} is compact. Finally, {I(x)(¢),x € B,} is relatively compact in X for all
telo,t].

Claim 2: We show that I';(B,) is equicontinuous.

Let t1,t, € ]0, 7] such that #; < £,. We have

R - new = [ s [S<tg ) -s(2- )}/(s,ms)) ds
+ /: s“‘%(#)f(s,x(s)) ds.

Therefore, we obtain

I( o o
| R2(x)(2) = Do) (®)| < 1irlreqo,0m) [E (exp<wt ) - exp(%tl))

-2
o

(@)

+ sup
te[0,7]

When w = 0, we obtain

o

Kt t 15 —tf
| x)(&) - R@)@)| < |,ur|L°o([0,r],1R+)< -+ sup S(;)D[%}

(24 tel0,7]

We conclude that the functions I'z(x) (x € B,) are equicontinuous at ¢ € [0, 7]. By using
Arzela—Ascoli theorem, we prove that I is compact. Finally, the Krasnoselskii fixed point

theorem completes the proof. O
To obtain the uniqueness of the mild solution, we will need the following assumption:
(Hs) There exists a constant /3 > 0 such that ||f(¢,y) — f(£,x)|| < 5|ly —«] for all x,y € X

and t € [0, 7].

Theorem 3.2 Assume that (H,)—(Hs) hold. Then the Cauchy problem (1.1) has a unique
mild solution provided that
t()[
(%)
o

t ¢
C(—> + (lz+lg—) sup
o (02 te[0,7]

Proof Lett € [0, 7] and define the operator I" : C — C by

T'x)(t) = C<§) [%0 +g(x)] + S<§> [%1 + h(x)] + fotsa‘lS(ﬂ ;Sa )j(s,x(s)) ds.

Iy sup <1

te[0,7]
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Next, let be x,y € C, then we have

FO)e) - r@() = C("‘a ) [60) ()] + s(ta ) 1) - h(x)]

o o

R / Sa—ls(t = )ms,y<s>) ~f(s:2()] ds.

Accordingly, we obtain

IFO)(@) - @] < |:ll sup

te[0,7]

t* t*
() (2 )[Jo-=
o o
t ¢ t
C(—) +<12+13—) sup S(—)Hb/—xl.
o o/ tefor] o

Therefore, I' has a unique fixed point in C. g

.L.a
+ (lz +lg—) sup
(o4 te[0,7]

Then we get

|IF(y) - &) < I:h sup

te(0,7]

3.2 Continuous dependence of the mild solution
Now, we will give some results concerning the continuous dependence of the mild solu-

tion.

Theorem 3.3 Assume that the conditions of Theorem 3.2 are satisfied. Let xy, yo,%1,y1 € X
and denote by x, y the solutions associated with (xo,x1) and (yo,y1), respectively. Then we

tOt
5<—>‘||}’1 —x1||].
] o

have

ly —x| < ’ [sup

tDt
C<—)‘||yo —xoll + sup
o — 3T —aly —aly | e[, o telo,r

Proof We have

y(t) —x(f) = C<§>[yo —x0+g(y) —g(x)] +S<ta>[y1 —x1 +h(y) —h(x)]

o

+ /Otsalg(ta ;Sa ) [f (s:9(5)) = f (s, %(s)) ] ds.

Since we obtain

tol
C(;)‘[Ilyo —xoll + L1y —xl]

e I3T*
s(—)‘[nyl—xm(m 2 )|y—x|}.
o o

ly(e) = x(8)|| < up

tel0,t

+ sup
te(0,7]

Accordingly, we show that

c(g)’[nyo ol + by -]

t lg‘l,'a
SU— || Iy —xll + | L+ ly — =] |
o o

ly—x| < sup
tel0,7]

+ sup
te[0,7]
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Finally, we get the following estimation:

t“ t
<—)‘||)’0—x0||+ sup 5(—)‘"}’1—?61”]' 0
(o4 tel0,7] (24

Theorem 3.4 Assume that the conditions of Theorem 3.2 are satisfied. Let x, yo,%1,Y1 € X
and denote by x, y the solutions associated with (xy,x1) and (yo,y1), respectively. Then we

o
ly—x| < [ sup
Ol—lg‘[a —Olll O[lz te[0,7]

have
sup |C(5)llyo —xoll + sup [S(5)ly1 — x4l
te[0,7] te[0,7]
|y _x| S 131- o i|
1— [l sup |C(5)| + by sup [S(5)[Texp(Z= sup [S(5))
te[0,7] te[0,7] te[0,7]
(2 fs(2))
X exp sup |S| —
a  tefo,7] o
provided that
£ e LT £
Iy sup |[C| — ||+ 4 sup [S| — ) |]exp sup S| — <1
tel0,7] (o4 tel0,7] o @ tefo,7] (o4

Proof For t € [0, 7], we have
y(t) —x(t) = C<%> [0 — %0 +g(y) — g(x)] + S<%> [y1 =21 + h(y) - h(x)]

+ /0 s“_lS(t ; i ) [f(s,y(s)) —f(s,x(s))] ds

Then we get

tot
C(;)‘[Ilyo —xoll + L1y —xl]

ly@) - x()| < sup
tel0,7]

tOl
+ sup S<—>‘[||)/1—x1||+lz|y—x|]
te(0,7] (o4
+ 13 sup < )'/ o 1||y(s x(s)”ds
te(0,7]

Therefore, we show that

t* t*
ly—xl < | sup |C| — )|[llyo —xoll + laly —xI] + sup |S{ — ||[lly1 — 1]l + aly — ]
te[0,7] o te[0,1] (o4
I3T“ t*
xexp( El sup S(—)D
@ tefo,7] (o4

Finally, we conclude that

sup |C(5)1lyo = %oll + sup IS(E)llyr — 1l

ly—a] < tel0,c] tel0,c] i|
TL1-[4 sup C(E) + 1 up. IS(E) ] exp(BZ sup, ISCE)])
te[0,7] te[0,7] te[0,7]

(2)))

(lgl’a
X exXp sup
O tefo,7]
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Remark 3.1 If we take

exp(5% sup [S(£)])

te[0,1]
" 1[4 sup [CE)] + s sup IS(5) T exp(2 sup [S(Z)))’
te[0,7] te[0,7] te[0,7]
o
C2 = o o
a =137 sup |S( )| —aly sup |C(3)| —aly sup [S(% )|
tel0,7] tel0,7] te[0,7]

We have C; < C,. Then Theorem 3.4 is better than Theorem 3.3.

3.3 Special case of nonlocal conditions
Here, we study a special case of nonlocal conditions, this means that the functions g and
h are given by

(x) = Zcix(ti) and h(x) = Zdix(ti):
i-1 i-1

where ¢;, d;, i=1,2,...,n, are given constants and 0 < t; <fp <--- < t, < T.

Proposition 3.1 Assume that (H,) and (Hs) hold. Then the Cauchy problem (1.1) has a
unique mild solution provided that there exists gy € 10, 1 such that

%) (%)

Proof Define the operator I" : C — C by

T(x)(t) = C<§) [x0 +g(x)] + S(g) [x1+ h(x)] + /0 s“‘15<$y(5,x(s)) ds,

€ [0,7].

n

Zlcil + sup

i-1 tel0,7]

n

> ldil <.

i=1

sup
te[0,7]

Now, we define a new norm | - | in C by

(=)
exp| —— |«

|x|a = )
where
I5 sup |S(5)]
te[0,7]
gg— sup ICEEN YL el = sup [S(E)| Y0 dil
te[0,1] te[0,7]

Forx,y € C and ¢ € [0, 7], we have
ro-re0-c(% ) e -e]+5( 5 ) ho) - o]
+/(; S"‘_IS(t ;S >[f(s,y(s)) —f(s,x(s))]ds
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Therefore, we obtain

Ir)(@®) - T @)@ < [exp(%) sup

te(0,7]

£ | <&
C(;) ;m

()2

> ldil
i=1
t ¥
/ st exp(s—) ds ||y — x|a.
0 o

+exp|l — | sup
(o4 te[0,7]

(2

+ 13 sup
tel0,7]

Accordingly, we show that

n

> leil + sup

i-1 te[0,7]

S(%) ‘ (éw + lf)} 1y = %l

ry)-r), < |: sup ‘C(ﬁ)
te[0,7] (o4

Hence, we conclude that
I () - I'®)|, <eoly —*la-
Finally, thanks to the contraction principle, we get the result.

3.4 Regularity of the mild solution
Here, we need the assumptions:

(He) The function f is («)-differentiable of the first variable and differentiable of the sec-

ond variable.
(H7) (x0 +g(x)) € D(A) and t —> C(£)[xo + g(x)] is («)-differentiable for all x € C.

Theorem 3.5 Assume that (H3)—(H7) hold. Then the mild solution of the Cauchy problem

(1.1) is (x)-differentiable at t € (0, t) provided that

t(l o ta
l; sup C(—) +(lz+13t—) sup S(—) <1.
o o/ tefo,r] o

tel0,7]

Proof The conditions of Theorem 3.2 hold. Then we denote by x the unique mild solution
of the Cauchy problem (1.1). Next, let y be the continuous solution of the following integral

equation:

o

20 = s(E) [A(xo + ()] + c(t

o

tot—l £ —s* ﬁ
+/Os S< " )8sa(s,x(s))ds

t w1 ta_sa af
+/Os S( > >—(s,x(s))y(s)ds, te0,7].

o

)[xo + () +£(0,%(0)]

ox

We have M —> y(t) as e — O for ¢ € (0, 7). Accordingly, we conclude that x is

(o)-differentiable.

Page 10 0of 13
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4 Application
Consider the nonlocal fractional partial differential equation of the form

3% 3rult,x)  0ult,x) lu(t, x)|
Py FE 2t
3 9t2 ox 1+ |u(t,x)|
t
+/ DL €10.1] x 10,71, (4.1)
o 1+ fuls,x)]

with the following nonlocal conditions:

w = Zciu(t,«,x), x € [0,7], (4.2)

i=1

u(t,0)=u(t,7)=0 and u(0,x)=

1
t2

where 0<t; <---<t,<1andc,...,c, are given real constants such that

En lc;i| < 4
T 10°
i=1

Let X = L%([0,r]) and define the operator A : X — X by

and D(A) = {a) e H*(0,7),w(0) = () = O}.

The operator A generates a cosine family ((C(£))icr, (S(¢)):cr). Moreover, we have
|C(#)| <1and |S(t)| <1forall e [0,1]. Next, we consider the following transformations:

A0 =ultx),  f(bat) = 1-|+ZT?(|t)| + /0 llfi)('s”ds,

g) =h(x) =) clty).

i=1

Then (4.1) and (4.2) become as follows:

Nl
Bl

LA 2 Az(t) +f(8,2(),  t€]0,1],
dt2  dr2
2(0) = g), (4-3)
1
220 = ().
d?2
Finally, we can verify all the hypotheses of Proposition 3.1. Then, the above Cauchy prob-
lem has a unique mild solution.

5 Comment
By noticing the relation C(¢) = C ((té )¥) for a cosine family (C(£));er, it comes to us to con-
sider the family of functions t —> C, () := C(t*) and to propose as in the case of semigroup
[4] the following definition for «-cosine family.

For a Banach space X, a family ¢, : R — X, £ > ¢, (¢) will be said to be @ -cosine family
if it satisfies the following functional relation:

R~

Ca((£+5)7) + 0o (= 9)%) = 200 (£7 ) g (57 (5.1)
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But here, this definition is not as in the case of &-semigroup [4]. It poses a serious problem.
Indeed, the quantity (pa(té) must be defined for all ¢ in R. Then, given a good sense for ta
in the case ¢ is negative, we must consider the complex logarithm function (Ln(z), z € C)
[19] to define ta by ™" for ¢ < 0. This forces us to take X as a complex Banach space and
to suppose that our «-cosine family (¢, (£));cr can be extended to complex plane C. This
is not surprising if we admit that the «-conformable derivative is well adapted to physical
problems. For example, the symmetry principle in quantum mechanics requires that the
states of a quantum system must be vectors of a complex Hilbert space (a particular Ba-
nach space) [20]. However, if we solve non-sequential evolution conformable differential
equations of second order with nonlocal condition and define their associated «-cosine

family, this can be considered as a valuable addition to the literature.

6 Conclusion
We have obtained Duhamel’s formula for sequential evolution conformable differential
equations of second order with nonlocal condition. Under some suitable conditions, we
have also obtained an existence result for the mild solution. In the case where the contrac-
tion condition type is satisfied, we have proved the uniqueness of the mild solution as well
as its continuous dependence with respect to the initial data.

In the light of the above comment and as the anonymous referee has proposed, it would
be interesting to consider non-sequential conformable second order differential equations
with nonlocal condition in a coming paper.
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