
Liu and Cai Advances in Difference Equations         (2019) 2019:11 
https://doi.org/10.1186/s13662-019-1950-6

R E S E A R C H Open Access

Bifurcation, chaos analysis and control in a
discrete-time predator–prey system
Weiyi Liu1* and Donghan Cai1

*Correspondence:
weiyiliu@whu.edu.cn
1School of Mathematics and
Statistics, Wuhan University, Wuhan,
China

Abstract
The dynamical behavior of a discrete-time predator–prey model with modified
Leslie–Gower and Holling’s type II schemes is investigated on the basis of the normal
form method as well as bifurcation and chaos theory. The existence and stability of
fixed points for the model are discussed. It is showed that under certain conditions,
the system undergoes a Neimark–Sacker bifurcation when bifurcation parameter
passes a critical value, and a closed invariant curve arises from a fixed point. Chaos in
the sense of Marotto is also verified by both analytical and numerical methods.
Furthermore, to delay or eliminate the bifurcation and chaos phenomena that exist
objectively in this system, two control strategies are designed, respectively. Numerical
simulations are presented not only to validate analytical results but also to show the
complicated dynamical behavior.
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1 Introduction
Predation is a common and very important species interaction in many biological systems.
Mathematical models are useful tools to understand and analyze the dynamical behavior
of the predator–prey system, among which the Lotka–Volterra model is the oldest and the
best known representative. However, this model proved to be overly simplistic and lack-
ing in certain biological features [1]. The famous Leslie–Gower model, one of the many
modified Lotka–Volterra models, is based on the assumption that reduction in a predator
population has a reciprocal relationship with per capita availability of its preferred food.
Indeed, Leslie and Gower [2] introduced a predator–prey model as follows:

⎧
⎨

⎩

dH
dT = (a1 – b1H – b2P)H ,
dP
dT = a2P(1 – P

εH ).

Let us mention that the first equation of system is standard. By contrast, the second equa-
tion is absolutely not standard and known as classical Leslie–Gower formulation. They
stress the fact that there are upper limits to the rates of increase of both prey H and preda-
tor P, which are not recognized in the Lotka–Volterra model. In the Leslie–Gower formu-
lation, the growth of the predator population is taken as logistic type, i.e., dP

dT = a2P(1 – P
K ),
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where the measures of the environmental carrying capacity K is assumed to be propor-
tional to the prey abundance, that is, K = εH , ε > 0 is the conversion factor of prey into
predator. The term P

εH is sometimes called the Leslie–Gower term.
In [3] Aziz-Alaoui and Daher Okiye proposed a predator–prey model that incorporates

the Holling’s type II functional response and a modified Leslie–Gower term, which is de-
scribed by the Kolmogorov type [4] autonomous bidimensional differential equations sys-
tem:

⎧
⎨

⎩

dH
dT = (a1 – b1H – c1P

H+e1
)H ,

dP
dT = (a2 – c2P

H+e2
)P,

(1.1)

with H(0) ≥ 0 and P(0) ≥ 0, where H = H(T) and P = P(T) represent the population den-
sities of the prey species and the predator species at time T , respectively. The predator
consumes the prey by a Holling’s type II functional response c1H

H+e1
. However, the predator

does not follow the “mass conservation” principle, but one introduces a modified Leslie–
Gower term c2P

H+e2
. This modification prevents the extinction of predator population in the

absence of prey [5, 6]. ai, ci, ei, i = 1, 2 and b1 are model parameters and are all positive
values, having the following biological meanings:

• a1 and a2 are the natural growth rates of the prey species and the predator species,
respectively.

• b1 measures the strength of competition among individuals of the prey species.
• c1 is the maximum value of the per capita reduction of the prey species due to the

predator species, c2 has a similar meaning to c1.
• e1 and e2 are the extent to which the environment provides protection to the prey

species and the predator species, respectively.
At present, this model has been successfully studied by some authors (cf. [3, 7–9]) and
the references therein. Moreover, on the basis of the model system (1.1), many human na-
ture factors are taken into account, such as time delay [10], impulsive effect [11], white
noise [12]. Nevertheless, the previous work for this model is mainly concentrated on sta-
bility aspect. In recent years experimental and numerical studies have shown that chaos is
a widespread phenomenon throughout the biological hierarchy ranging from simple en-
zyme reactions to ecosystems [13]. On the chaos and bifurcations analysis in nonlinear
systems, some interesting results are reported in 2018 (cf. [14–18]). Furthermore, bifur-
cation and chaos have always been regarded as unfavorable phenomenon in biology. In
general, bifurcation is often a precursor to chaos, and chaos can cause the population to
run a higher risk of extinction due to the unpredictability, so they are harmful for the
breeding of biological population [19]. However, in some existing literature about biologi-
cal systems [20–22], only the phenomena of bifurcation and chaos were presented. But, to
the best of our knowledge, there has been much less work on the problem of bifurcation
and chaos control in biological systems. The above-mentioned challenges inspire us to
investigate the bifurcation and chaos behavior of this model in the present study. We not
only give the theoretical analysis of objectively existing bifurcation and chaos phenomena
for this biological system, but also we try to design two control strategies to delay the ap-
pearance of bifurcation and stabilize chaotic orbit if system is chaotic, respectively. Our
work can be considered as the continuation and development of the work in [3], and the
control methods in this paper can be applicable for [20–22] etc.
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Many differential equations cannot be solved using symbolic computation (“analysis”).
For practical purposes, people sometimes construct difference equation to approximate
differential equation so that they can write code to solve differential equation numerically.
Moreover, while continuous models have been successfully applied in a variety of situa-
tions, one fundamental assumption is that the species in question has continuous, over-
lapping generations. However, it is observed in nature that many species do not possess
this quality. For example, some anadromous fishes, such as salmon, have annual spawn-
ing seasons, with births taking place at the same time every year. Many insects breed and
die before the next generation emerges, often having overwintered as eggs, larvae or pu-
pae. Annual plant species also set seed and die before the next generation germinates.
Populations with this characteristic of non-overlapping generations are much better de-
scribed by discrete-time (difference equations) model than continuous equations (Hu et
al., [23]). In addition, the earlier work [24, 25] showed that the discrete dynamics of the
one-dimensional logistic map can produce a much richer set of patterns than those ob-
served in continuous-time model. Therefore, in this paper, we work under a different per-
spective, where we will focus on the difference scheme of Eq. (1.1).

First, to reduce the arising complexity in the dynamical analysis and interpretation of
results, simple changes in variables and parameters are introduced for.

t = a1T , u(t) = H(T), v(t) =
c2

a2
P(T), β =

b1

a1
, m =

a2c1

a1c2
, s =

a2

a1
.

Using the above transformation, (1.1) takes the form

⎧
⎨

⎩

du
dt = u(1 – βu) – muv

u+e1
,

dv
dt = sv(1 – v

u+e2
).

(1.2)

In order to derive a discrete form of Eq. (1.2), consider the approximation algorithm, at-
tributed to Euler, as follows:

du
dt

≈ un+1 – un

�t
,

dv
dt

≈ vn+1 – vn

�t
,

where un (or vn) and un+1 (or vn+1) are consecutive points, separated by a time step �t.
Now, applying Euler’s method with step size 1 to (1.2) gives the following:

⎧
⎨

⎩

un+1 = un + un(1 – βun) – munvn
un+e1

,

vn+1 = vn + svn(1 – vn
un+e2

),
(1.3)

which defines a two-dimensional discrete-time dynamical system

(
u
v

)

�→
(

u + u(1 – βu) – muv
u+e1

v + sv(1 – v
u+e2

)

)

. (1.4)

In the present paper, we shall consider how the natural growth rates of predator and
prey affect the dynamical behavior of model system (1.4). The main purpose of the paper
is to show that (1.4) possesses the Neimark–Sacker bifurcation and chaos in the sense of
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Marotto. Especially, using a hybrid control strategy, the bifurcation threshold value can
be raised to a prior setting one so that bifurcation phenomenon be delayed or eliminated
in practice. Additionally, if the system is in chaotic state under certain parametric condi-
tions, the chaos orbits can be stabilized to an unstable fixed point by a controller. Numer-
ical simulations are presented to illustrate the analytic results, and to obtain even more
dynamical behavior of (1.4), including diagrams for bifurcation, time series plots, phase
portraits, strange attractors and the largest Lyapunov exponents.

The paper is organized as follows. In Sect. 2 we discuss the existence and stability of fixed
points for model system (1.4). In Sect. 3, we give some details as regards bifurcation analy-
sis of (1.4) as well as accurate control of bifurcation phenomenon. In Sect. 4 conditions on
the existence of chaos in the sense of Marotto are given, and some control techniques have
been used to stabilize chaos orbits. Finally, some conclusions close the paper in Sect. 5.

2 The existence and stability of fixed points
2.1 Biomass equilibria and their existence
The model system (1.4) possesses the following three fixed points:

(i) The trivial fixed point E0 = (0, 0).
(ii) The predator free axial fixed point E1 = ( 1

β
, 0). The biological interpretation of this

boundary fixed point is that the prey population reaches in the carrying capacity in
the absence of predators.

(iii) The steady state of coexistence (interior fixed point) E2 = (η,η + e2), if
(H1) me2 < e1

holds, where

η =
√

(βe1 + m – 1)2 – 4β(me2 – e1) – (βe1 + m – 1)
2β

,

i.e., u = η, v = η + e2, denoted by u∗, v∗, respectively, is the positive root of the following
equations:

⎧
⎨

⎩

u(1 – βu) – muv
u+e1

= 0,

sv(1 – v
u+e2

) = 0.

2.2 Dynamical behavior: stability analysis
In this subsection, we deal with local stability of (1.4). Let Jk denote the Jacobian matrix
of (1.4) at the fixed point Ek , k = 0, 1, 2, and let λ1 and λ2 be the two eigenvalues of Jk . We
first recall some definitions of topological types for a fixed point.

Definition 2.1 Ek is called a
(i) hyperbolic fixed point, if |λ1| �= 1 and |λ2| �= 1;

(ii) nonhyperbolic fixed point, if |λ1| = 1 or |λ2| = 1.

Definition 2.2 If Ek is a hyperbolic fixed point, then it is called a
(i) sink, if |λ1| < 1 and |λ2| < 1;

(ii) source, if |λ1| > 1 and |λ2| > 1;
(iii) saddle, if λ1,2 are real with |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1).
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2.2.1 The behavior of the model system (1.4) around E0

The variational matrix J0, in the small neighborhood of trivial fixed point E0, is given by

J0 =

(
2 0
0 1 + s

)

.

We observe that J0, the jacobian matrix of (1.4) at fixed point E0, has eigenvalues 2 and
1 + s. Therefore, (1.4) is always unstable around E0, which is, in fact, a source.

2.2.2 The behavior of the model system (1.4) around E1

The variational matrix J1 in the small neighborhood of fixed point E1 is

J1 =

(
0 – m

1+βe1

0 1 + s

)

.

Eigenvalues of variational matrix J1 at the fixed point E1 are 0 and 1 + s. Hence, (1.4) is
unstable around E1, which is in fact a saddle.

2.2.3 The behavior of the model system (1.4) around E2

The Jacobian matrix of map (1.4) at any point (u, v), denoted by J(u,v), is given by

J(u,v) =

(
2 – 2βu – mv

u+e1
+ muv

(u+e1)2 – mu
u+e1

sv2

(u+e2)2 1 + s(1 – v
u+e2

) – sv
u+e2

)

,

and the characteristic equation associated to J(u,v) is

Φ(λ) = λ2 + Bλ + C = 0,

where
⎧
⎪⎪⎨

⎪⎪⎩

B(u, v) = –3 + 2βu + mv
u+e1

– muv
(u+e1)2 – s(1 – v

u+e2
) + sv

u+e2
,

C(u, v) = (2 – 2βu – mv
x+e1

+ muv
(u+e1)2 )(1 + s(1 – v

u+e2
) – sv

u+e2
)

+ musv2

(u+e1)(u+e2)2 .

(2.1)

Hence,

J2 =

(
2 – 2βη – m(η+e2)

η+e1
+ mη(η+e2)

(η+e1)2 – mη

η+e1

s 1 – s

)

,

and the characteristic equation of J2 can be written as

λ2 – (s0 + 1 – s)λ + s0(1 – s) – bs = 0,

where

s0 = 2 – 2βη –
m(η + e2)

η + e1
+

mη(η + e2)
(η + e1)2 ,

b = –
mη

η + e1
.
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In order to discuss the stability of the fixed points, we also need the following lemma,
which can be easily proved by the relations between roots and coefficients of a quadratic
equation [26].

Lemma 2.1 Suppose that Φ(1) > 0. Then
(i) |λ1| < 1 and |λ2| < 1 iff Φ(–1) > 0 and C < 1;

(ii) |λ1| > 1 and |λ2| > 1 iff Φ(–1) > 0 and C > 1;
(iii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) iff Φ(–1) < 0;
(iv) λ1 and λ2 are complex and |λ1| = |λ2| = 1 iff B2 – 4C < 0 and C = 1;
(v) λ1 = –1 and |λ2| �= 1 iff Φ(–1) = 0 and B �= 0, 2.

Using Definition 2.2 and Lemma 2.1, we obtain the following results.

Theorem 2.1 Assume that (H1) holds. Then E2 is
(i) a sink if one of the following conditions holds:

(i.1) 0 < s0 + b < 1 and s0–1
s0+b < s < 2(1+s0)

s0+b+1 ;
(i.2) –1 < s0 + b < 0 and s < min{ 2(1+s0)

s0+b+1 , s0–1
s0+b };

(i.3) s0 + b < –1 and s0–1
s0+b > s > 2(1+s0)

s0+b+1 ;
(ii) a source if one of the following conditions holds:

(ii.1) 0 < s0 + b < 1 and s < min{ 2(1+s0)
s0+b+1 , s0–1

s0+b };
(ii.2) –1 < s0 + b < 0 and s0–1

s0+b < s < 2(1+s0)
s0+b+1 ;

(ii.3) s0 + b < –1 and s > max{ 2(1+s0)
s0+b+1 , s0–1

s0+b };
(iii) a saddle if one of the following conditions holds:

(iii.1) –1 < s0 + b < 1 and s > 2(1+s0)
s0+b+1 ;

(iii.2) s0 + b < –1 and s < 2(1+s0)
s0+b+1 ;

(iv) nonhyperbolic if one of the following conditions holds:
(iv.1) s0 + b = 1;
(iv.2) s0 + b �= –1, and s = 2(1+s0)

s0+b+1 ;
(iv.3) s0 + b �= 0, s = s0–1

s0+b and (s0 + 1 – s)2 < 4(s0(1 – s) – bs).

3 Neimark–Sacker bifurcation analysis and control
If (iv.3) of Theorem 2.1 holds, we find that the eigenvalues at E2 are a pair of conjugate
complex numbers with modulus 1. Let

NS =
{

(m,β , e1, e2, s)
∣
∣ s =

s0 – 1
s0 + b

, s �= s0 + 3, s0 – 1, s0 + b �= 0, m,β , e1, e2, s > 0
}

.

Now we investigate Neimark–Sacker bifurcation at E2 if parameters (m,β , e1, e2, s) vary in
a small neighborhood of the set NS.

3.1 Neimark–Sacker bifurcation analysis
Taking parameters (m,β , e1, e2, s) arbitrarily from NS. Map (1.4) has an interior fixed point
E2, at which eigenvalues λ1, λ2 satisfy |λ1| = |λ2| = 1.

In order to transform E2 into the origin, let x = u – u∗, y = v – v∗, Eq. (1.3) becomes

⎧
⎨

⎩

xn+1 = xn + (xn + u∗)(1 – β(xn + u∗)) – m(xn+u∗)(yn+v∗)
xn+u∗+e1

,

yn+1 = yn + s(yn + v∗)(1 – yn+v∗
xn+u∗+e2

),
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or in map form
(

x
y

)

�→
(

x + (x + u∗)(1 – β(x + u∗)) – m(x+u∗)(y+v∗)
x+u∗+e1

x + s(y + v∗)(1 – y+v∗
x+u∗+e2

)

)

. (3.1)

Since (m,β , e1, e2, s) ∈ NS, we find s = s0–1
s0+b , denoted by s1. Choosing s∗ as bifurcation

parameter, we consider a perturbation of map (3.1):
(

x
y

)

�→
(

x + (x + u∗)(1 – β(x + u∗)) – m(x+u∗)(y+v∗)
x+u∗+e1

y + (s1 + s∗)(y + v∗)(1 – y+v∗
x+u∗+e2

)

)

, (3.2)

where |s∗| 	 1 is a small parameter. In the following, we derive the Taylor series expansion
of the right-hand side of (3.2) at the origin to order 3, that is,

(
x
y

)

�→
⎛

⎜
⎝

a1x + a2y + a11x2 + a12xy + a111x3 + a112x2y + O((|x| + |y|)4)
b1x + b2y + b11x2 + b12xy + b22y2 + b111x3 + b112x2y

+ b122xy2 + O((|x| + |y|)4)

⎞

⎟
⎠ , (3.3)

where

a1 = 2 – 2βu∗ –
mv∗

u∗ + e1
+

mu∗v∗

(u∗ + e1)2 , a2 = –
mu∗

u∗ + e1
,

a11 = –β +
mv∗

(u∗ + e1)2 –
mu∗v∗

(u∗ + e1)3 , a12 = –
m

u∗ + e1
+

mu∗

(u∗ + e1)2 ,

a111 = –
mv∗

(u∗ + e1)3 +
mu∗v∗

(u∗ + e1)4 , a112 =
m

(u∗ + e1)2 –
mu∗

(u∗ + e1)3 ,

b1 = s1 + s∗, b2 = 1 – s1 – s∗, b11 = –
s1 + s∗

u∗ + e2
, b12 =

2(s1 + s∗)
u∗ + e2

,

b22 = –
s1 + s∗

u∗ + e2
, b111 =

s1 + s∗

(u∗ + e2)2 , b112 = –
2(s1 + s∗)
(u∗ + e2)2 ,

b122 =
s1 + s∗

(u∗ + e2)2 .

Note that the characteristic equation associated with map (3.2) at E2 is given by

λ2 + B
(
s∗)λ + C

(
s∗) = 0,

where

B
(
s∗) = –s0 – 1 +

(
s1 + s∗),

C
(
s∗) = s0

(
1 –

(
s1 + s∗)) –

(
s1 + s∗)b,

thus, if s∗ varies in a small neighborhood of the origin, the roots of characteristic equation
are

λ1,2 =
(s0 + 1 – (s1 + s∗))

2

± i
√

4(s0(1 – (s1 + s∗)) – (s1 + s∗)b) – (s0 + 1 – (s1 + s∗))2

2
,
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with

|λ1,2| =
√

C
(
s∗), α =

d|λ1,2|
ds∗

∣
∣
∣
∣
s∗=0

= –
1
2

(s0 + b) �= 0.

In addition, it is required that λi
1,2 �= 1 for i �= 1, 2, 3, 4, if s∗ = 0. It is equivalent to B(0) �=

–2, 0, 1, 2. Since (m,β , e1, e2, s1) ∈ NS, one would just need to require B(0) �= 0, 1, which
leads to

(H2) s1 �= 1 + s0, 2 + s0.
Constructing an invertible matrix

T =

(
a2 0

σ – a1 –ω

)

,

where σ = – B(0)
2 , ω =

√
4C(0)–B2(0)

2 , and using the translation

(
x
y

)

= T

(
x
y

)

,

then the map (3.3) can be changed into

(
x
y

)

�→
(

σ –ω

ω σ

)(
x
y

)

+

(
f 1(x, y)
f 1(x, y)

)

, (3.4)

now with linear part in normal form, where

f 1(x, y) = (–a1a12 + a11a2 + a12σ )x2 – a12ωxy +
(
a111a2

2 + a112a2σ

– a1a112a2
)
x3 – a112a2ωx2y + O

((|x| + |y|)4),

f 2(x, y) =
1
ω

(
a1

2a12 – a1
2b22 – a2a1a11 – 2a1a12σ + a2a1b12 + 2a1b22σ

+ a2a11σ + a12σ
2 – b11a2

2 – a2b12σ – b22σ
2)x2 + (a2b12 + 2b22σ

– 2a1b22 + a1a12 – a12σ )xy – ωb22y2 +
1
ω

(
a2a1

2a112 – a1
2a2b122

– a2
2a1a111 – 2a2a1a112σ + a1a2

2b112 + 2a1a2b122σ + a2
2a111σ

+ a2a112σ
2 – b111a2

3 – a2
2b112σ – a2b122σ

2)x3 – ωa2b122xy2

+
(
a2a1a112 – 2a1a2b122 – a2a112σ + a2

2b112 + 2a2b122σ
)
x2y

+ O
((|x| + |y|)4),

with

f 1xx = –2a1a12 + 2a11a2 + 2a12σ , f 1xy = –a12ω, f 1yy = 0,

f 1xxx = –6a1a112a2 + 6a111a2
2 + 6a112a2σ , f 1xxy = –2a112a2ω,

f 1xyy = 0, f 1yyx = 0, f 1yyy = 0,
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f 2xx =
1
ω

(
2a1

2a12 – 2a1
2b22 – 2a2a1a11 – 4a1a12σ + 2a1a2b12

+ 4a1b22σ + 2a2a11σ + 2a12σ
2 – 2b11a2

2 – 2a2b12σ – 2b22σ
2),

f 2xy = a1a12 – 2a1b22 – a12σ + a2b12 + 2b22σ , f 2yy = –2ωb22,

f 2xxx =
1
ω

(
6a2a1

2a112 – 6a1
2a2b122 – 6a2

2a1a111 – 12a2a1a112σ

+ 6a1a2
2b112 + 12a1a2b122σ + 6a2

2a111σ + 6a2a112σ
2 – 6b111a2

3

– 6a2
2b112σ – 6a2b122σ

2),

f 2xxy = 2a1a112a2 – 4a1a2b122 – 2a112a2σ + 2a2
2b112 + 4a2b122σ ,

f 2xyy = –2ωa2b122, f 2yyy = 0.

In order for system (3.4) to undergo a Neimark–Sacker bifurcation at the origin, we
require that the following quantity is not zero [25, 27]:

L = – Re

(
(1 – 2λ)λ2

1 – λ
γ20γ11

)

–
1
2
|γ11|2 – |γ02|2 + Re(λγ21), (3.5)

where

γ20 =
(f 1xx – f 1yy + 2f 2xy) + i(f 2xx – f 2yy – 2f 1xy)

8
,

γ11 =
(f 1xx + f 1yy) + i(f 2xx + f 2yy)

4
,

γ02 =
(f 1xx – f 1yy – 2f 2xy) + i(f 2xx – f 2yy + 2f 1xy)

8
,

γ21 =
f 1xxx + f 1xyy + f 2xxy + f 2yyy

16
+

i(f 2xxx + f 2xyy + f 1xxy + f 1yyy)
16

.

Summarizing, we have established the following result for Neimark–Sacker bifurcation
behavior of the model system (1.4):

Theorem 3.1 Assume that conditions (H1) and (H2) hold. Then if L �= 0, the model system
(1.4) undergoes a Neimark–Sacker bifurcation at fixed point E2 when the parameter s varies
in a small neighborhood of s1. Moreover, if L < 0 (respectively, L > 0), then an attracting
(respectively, a repelling) closed invariant curve bifurcates form E2.

Remark 3.1 From the biological point of view, an invariant curve bifurcates from a fixed
point, which means that the prey and predator can coexist in a stable way and repro-
duce their densities. The dynamics on the invariant curve may be either periodic or quasi-
periodic.

Example 3.1 Neimark–Sacker bifurcation.

Parameter values are fixed as m = 3, β = 0.2, e1 = 1.2, e2 = 0.3. Simple calcula-
tion yields E2 = (0.13236426, 0.43236426), s1 = 0.09096349222. When s = s1, the cor-
responding eigenvalues are λ1,2 ≈ 0.9896395489 ± 0.1435742421i with |λ1,2| = 1, and
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Figure 1 s = s1 – 0.02596349222, the fixed point (0.13236426, 0.43236426) is unstable

Figure 2 s = s1 + 0.00000650778 is in a small neighborhood of s1 = 0.09096349222. A repelling closed
invariant curve bifurcates from the fixed point (0.13236426, 0.43236426) in the map (1.4) without control

α = –0.3861031954. By Theorem 3.1, a Neimark–Sacker bifurcation emerges from E2 at
s = s1 with L = 0.00159198374. It reveals that the fixed point E2 is unstable for s = 0.065 < s1

(Fig. 1), becomes stable for s = 0.13 > s1 (Fig. 3), and a repelling limit cycle appears around
it at s = 0.09097 (Fig. 2).

3.2 Controlling Neimark–Sacker bifurcation by using a hybrid control strategy
In [28, 29] the authors control the Neimark–Sacker bifurcation using polynomial func-
tions. In [30] Luo and Chen design a hybrid control strategy to control flip bifurcation,
and it is shown that the hybrid control strategy is very effective in controlling bifurcations
for one-dimensional discrete dynamical systems. In this subsection, we extend the hybrid
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Figure 3 s = s1 + 0.03903650778, the fixed point (0.13236426, 0.43236426) is stable

control strategy to control Neimark–Sacker bifurcation of model system (1.4) and this can
be implemented by means of a biological control [31] or some harvesting procedures [32].

Before beginning our discussion, it is convenient to introduce some notations which will
be used frequently from now on:

f1(u, v) = u + u(1 – βu) –
muv

u + e1
,

f2(u, v) = v + sv
(

1 –
v

u + e2

)

,

F = (f1, f2)T,

z = (u, v)T.

So, the original system (1.4) becomes

zn+1 = F(zn). (3.6)

Next, we construct the controlled system as follows:

zn+κ = γ Fκ (zn) + (1 – γ )zn, (3.7)

where γ is an adjustable parameter with 0 < γ < 1, κ is a positive integer, and Fκ is the κth
iteration of F . Obviously, the controlled system (3.7) degenerates into the original system
(3.6) if γ = 1.

Comparing system (3.6) with (3.7), we have the following result.

Theorem 3.2 The controlled system (3.7) and the original system (3.6) have the same κ-
periodic orbit.
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Remark 3.2 The control strategy (3.7) is the combination of state feedback and parameter
adjustment, and adopts the following issues.

(i) A continuous control scheme if κ = 1. Namely, controlling fixed points. Control
needs to be added for each iteration.

(ii) An impulsive control scheme if κ > 1. Control is added once only after every κth
iteration.

Since the aim of this study is to focus on the fixed point bifurcation, we let κ = 1 in (3.7),
which leads to

⎧
⎨

⎩

un+1 = γ (un + un(1 – βun) – munvn
un+e1

) + (1 – γ )un,

vn+1 = γ (vn + svn(1 – vn
un+e2

)) + (1 – γ )vn,
(3.8)

or in map form

(
u
v

)

�→
(

γ (u + u(1 – βu) – muv
u+e1

) + (1 – γ )u
γ (v + sv(1 – v

u+e2
)) + (1 – γ )v

)

.

From Theorem 3.2, it follows that systems (3.6) and (3.8) have the same fixed point E2.
In order to check how the implementation of hybrid control strategy works, we have

performed the following numerical simulation.

Example 3.2 Controlling Neimark–Sacker bifurcation.

Here we will delay the Neimark–Sacker bifurcation of the controlled system (3.8) at s =
0.12 (other parameters are the same as given in Example 3.1). The Jacobian matrix at E2 is

J2 =

(
0.07024259γ + 1 –0.2980361992γ

0.12γ –0.12γ + 1

)

.

Its corresponding eigenvalue equation is

λ2 + (0.04975741γ – 2)λ + 0.0273352331γ 2 – 0.04975741γ + 1 = 0. (3.9)

With Lemma 2.1, Eq. (3.9) has two conjugate roots with modulus 1 if the following condi-
tions are satisfied:

(i) 1 + (0.04975741γ – 2) + 0.0273352331γ 2 – 0.04975741γ + 1 > 0;
(ii) 0.0273352331γ 2 – 0.04975741γ + 1 = 1;

(iii) (0.04975741γ – 2)2 – 4(0.0273352331γ 2 – 0.04975741γ + 1) < 0.
Choosing γ = 1.820266538, the conditions (i)–(iii) are satisfied. Thus fixing γ =
1.820266538, the eigenvalue equation (3.9) becomes λ2 – 1.909428251λ + 1 = 0. When s =
0.12, we have λ1,2 = 0.9547141255±0.2975246856i with |λ1,2| = 1, λi

1,2 �= 1 (i = 1, 2, 3, 4) and
d|λ1,2(s)|

ds |s=0.12 = –1.450849109 �= 0. So the controlled system (3.8) undergoes a Neimark–
Sacker bifurcation at s = 0.12.
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On the basis of the above work, we choose γ = 1.820266538, s = 0.12, the controlled
system (3.8) becomes

⎧
⎨

⎩

un+1 = 2.820266538un – 0.3640533076u2
n – 5.460799614unvn

un+1.2 ,

vn+1 = 1.218431985vn – 0.2184319846v2
n

un+0.3 .
(3.10)

Now, we calculate L according to Eq. (3.5). We first turn the fixed point E2 of controlled
system (3.10) into the origin. By the transformation

⎧
⎨

⎩

xn = un – 0.13236426,

yn = vn – 0.43236426,

(3.10) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = 2.820266538xn + 0.2409382333

– 0.3640533076(xn + 0.13236426)2

– 5.460799614(xn+0.13236426)(yn+0.43236426)
xn+1.33236426 ,

yn+1 = 1.218431985yn + 0.0944421836 – 0.2184319846(yn+0.43236426)2

xn+0.43236426 .

(3.11)

Next, using Taylor’s formulation, (3.11) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = 1.127860237xn – 0.5425053205yn

+ 0.8338405834x2
n – 3.691403651xnyn

– 0.8990738696x3
n + 2.7705664x2

nyn + O((|xn| + |yn|)4),

yn+1 = 0.2184319845xn + 0.7815680158yn

– 0.5052036089x2
n + 1.010407218xnyn

– 0.5052036091yn
2 + 1.168467553x3

n – 2.336935107x2
nyn

+ 1.168467553xnyn
2 + O((|xn| + |yn|)4).

(3.12)

Constructing an invertible matrix

T =

(
–0.5425053205 0
–0.1731461115 –0.2975246856

)

,

and using the variable transformation

(
xn

yn

)

= T

(
xn

yn

)

,

then the system (3.12) can be transformed into the following form:

(
xn+1

yn+1

)

=

(
0.954714125499998 –0.297524685599999
0.297524684260071 0.954714127300001

)(
xn

yn

)

+

(
f 1(xn, yn)
f 2(xn, yn)

)

,
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Figure 4 The repelling closed invariant curve in the controlled map (3.10) for s = 0.12

where

f 1(xn, yn) = 0.1867892352x2 + 1.098283711xy – 0.0043615034x3

+ 0.44719359x2y + O
((|xn| + |yn|

)4),

f 2(xn, yn) = 0.1229517865x2 – 1.012355399xy + 0.2932050588x3

– 0.728520251x2y + 0.1503105449y2 + 0.1886008578xy2

+ O(
(|xn| + |yn|

)4.

With the expression of (3.5), we have γ20 = –0.206391541 – 0.2814106174i,
γ11 = 0.0933946176 + 0.1366311657i, γ02 = 0.2997861585 + 0.2677312381i, γ21 =
–0.09270059512 + 0.1894262031i, and L = 0.1558240975 > 0. The numerical simulation
result is shown in Fig. 4, which confirms the existence of a repelling closed orbit in the
phase space for s = 0.12. On the basis of the above analysis, we deduce that the hybrid
control strategy can successfully delay the appearance of the Neimark–Sacker bifurcation.

4 Existence of chaos in the sense of Marotto and chaos control
4.1 Existence of chaos in the sense of Marotto
In this subsection, with the help of Marotto’s theorem [33, 34] we show that map (1.4)
exhibits chaotic behavior for specific values of parameters.

Marotto extended Li-York’s theorem on chaos from one-dimension to multi-dimension
through introducing the notion of snap-back repeller in 1978 [33]. Due to a technical flaw,
Marotto redefined a snap-back repeller in 2005 [34]. Marotto’s theorem shows that the
presence of a snap-back repeller is a sufficient criterion for the existence of chaos. Let us
describe the notion of snap-back repeller and Marotto’s theorem.

Definition 4.1 If z is a fixed point of F and all the eigenvalues of DF(z) exceed one in
norm, then z is called a repelling fixed point of F .
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Definition 4.2 Let z be a repelling fixed point of F . Suppose that there exist a point z0 �= z
in a repelling neighborhood of z and an integer M > 1, such that zM = z and det(DF(zk) �= 0
for 1 ≤ k ≤ M, where zk = Fk(z0). Then z is called a snap-back repeller of F .

Theorem 4.1 (Marotto’s theorem) If F has a snap-back repeller, then F is chaotic in the
following sense: There exist

(i) a positive integer N , such that F has a point of period τ , for each integer τ ≥ N .
(ii) a “scrambled set” of F , i.e., an uncountable set S containing no periodic points of F ,

such that:
(ii.1) F(S) ⊂ S;
(ii.2) lim supx→∞ ‖ Fk(p) – Fk(q) ‖> 0, for all p, q ∈ S, with p �= q;
(ii.3) lim supk→∞ ‖ Fk(p) – Fk(q) ‖> 0, for all p ∈ S and periodic point q of F ;
(ii.4) an uncountable subset S0 of S, such that lim supk→∞ ‖ Fk(p) – Fk(q) ‖= 0, for

every p, q ∈ S0.

It is straightforward to see that a snap-back repeller gives rise to an orbit {zk}∞k=–∞ of
F with zk = z, for k ≥ M, and zk → z as k → –∞. Roughly speaking, the property of this
orbit is analogous to the one for homoclinic orbit. In addition, the map F is locally one-
to-one at each point zk . This leads to the trivial transversality, i.e., the unstable manifold
R

2 of full dimension intersects transversally the zero-dimensional stable manifold of z.
Therefore, snap-back repeller may be regarded as a special case of a fixed point with a
transversal homoclinic orbit [35], which is one of the core concepts in nonlinear dynamics.
Especially, homoclinic point, closely related to homoclinic orbit, acts as an organizing
center for chaotic motion.

With the definition of snap-back repeller, we adopt the iterative method [36, 37]. We first
provide conditions under which the fixed point z = (u, v) is a snap-back repeller. Assume
thatBr(z) is a certain repelling neighborhood of z. For all z = z(u, v) ∈Br(z), it is equivalent
to the condition

⎧
⎪⎪⎨

⎪⎪⎩

Φ(1) = 1 + B + C > 0,

Φ(–1) = 1 – B + C > 0,

Φ(0) = C > 1,

one has from (2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(1) = –2 + 2βu + mv
u+e1

– muv
(u+e1)2 – s(1 – y

u+e2
) + sv

u+e2

+ (–2βu + 2 – mv
u+e1

+ muv
(u+e1)2 )(1 + s(1 – y

u+e2
) – sy

u+e2
)

+ musv2

(u+e1)(u+e2)2 > 0,

Φ(–1) = 4 – 2βu – mv
u+e1

+ muv
(u+e1)2 + s(1 – v

u+e2
) – sv

u+e2

+ (–2βu + 2 – mv
u+e1

+ muv
(v+e1)2 )(1 + s(1 – v

u+e2
) – sv

u+e2
)

+ musv2

(v+e1)(v+e2)2 > 0,

Φ(0) = (–2βu + 2 – mv
u+e1

+ muv
(u+e1)2 )(1 + s(1 – v

u+e2
) – sv

u+e2
)

+ uxsv2

(u+e1)(u+e2)2 > 1.
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Let Ω1, Ω2 and Ω3 denote the sets which are defined by aforementioned three inequal-
ities, respectively. We need to find the preimage z0 of z in Br(z), with z0 �= z, FM(z0) = z
and det(DF(zk) �= 0 for 1 ≤ k ≤ M hold. Note that

⎧
⎨

⎩

u0 + u0(1 – βu0) – mu0v0
u0+e1

= u1,

v0 + sv0(1 – v0
u0+e2

) = v1,
(4.1)

⎧
⎨

⎩

u1 + u1(1 – βu1) – mu1v1
u1+e1

= u2,

v1 + sv1(1 – v1
u1+e2

) = v2,
(4.2)

and
⎧
⎨

⎩

u2 + u2(1 – βu2) – mu2v2
u2+e1

= u,

v2 + sv2(1 – v2
u2+e2

) = v.
(4.3)

If Eqs. (4.1), (4.2) and (4.3) have positive solutions zi, i = 0, 1, 2, which are all different from
z, then F3 is constructed to map the point z0 = (u0, v0) to z = (u, v) after three iterations.
Indeed, from the first equation of Eq. (4.3), it follows that

v2 =
(u2 + e1)(u2 + u2(1 – βu2) – u)

mu2
. (4.4)

Putting it in the second one of Eq. (4.3) gives an equation which u2 satisfies:

H(u) = –β2su6 +
(
–2β2e1s – βms – βm + 4βs

)
u5 +

(
–β2e2

1s – βe1ms – βe2ms

– βe1m + 8βe1s – βe2m – 2βsu + 2ms + 2m – 4s
)
u4 +

(
–βe1e2ms

+ 4βe2
1s – βe1e2m – 4βe1su + 2e1ms + 2e2ms – m2v – msu + 2e1m

– 8e1s + 2e2m – mu + 4su
)
u3 +

(
–2βe2

1su + 2e1e2ms – e1msu – e2m2v

– e2msu – 4e2
1s + 2e1e2m – e1mu + 8e1su – e2mu – su2)u2

+
(
–e1e2msu + 4e2

1su – e1e2mu – 2e1su2)u – e2
1su2 = 0. (4.5)

Solving Eq. (4.5) gives u2, then putting it in (4.4) gives v2. Thus, we get point z2 = (u2, v2).
Similarly, putting u2, v2 in (4.2), we get z1 = (u1, v1) and z0 = (u0, v0) from z1 = (u1, v1) and
(4.1). Let B = Ω1 ∩ Ω2 ∩ Ω3 �= ∅, if B is a non-empty set and a neighborhood of z, and
the solutions of Eqs. (4.1), (4.2) and (4.3) satisfy z0, z1, z2 �= z; z0 ∈ B, z1 /∈ B, z2 /∈ B; and
det(DF(zk)) �= 0 for k = 0, 1, 2, then z is a snap-back repeller. In this case the model system
(1.4) is chaotic in the sense of Marotto.

Example 4.1 Marotto’s chaos.

Here, diagrams for bifurcation, chaotic attractors and the largest Lyapunov exponents
will be drawn to validate our theoretical result using numerical simulation. As we see
in Example 3.1, a Neimark–Sacker bifurcation arises as parameter s varies in a neigh-
borhood of s1 = 0.09096349222. Now increase the value of s to be 3. By a tedious
numerical calculation and simulations with Φ(1) > 0, Φ(–1) > 0 and Φ(0) > 0 using
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Figure 5 (a) Bifurcation diagram of map (1.4) in the (s,u) plane. (b) Bifurcation diagram of map (1.4) in the
(s, v) plane. (c) Chaotic attractor for s = 3. (d) The largest Lyapunov exponents corresponding to a/b

MATLAB software, we find a neighborhood B = {(u, v) | 0 < u < 0.14, 0.25 < v < 0.46}
of E2, where all eigenvalues of DF(z) exceed 1 in norm. There also exists a posi-
tive point z0 = (0.07289604113, 0.2931610206) satisfying F3(z0) = E2 and det(DF(zk)) =
–0.6275618341, –2.100193893, 2.619286018 �= 0 for k = 0, 1, 2, respectively. Moreover,
z0 ∈ B, z1 = (0.09523173812, 0.484637067) /∈ B, z2 = (0.0817510353, 0.1557479687) /∈ B.
Thus, E2 is a snap-back repeller.

The Marotto’s chaotic attractor is given in Fig. 5(c). The largest Lyapunov exponents
(LLE for short) are presented in Fig. 5(d). It can be seen that the largest Lyapunov exponent
is positive when s = 3, which means that the system is in chaotic state. Incidentally, the
system is superstable for some values of s (blank interval in s-axis in Fig. 5(d)), at which the
Lyapunov exponents are equal to negative infinity. This is something akin to a critically
damped oscillator in that the system heads towards its equilibrium point as quickly as
possible [38, 39].

4.2 Controlling chaotic dynamical system using an improved OGY method
In this subsection, we apply an improved OGY (Ott, Grebogi and Yorke) method to stabi-
lize the chaotic orbit at the unstable fixed point E2 of model system (1.4), thus achieve the
objective of chaos control. The controlled system is given by

(
un+1

vn+1

)

=

(
un + un(1 – βun) – munvn

un+e1

vn + svn(1 – vn
un+e2

) + l,

)

, (4.6)

where l is an adjustable, external control parameter. Assume that the system (4.6) is in
chaotic state if l = 0 := l0. Obviously, (4.6) possesses a fixed point E2 for l = l0. The lin-
earization of (4.6) near E2 is given by

(
un+1 – η

vn+1 – (η + e2)

)

= A

(
un – η

vn – (η + e2)

)

+ G(l – l0), (4.7)
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with

A = DzF(l0, E2) =

(
1 – βu∗ + mu∗v∗

(u∗+e1)2 – mu∗
u∗+e1

s 1 – s

)

,

G = DlF(l0, E2) =

(
0
1

)

,

where

F(z, l) =
(
F1(z, l), F2(z, l)

)T,

F1(zn, l) = un + un(1 – βun) –
munvn

un + e1
,

F2(zn, l) = vn + svn

(

1 –
vn

un + e2

)

+ l.

The control law is designed as

l – l0 = –KT(zn – E2) = –k1(un – η) – k2(vn – η – e2),

where K = (k1, k2)T is a state feedback gain matrix. Let δzn = zn – E2, then system (4.7)
becomes

δzn+1 =
(
A – GKT)

δzn. (4.8)

We construct a matrix, called the control matrix, as follows:

U = (G | AG) =

(
0 – mu∗

u∗+e1

1 1 – s

)

.

Since U is of full rank, the system (4.8) is controllable. Under this condition, for given
matrices A and G, A – GKT can always possesses specified eigenvalues by regulating ma-
trix K . Once the absolute values of all eigenvalues are less than 1, one can control system.
Define the transformation matrix T = UW , where

W �
(

a1 1
1 0

)

,

a1 is the μ-term coefficient of characteristic polynomial associated with the matrix A, that
is,

|μI – A| = μ2 + a1μ + a2 = 0,

whereas the expected characteristic equation is

∣
∣ρI – A + GKT∣

∣ = ρ2 + α1ρ + α2 = 0,
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Figure 6 The stability region of controlled system (4.6) in the (α1,α2) plane

with

α1 = –(ρ1 + ρ2),

α2 = ρ1ρ2.

The matrix K is determined by the equation below:

KT = (α2 – a2,α1 – a1)T–1. (4.9)

Note that we just need |ρi| < 1, i = 1, 2 for the purpose of controlling chaos. Thus, α1 and
α2 will be allowed to take values from a bounded region (called the stability region; see the
triangular region in Fig. 6) in the (α1,α2) plane. As a result, K is not unique.

Example 4.2 Controlling chaos.

As seen in Example 4.1, the system (1.4) is chaotic when s = 3. In the following, we deter-
mine the stability region in the (k1, k2) plane. With Eq. (4.9) we get

⎧
⎨

⎩

k1 = –3.5909818769α1 – 3.35529711721005α2 – 0.843221746,

k2 = α1 – 0.929757409.
(4.10)

Then from (4.10) and the ranges for α1, α2, we obtain the stability region (see Fig. 7),
surrounded by three lines:

L1 : –0.2980361992k1 – 2.07024259k2 – 1.176133991 = 0.

L2 : –0.2980361992k1 – 0.07024259k2 + 0.683380827 = 0,

L3 : –0.2980361992k1 – 1.07024259k2 – 2.246376582 = 0.
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Figure 7 The stability region of controlled system (4.6) in the (k1, k2) plane for s = 3,m = 3, β = 0.2, e1 = 1.2,
e2 = 0.3

Figure 8 Time series data for controlled system (4.6) for s = 3,m = 3, β = 0.2, e1 = 1.2, e2 = 0.3,
k1 = –0.843221746 and k2 = –0.929757409. The initial value is (0.1, 0.2) and the control is activated after the
200th iteration

We let initial value as (0.1, 0.2), and take k1 = –0.843221746, k2 = –0.929757409 from the
stability region. The control result is shown in Fig. 8. We can see that the chaotic orbits
enter the controllable region when n > 200, and it is shown that the chaotic trajectory is
stabilized.

5 Conclusion
The present paper is concerned with the dynamical behavior and control of a discrete-
time predator–prey system with modified Leslie–Gower and Holling’s type II schemes.
We have seen that our results show far richer dynamics of the discrete model compared
with the continuous one, including invariant circle, superstable phenomenon, cascades of
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period-doubling bifurcation and chaotic sets. In the meantime, these results demonstrate
that the natural growth rates of predator and prey play a vital role for local and global
stability of predator–prey system. It indicates that the dynamical behavior of biological
model may be very sensitive to bifurcation parameter perturbation. Especially, we provide
the method of state feedback and parameter perturbation for bifurcation control, and the
improved OGY method for chaos control, which stabilize the chaotic orbit at an unstable
fixed point. Numerical simulations are carried out to verify our theoretical analysis and
control strategies. Our results can be useful for the specialists in organic agriculture as
they need a biological control method. However, it is still a challenging problem to explore
the multiple-parameter bifurcation in biological systems. But at present the study in this
respect is very inadequate. This will be the topic of our future research and we expect to
obtain some more analytical results.
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