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Abstract
Rossby waves, one of significant waves in the solitary wave, have important
theoretical meaning in the atmosphere and ocean. However, the previous studies on
Rossby waves commonly were carried out in the zonal area and could not be applied
directly to the spherical earth. In order to overcome the problem, the research on
(3 + 1)-dimensional Rossby waves in the paper is placed into the spherical area, and
some new analytical solutions of (3 + 1)-dimensional Rossby waves are given through
the classic Lie group method. Finally, the dissipation effect is analyzed in the sense of
the above mentioned new analytical solutions. The new solutions on
(3 + 1)-dimensional Rossby waves have important value for understanding the
propagation of Rossby waves in the rotating earth with the influence of dissipation.
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1 Introduction
As is well known, Rossby waves play a central role in the atmosphere and ocean, which
depicts an essential phenomenon. The oceans’s response to the atmosphere change and
climate change can be determined by Rossby waves. In addition, Rossby waves have sig-
nificant theoretical meaning and real value in the atmosphere and ocean. In recent years,
more and more researchers have focused on the study of Rossby waves [1–4]. Many stud-
ies on Rossby waves have been conducted in the zonal area, and many meaningful results
have been achieved [5, 6]. However, as everyone knows, the propagation of Rossby waves
happens in the earth which is a spherical area [7], so the above mentioned achievements
could not be directly applied. It is necessary to discuss the propagation characteristic of
(3 + 1)-dimensional Rossby waves in the spherical area under the influence of dissipation.
Here, in order to overcome the problem, our research is carried out in cylindrical coordi-
nate, which better matches with the real condition.

With the development of soliton theory, Rossby waves have been becoming an impor-
tant research direction in the field of the nonlinear partial differential [8–10]. In recent
years, some weakly nonlinear models for the evolution of Rossby waves have been exten-
sively studied [11–13]. More importantly, some methods are found to study the nonlinear
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models [14–18] and some significant properties are discussed [19–23]. In the past, Rossby
waves were often studied in the zonal area. However, Rossby waves are prominently af-
fected via the rotation effect of the earth. Therefore, in order to study some propagation
characteristics of Rossby waves, we use the (3 + 1)-dimensional quasi-geostrophic vortic-
ity equation with dissipation effect in the cylindrical coordinate to describe the dynamic
behavior of Rossby waves.

In this paper, the (3 + 1)-dimensional Rossby waves with dissipation effect in cylindrical
coordinate will be discussed through the classic Lie group method. In Sect. 2, we analyze
the (3 + 1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate by
using the classic Lie group method. In Sect. 3, the solution of the (3 + 1)-dimensional
Rossby waves with dissipation effect in cylindrical coordinate can be obtained. In addition,
some conclusions are placed in Sect. 4.

2 Symmetry analysis for the (3 + 1)-dimensional Rossby waves with dissipation
effect in cylindrical coordinate

In Ref. [24], the (2 + 1)-dimensional model for Rossby waves is researched based on the
classical Lie group approach. Then, the (3 + 1)-dimensional model for Rossby waves is
analyzed by Myagkov [25]. In Ref. [26], the authors adopt the plane polar coordinate to
study the (2 + 1)-dimensional model
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and discuss the dynamic characteristics of the model in rotating barotropic atmosphere.
But the dissipation effect is ignored.

In the paper, we analyze the (3 + 1)-dimensional quasi-geostrophic vorticity equation
with dissipation effect in cylindrical coordinate
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where φ describes the dimensionless stream function, β = β0(L2/U), and β0 =
(ω0/R0) cosϕ0, in which ω0 and R0 are the angular frequency of the Earth’s rotation and
the Earth’s radius, respectively, L is the characteristic horizontal length, ϕ0 depicts the
latitude, U is velocity scales and α depicts the dissipation coefficient.

In addition, we introduce the vector field

V = ξ (ρ, θ , z, t,φ)
∂

∂ρ
+ η(ρ, θ , z, t,φ)

∂
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+ λ(ρ, θ , z, t,φ)

∂
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+ τ (ρ, θ , z, t,φ)

∂
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+ ψ(ρ, θ , z, t,φ)
∂
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.
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The first order prolongation operator and the second order prolongation operator can be
given as follows:

Pr(1)V = V + ψρ ∂

∂φρ

+ ψθ ∂

∂φθ

+ ψ z ∂

∂φz
+ ψ t ∂

∂φt
,

Pr(2)V = Pr(1)V + ψρρ ∂

∂φρρ

+ ψρθ ∂

∂φρθ

+ ψθθ ∂

∂φρρ

+ ψρz ∂

∂φρz
+ ψ zz ∂

∂φzz

+ ψθz ∂

∂φθz
+ ψρt ∂

∂φρt
+ ψθ t ∂

∂φθ t
+ ψ zt ∂

∂φzt
+ ψ tt ∂
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.

Similarly, the third order prolongation operator can be defined as

Pr(3)V = Pr(2)V + ψρρρ ∂

∂φρρρ

+ ψρρθ ∂

∂φρρθ

+ ψρθθ ∂

∂φρθθ
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∂φθθθ
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∂φρρz
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+ · · · + ψθθz ∂

∂φθθz
+ · · · . (2)

Substituting Eq. (2) into Eq. (1), it is easy to conclude that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψρρρ + 1
ρ
ψρt + 1

ρ2 ψθθ t + ψ zzt – 1
ρ2 ξφpt – 2

ρ3 ξφθθ t – 1
ρ
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ρ
ψρρθφρ

– 1
ρ
ψθφρ + 1

ρ
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ρ2 ξφθφρρρ – 1
ρ2 ξφρφρρθ + 1
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ρ3 ψθφρ

– 3
ρ4 ξφθφρ – 1

ρ2 ψρρφθ – 1
ρ2 ψθφρρ – 2

ρ3 ξφθφρρ + 1
ρ2 ψρθφρ + 1

ρ2 ψρφρθ

– 2
ρ3 ξφρφρθ + 2

ρ4 ψρφθ + 2
ρ4 ψθφρ – 8
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ρ
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– (ρ sin θ )ηφρ – β sin θ

ρ
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ρ2 ξφθ – β cos θ

ρ2 ηφθ + βψ z = 0,

based on the Lie group method.
By comparing the coefficient of φρ , φθ , φz , φt , φρθ , φρz, φρt , φρθz , we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ = C1 + C5ρ + C7(
∫

g2(t) dt) cos θ + C10(
∫

g5(t) dt) sin θ ,

η = C2 – C7
(
∫

g2(t) dt) sin θ

ρ
– C10

(
∫

g5(t) dt) cos θ

ρ
,

λ = C3 + C5z,

τ = C4 – C5t,

ϕ = 3C5φ + C6g1(t) – C7g2(t)ρ sin θ + C8g3(z) + C9g4(t)z

+ C10(g5(t)ρ cos θ – β

2 g5(t)z2 + α
2 e–tz2),

(3)

where g1(t), g2(t), . . . , g5(t) are arbitrary functions of t and C1, C2, . . . , C10 are arbitrary con-
stants.
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Therefore, the Lie algebra of Eq. (1) can be given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(4)

where g1, g2, g3, g4, g5 are continuous functions and the vector field V is the Lie symmetry
group generator. The calculation and proof of Eq. (4) can be taken into account and all
applications of the symmetry group below are proved by substituting into Eq. (1) directly.

Assume φs(t,ρ, θ , z) is a solution of Eq. (1). According to operators V6, V7, V8, V9, V10,
the new solution can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φnew(t,ρ, θ , z) = g1(t) + φs(t,ρ, θ , z),

φnew(t,ρ, θ , z) = φs(t,ρ +
∫

g2(t) dt cos θ , θ +
∫

g2(t) dt sin θ

ρ
, z)

– g2(t)ρ sin θ ,

φnew(t,ρ, θ , z) = g3(z) + φs(t,ρ, θ , z),

φnew(t,ρ, θ , z) = g4(t)z + φs(t,ρ, θ , z),

φnew(t,ρ, θ , z) = φs(t,ρ +
∫

g5(t) dt sin θ , θ +
∫
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ρ
, z)

+ g5(t)ρ cos θ – β

2 g5(t)z2 + α
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(5)

Thus, we have

φnew(t,ρ, θ , z) = –g2(t)ρ sin θ + g4(t)z + g5(t)ρ cos θ –
β

2
g5(t)z2 +

α

2
e–tz2

+ φs

(
t,ρ +

∫
g5(t) dt sin θ +

∫
g2(t) dt cos θ , θ +

∫
g5(t) dt cos θ

ρ

+
∫

g2(t) dt sin θ

ρ
, z

)
, (6)

according to the nontrivial transformation of Eq. (5). It is well known that new exact so-
lutions for the differential equation can be found through the classic Lie symmetry group
when a particular solution is known [27].

3 The new solution of the (3 + 1)-dimensional Rossby waves with dissipation
effect in cylindrical coordinate

In order to obtain the solution of the (3 + 1)-dimensional dissipation Rossby waves in
cylindrical coordinate, it is important to seek the solution of the (2 + 1)-dimensional dis-
sipation Rossby waves in cylindrical coordinate. Next, we discuss the (2 + 1)-dimensional
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quasi-geostrophic vorticity equation with dissipation effect in cylindrical coordinate
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When dissipation does not exist, we first suppose

r = ρ cos θ – ct, (8)

where c is a constant and denotes the phase speed of the wave. Equation (8) implies that
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⎪⎪⎩
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Based on the above transform, Eq. (7) becomes
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∂
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∂r2 +
cos θ

ρ

∂φ

∂r
–

β

c
φ

]
= 0. (9)

According to a complex calculation, we acquire

φ = C1e
r
2

–c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc + C2e– r

2
c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc , (10)

where C1, C2, c express arbitrary constants. Substituting (8) into (10), we have

φ = C1e
ρ cos θ–ct

2
–c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc + C2e– ρ cos θ–ct
2

c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc .

In the following, we respect the influence of dissipation on Eq. (7). Defining α � 1 and
α � β , we suppose

s = ρ cos θ –
∫ t

0

c1φ0

2
dt, (11)

where φ0 = φ0(αt) varies slowly with time. Substituting Eq. (11) into Eq. (7), we get

∂

∂t

[
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∂s2 +
cos θ

ρ
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∂s

]
–

c1φ0

2
∂

∂s

[
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cos θ

ρ
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∂s

]
+ β

∂φ

∂s

= –α
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∂s2 +
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ρ
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]
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Suppose

T = t, γ = αt, (13)
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and

φ(s, T) = φ1(s, T ,γ ) + αφ2(s, T) + · · · , (14)

we have

α0 :
∂

∂t

[
∂2φ1

∂s2 +
cos θ

ρ

∂φ1

∂s

]
–

c1φ0

2
∂

∂s

[
∂2φ1

∂s2 +
cos θ

ρ

∂φ1

∂s

]
+ β

∂φ1

∂s
= 0, (15)
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∂
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[
∂2φ2

∂s2 +
cos θ

ρ

∂φ2

∂s

]
–

c1u0

2
∂

∂s

[
∂2φ2

∂s2 +
cos θ

ρ

∂φ2

∂s

]
+ β

∂φ2

∂s

= –
[

∂2φ1

∂s2 +
cos θ

ρ

∂φ1

∂s

]
, (16)

by substituting Eq. (14) into Eq. (12).
Then, setting

δ = s +
c1φ0

2
T , (17)

we have

α0 :
∂

∂T

[
∂2φ1

∂s2 +
cos θ

ρ

∂φ1

∂s

]
+ β

∂φ1

∂s
= 0, (18)

α1 :
∂

∂T

[
∂2φ2

∂s2 +
cos θ

ρ

∂φ2

∂s

]
+ β

∂φ2

∂s
= –

[
∂2φ1

∂s2 +
cos θ

ρ

∂φ1

∂s

]
. (19)

It is easy to derive that the solution of Eq. (19) has the following form

φ1 = C1e
δ– c1φ0

2 T
2

–c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc + C2e–

δ– c1φ0
2 T
2

c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc , (20)

where φ0 = C1C2. Based on Eq. (11) and Eq. (17), we acquire

φ1 =
φ0

C2
e

ρ cos θ–
∫ t
0

c1φ0
2 dt

2
–c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc

+
φ0

C1
e–

ρ cos θ–
∫ t
0

c1φ0
2 dt

2
c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc . (21)

Next, let

φ2 = D(ξ ), ξ = δ – εT , (22)

and substituting Eq. (22) into Eq. (19), we acquire

–ε
∂

∂ξ

[
∂2D
∂ξ 2 +

cos θ

ρ

∂D
∂ξ

]
+ β

∂D
∂ξ

= N(φ1), (23)

where

N(φ1) = –
[

∂2φ1

∂ξ 2 +
cos θ

ρ

∂φ1

∂ξ

]
.
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The solvability condition of Eq. (23) is

∫ +∞

–∞
M(ξ )N(φ1) dξ = 0, (24)

where

–ε
∂

∂ξ

[
∂2M
∂ξ 2 +

cos θ

ρ

∂M
∂ξ

]
+ β

∂M
∂ξ

= 0. (25)

The solution of Eq. (25) is easy to acquire in the following form

M(ξ ) =
φ0

C2
e

ξ
2

–c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc +

φ0

C1
e– ξ

2
c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc , (26)

in the case of G(±∞) = 0. Equation (26) can be rewritten as

M(ξ ) =
φ0

C2
e

δ–εT
2

–c cos θ+
√

c2(cos θ )2+4ρ2βc
ρc +

φ0

C1
e– δ–εT

2
c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc . (27)

Substituting Eq. (27) into Eq. (24), we obtain

φ0 = φ̄0e–αt , (28)

where φ̄0 = φ0. Hence, we have

φ =
φ̄0e–αt

C2
e

ρ cos θ–
∫ t
0

c1φ̄0e–αt
2 dt

2
–c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc

+
φ̄0e–αt

C1
e–

ρ cos θ–
∫ t
0

c1φ̄0e–αt
2 dt

2
c cos θ+

√
c2(cos θ )2+4ρ2βc

ρc . (29)

It is simple to prove that Eq. (29) is the approximate analytical solution of Eq. (7). Thus,
the new (3 + 1)-dimensional dissipation Rossby waves solution in cylindrical coordinate
can be given by

φ = –g2(t)ρ sin θ + g4(t)z + g5(t)ρ cos θ –
β

2
g5(t)z2 +

α

2
e–tz2

+
φ̄0e–αt

C2
e

(ρ+ρ̃) cos(θ+θ̃)–
∫ t
0

c1φ̄0e–αt
2 dt

2
–c cos(θ+θ̃)+

√
c2(cos(θ+θ̃ ))2+4ρ2βc

ρc

+
φ̄0e–αt

C1
e–

(ρ+ρ̃) cos(θ+θ̃ )–
∫ t
0

c1φ̄0e–αt
2 dt

2
c cos(θ+θ̃)+

√
c2(cos(θ+θ̃ ))2+4ρ2βc

ρc , (30)

where

⎧⎨
⎩

θ̃ =
∫

g5(t) dt cos θ

ρ
+

∫
g2(t) dt sin θ

ρ
,

ρ̃ =
∫

g5(t) dt sin θ +
∫

g2(t) dt cos θ .
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4 Discussion and conclusion
In this section, the solution of the (3 + 1)-dimensional dissipation Rossby waves can be
discussed relying on Eq. (30).

When g2(t) = cos t, g4(t) = cos t, g5(t) = sin t, Eq. (30) can be rewritten as

φ = –ρ cos t sin θ + z cos t + ρ sin t cos θ –
β

2
z2 sin t +

α

2
z2e–t

+
φ̄0e–αt

C2
e

(ρ+ρ̃) cos(θ+θ̃)–
∫ t
0

c1φ̄0e–αt
2 dt

2
–c cos(θ+θ̃)+

√
c2(cos(θ+θ̃ ))2+4ρ2βc

ρc

+
φ̄0e–αt

C1
e–

(ρ+ρ̃) cos(θ+θ̃ )–
∫ t
0

c1φ̄0e–αt
2 dt

2
c cos(θ+θ̃)+

√
c2(cos(θ+θ̃ ))2+4ρ2βc

ρc , (31)

where
⎧⎨
⎩

θ̃ = cos(θ+t)
ρ

,

ρ̃ = sin(θ – t).

Obviously, Rossby waves were established in the zonal area and could not be used di-
rectly to the spherical earth in the previous research. However, in this paper, we get the
solution of the (3 + 1)-dimensional dissipation Rossby waves by using the classic Lie group
method in cylindrical coordinate, and the new solution overcomes the problem. Accord-
ing to theoretical analysis, we can make the following conclusion: In the spherical earth,
the dissipation effect could give rise to a decrease in amplitude e–αt , where α denotes the
dissipation coefficient from Eq. (31).
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