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Abstract
In this paper, we offer an approach about the dissipativity of neutral-type memristive
neural networks (MNNs) with leakage, additive time, and distributed delays. By
applying a suitable Lyapunov–Krasovskii functional (LKF), some integral inequality
techniques, linear matrix inequalities (LMIs) and free-weighting matrix method, some
new sufficient conditions are derived to ensure the dissipativity of the
aforementioned MNNs. Furthermore, the global exponential attractive and positive
invariant sets are also presented. Finally, a numerical simulation is given to illustrate
the effectiveness of our results.
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1 Introduction
In the recent decades, neural networks have been widely applied in many areas, such as
automatic control engineering, image processing, associative memory, pattern recogni-
tion, parallel computing, and so on [1, 2]. Therefore, it is extremely meaningful to study
neural networks. Based on the completeness of circuit theory, Chua firstly proposed the
fourth fundamental electrical circuit element memristor besides the known capacitance,
inductance and resistance [3]. Subsequently, HP researchers discovered that memristors
exist in nanoscale systems [4]. Memristor is a circuit element with memory function in the
neural networks, whose resistance slowly changes depending on the quantity of passing
electric charge by supplying a voltage or current. The working mechanism of a memristor
is similar to that of the human brain. Thus, the research of MNNs is more valuable than
we have realized [5, 6].

In the real world, time delays are ubiquitous. They may cause complex dynamical be-
haviors such as periodic oscillations, dissipation, divergence and chaos [7, 8]. Hence, the
dynamic behaviors of neural networks with time delays have received lots of attention [9–
11]. The existing studies on delayed neural networks can be divided into four categories
dealing with constant, time-varying, distribution, and mixed delays. While a majority of
literature is concentrated on the former three simple cases, mixed delays are more effec-
tive than simple delays in MNNs [12–16]. So the system of MNNs with mixed delays is
worth a further study.
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Dissipativity, known as a generalization of Lyapunov stability, is a common concept in
dynamical systems. It focuses on the diverse dynamics of systems, not only on the equi-
librium dynamics. Many systems are stable at the equilibrium points, but in some cases,
the systems’ orbits do not converge to equilibrium points, or even not have any equilib-
rium point at all. As a consequence, dissipative systems play an important role in the field
of control. Dissipative system theory provides a framework for the design and analysis of
control systems based on energy-related considerations [17]. At present, although there
are some studies on the dissipativity of neural networks [18–20], most of them are focusing
on the synchronization of neural networks [21–24]. For the dissipativity analysis of neural
networks, it is essential to find global exponentially attracting sets. Some researchers have
investigated the global dissipativity of neural networks with mixed delays, by giving some
sufficient conditions to obtain the global exponentially attracting sets [25, 26]. To the best
of our knowledge, few studies have considered the dissipativity of neutral-type memristive
neural networks with mixed delays.

In this paper, we will investigate the dissipative of neutral-type memristive neural net-
works with mixed delays. The highlights of our work include:

1. We consider not only two additive time-varying and distribution time delays, but also
time-varying leakage delays.

2. We obtain the dissipativity of the system by using a combination of the appropri-
ate LKF and the reciprocally convex combination method, some integral inequality
techniques, LMI and some delay-dependent dissipative criteria.

3. Our results are more general than those for the ordinary neural networks.
The paper is organized as follows: in Sect. 2, the preliminaries are presented; in Sect. 3,

the dissipative properties of neural network models with mixed delays are analyzed; in
Sect. 4 a numerical example is given to demonstrate the effectiveness of our analytical
results; in Sect. 5, the work is summarized.

2 Neural network model and some preliminaries
Notations Rn (resp., Rn×m) is the n-dimensional Euclidean space (resp., the set of n × m
matrices) with entries from R; X > 0 (resp., X ≥ 0) implies that the matrix X is a real
positive-definite matrix (resp., positive semi-definite). When A and B are symmetric ma-
trices, if A > B then A–B is a positive definite matrix. The superscript T denotes transpose
of the matrix; ∗ denotes the elements below the main diagonal of a symmetric matrix; I and
O are the identity and zero matrices, respectively, with appropriate dimensions; diag{. . .}
denotes a diagonal matrix; λmax(C) (resp., λmin(C)) denotes the maximum (resp., mini-
mum) eigenvalue of matrix C. For any interval V ⊆ R, let S ⊆ Rk (1 ≤ k ≤ n), C(V , S) = {ϕ :
V → S is continuous} and C1(V , S) = {ϕ : V → S is continuous differentiable}; co{b1, b2}
represents closure of the convex hull generated by b1 and b2. For constants a, b, we set
a ∨ b = max{a, b}. Let Ln

2 be the space of square integrable functions on R+ with values
in Rn; Ln

2e the extended Ln
2 space defined by Ln

2e = {f : f is a measurable function on R+},
PT f ∈ LN

2 , ∀T ∈ R+, where (PT f )(t) = f (t) if t ≤ T , and 0 if t > T . For any functions x = {x(t)},
y = {y(t)} ∈ Ln

2e and matrix Q, we define 〈x, Qy〉 =
∫ T

0 xT (t)Qy(t) dt.

In this paper, we consider the following neutral-type memristor neural network model
with leakage, as well as two additive time-varying and distributed time-varying de-
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lays:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi(t) = –cixi(t – η(t)) +
∑n

j=1 aij(xi(t))fj(xj(t)) +
∑n

j=1 bij(xi(t))f (xj(t – τj1(t)

– τj2(t))) +
∑n

j=1 dij(xi(t))
∫ t–δ1(t)

t–δ2(t) fj(xj(s)) ds + eiẋi(t – h(t)) + ui(t),

yi(t) = fi(xi(t)),

xi(t) = φi(t), t ∈ (–τ ∗, 0),

(2.1)

where n is the number of cells in a neural network; xi(t) is the voltage of the ca-
pacitor; fi(·) denotes the neuron activation functions of the ith neuron at time t; yi

is the output of the ith neural cell; ui(t) ∈ L∞ is the external constant input of the
ith neuron at time t; η(t) denotes the leakage delay satisfying 0 ≤ η(t) ≤ η; τj1(t)
and τj2(t) are two additive time varying delays that are assumed to satisfy the con-
ditions 0 ≤ τj1(t) ≤ τ1 < ∞, 0 ≤ τj2(t) ≤ τ2 < ∞; δ1(t), δ2(t) and h(t) are the time-
varying delays with 0 ≤ δ1 ≤ δ1(t) ≤ δ2(t) ≤ δ2, 0 ≤ h(t) ≤ h; η, τ1, τ2, δ1, δ2 and
h are nonnegative constants; τ ∗ = η ∨ (δ2 ∨ (τ ∨ h)); C = diag(c1, c2, . . . , cn) is a self-
feedback connection matrix; E = diag(e1, e2, . . . , en) is the neutral-type parameter; aij(t),
bij(t), and dij(t) represent the memristive-based weights, which are defined as fol-
lows:

aij
(
xi(t)

)
=

W(1)ij

Ci
× signij, bij

(
xi(t)

)
=

W(2)ij

Ci
× signij,

dij
(
xi(t)

)
=

W(3)ij

Ci
× signij, signij =

⎧
⎨

⎩

1, i 
= j,

–1, i = j.

Here W(k)ij denote the memductances of memristors R(k)ij, k = 1, 2, 3. In view of memristor
property, we set

aij
(
xi(t)

)
=

⎧
⎨

⎩

âij, |xi(t)| ≤ γi,

ǎij, |xi(t)| > γi,
bij
(
xi(t)

)
=

⎧
⎨

⎩

b̂ij, |xi(t)| ≤ γi,

b̌ij, |xi(t)| > γi,

dij
(
xi(t)

)
=

⎧
⎨

⎩

d̂ij, |xi(t)| ≤ γi,

ďij, |xi(t)| > γi,

where the switching jumps γi > 0, âij, ǎij, b̂ij, b̌ij, d̂ij and ďij are known constants with
respect to memristances.

Remark 1 In the recent years, the dissipativity problem of MNNs has received a lot of
attention. So far, substantial important results on dissipativity have been obtained for
MNNs. Unfortunately, the work in [27, 28] only considered the leakage delay, while that in
[29, 30] considered additive time-varying delays, but not distribution delays. In fact, the
leakage delay and multiple signal transmission delays coexist in the system of MNNs. Be-
cause few results are found in the existing literature on the dissipativity analysis of neutral-
type MNNs with multiple time delays, this paper attempts to extend our knowledge in this
field by studying the dissipativity of such systems, and an example is given to prove the
effectiveness of our results. Thus, the obtained results extend the study of the dynamic
characteristics of MNNs.
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Remark 2 In many real applications, signals transmitted from one point to another may
experience a few segments of networks, which can possibly induce successive delays
with different properties due to the variable network transmission conditions, and when
τ1(t) + τ2(t) reaches its maxima, we do not necessarily have both τ1(t) and τ2(t) reach their
maxima at the same time. Therefore, in this paper, we will consider the two additive delay
components in (2.1) separately.

Remark 3 Furthermore, the above systems are switching systems whose connection
weights vary due to their states. Although smooth analysis is suitable for studying contin-
uous nonlinear systems, the nonsmooth analysis is suitable for studying switching nonlin-
ear systems. Therefore, it is necessary to introduce some definitions of nonsmooth theory,
such as differential inclusion and set-valued maps.

Let aij = min{âij, ǎij}, aij = max{âij, ǎij}, bij = min{b̂ij, b̌ij}, bij = max{b̂ij, b̌ij}, dij = min{d̂ij,
ďij}, dij = max{d̂ij, ďij}, for i, j = 1, 2, . . . , n. By applying the theory of differential inclusions
and set-valued maps in system (2.1) [31, 32], it follows that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) ∈ –cixi(t – η(t)) +
∑n

j=1 co[aij, aij]fj(xj(t)) +
∑n

j=1 co[bij, bij]f (xj(t

– τj1(t) – τj2(t))) +
∑n

j=1 co[dij, dij]
∫ t–δ1(t)

t–δ2(t) fj(xj(s)) ds

+ eiẋi(t – h(t)) + ui(t),

yi(t) = fi(xi(t)),

xi(t) = φi(t), t ∈ (–τ ∗, 0).

Using Filippov’s theorem in [33], there exist a′
ij(t) ∈ co[aij, aij], b′

ij(t) ∈ co[bij, bij], d′
ij(t) ∈

co[dij, dij], and A = (a′
ij(t))n×n, B = (b′

ij(t))n×n, D = (d′
ij(t))n×n, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = –Cx(t – η(t)) + Af (x(t)) + Bf (x(t – τ1(t) – τ2(t)))

+ D
∫ t–δ1(t)

t–δ2(t) f (x(s)) ds + Eẋ(t – h(t)) + u(t),

y(t) = f (x(t)),

x(t) = φ(t), t ∈ (–τ ∗, 0),

(2.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))T , x(t – η(t)) = (x1(t – η(t)), x2(t – η(t)), . . . , xn(t – η(t)))T ,
f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(x1(n)))T , f (x(t – τ1(t) – τ2(t))) = (f1(x1(t – τ11 – τ12)),
f2(x2(t – τ21 – τ22)), . . . , fn(xn(t – τn1 – τn2)))T , ẋ(t – h(t)) = (ẋ1(t – h(t)), ẋ2(t – h(t)), . . . ,
ẋn(t – h(t)))T , u(t) = (u1(t), u2(t), . . . , un(t))T .

To prove our main results, the following assumptions, definitions and lemmas are
needed.

Assumption 1 The time-varying delays τ1(t), τ2(t) and η(t) satisfy the conditions |τ̇1(t)| ≤
μ1; |τ̇2(t)| ≤ μ2; |η̇(t)| ≤ μ3 where μ, μ1, μ2 and μ3 are nonnegative constants, and we
denote τ (t) = τ1(t) + τ2(t), μ = μ1 + μ2 and τ = τ1 + τ2.
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Assumption 2 For all α,β ∈ R and α 
= β , i = 1, 2, . . . , n, the activation function f is
bounded and there exist constants k–

i and k+
i such that

k–
i ≤ fi(α) – fi(β)

α – β
≤ k+

i ,

where let Fi = |k–
i | ∨ |k+

i |, f = (f1, f2, . . . , fn)T and for any i ∈ {1, 2, . . . , n}, fi(0) = 0. For pre-
sentation convenience, in the following we denote

K1 = diag
{

k–
1 k+

1 , k–
2 k+

2 , . . . , k–
n k+

n
}

, K2 = diag

{
k–

1 + k+
1

2
,

k–
2 + k+

2
2

, . . . ,
k–

n + k+
n

2

}

.

Assumption 3 φ(t) ∈C1 : C([τ∗, 0], Rn) is the initial function with the norm

‖φ‖τ∗ = sup
s∈[τ∗,0]

{∣
∣φ(s)

∣
∣,
∣
∣φ̇(s)

∣
∣
}

.

Definition 1 ([34, 35]) Let x(t, 0,φ) be the solution of neural network (2.2) through (0,φ),
φ ∈C

1. Suppose there exists a compact set S ⊆ Rn such that for every φ ∈ C
1, there exists

T(φ) > 0 such that, when t ≥ T(φ), x(t, 0,φ) ⊆ S. Then the neural network (2.2) is said to
be a globally dissipative system, and S is called a globally attractive set. The set S is called
positively invariant if for every φ ∈ S, it holds that x(t, 0,φ) ⊆ S for all t ∈ R+.

Definition 2 ([34, 35]) Let S be a globally attractive set of neural network (2.2). The neural
network (2.2) is said to be globally exponentially dissipative if there exist constant a > 0
and compact S∗ ⊃ S in Rn such that for every φ ∈ Rn\S∗, there exists a constant M(φ) > 0
such that

inf
x̃∈S

{∣∣x(t, 0,φ) – x̃
∣
∣ : x ∈ Rn\S∗}≤ M(φ)e–at , t ∈ R+.

Here x ∈ Rn but x /∈ S∗. Set S∗ is called a globally exponentially attractive set.

Lemma 1 ([36]) Consider a given matrix R > 0. Then, for all continuous functions ω(·) :
[a, b] → Rn, such that the considered integral is well defined, one has

∫ b

a
ωT (u)Rω(u) du ≥ 1

b – a

[∫ b

a
ω(u) du

]T

R
[∫ b

a
ω(u) du

]

.

Lemma 2 ([37]) For any given matrices H , E, a scalar ε > 0 and F with FT F ≤ I , the fol-
lowing inequality holds:

HFE + (HFE)T ≤ εHHT + ε–1ET E.

Lemma 3 ([38]) For any constant matrix H ∈ Rn×n and two scalars b ≥ a ≥ 0, the following
inequality holds:

–
(b2 – a2)

2

∫ –a

–b

∫ t

t+θ

xT (s)Hx(s) ds dθ

≤ –
[∫ –a

–b

∫ t

t+θ

x(s) ds dθ

]T

H
[∫ –a

–b

∫ t

t+θ

x(s) ds dθ

]

.
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Lemma 4 ([39]) Let the functions f1(t), f2(t), . . . , fN (t) : Rm → R have positive values in an
open subset D of Rm and satisfy

1
α1

f1(t) +
1
α2

f2(t) + · · · +
1

αN
fN (t) : D → Rn,

with αi > 0 and
∑

i αi = 1, then the reciprocal convex combination of fi(t) over the set D
satisfies

∀gi,j(t) : Rm → Rn, gi,j(t) .= gj,i(t),

∑

i

1
αi

fi(t) ≥
∑

i

fi(t) +
∑

i
=j

gi,j(t),

[
fi(t) gi,j(t)

gj,i(t) fj(t)

]

≥ 0.

3 Main results
In this section, under Assumptions 1–3 and by using Lyapunov–Krasovskii functional
method and LMI technique, the delay-dependent dissipativity criterion of system (2.2)
is derived in the following theorem.

Theorem 3.1 Under Assumptions 1–3, if there exist symmetric positive definite matrices
P > 0, Qi > 0, Vi > 0, Ui > 0 (i = 1, 2, 3), Rj > 0, Tj > 0 (j = 1, 2, 3, 4, 5), Gk > 0 (k = 1, 2, 3, 4),
L1 > 0, L2 > 0, S2 > 0, S3 > 0, three n × n diagonal matrices M > 0, β1 > 0, β2 > 0, n × n real
matrix S1 such that the following LMIs hold:

Φk = Ψ – e–2ατΥ T
k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U1 V1 0 0 0 0
∗ U1 0 0 0 0
∗ ∗ U2 V2 0 0
∗ ∗ ∗ U2 0 0
∗ ∗ ∗ ∗ U3 V3

∗ ∗ ∗ ∗ ∗ U3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Υk < 0 (k = 1, 2, 3, 4), (3.1)

where Ψ = [ψ]l×n (l, n = 1, 2, . . . , 25); ψ1,1 = –PM – MT P + 2αP + 2Q1 + Q2 + Q3 + R1 +
R2 + R3 + R4 + R5 – 4e–2ατ1 T1 – 4e–2ατ2 T2 – 4e–2ατ T3 – 4e–2αηT4 – 4e–2αhT5 + η2L2 – K1β1,
ψ1,2 = –2e–ατ G3, ψ1,3 = –2e–ατ1 G1, ψ1,4 = –2e–ατ2 G2, ψ1,5 = PM – 2e–2αηG4, ψ1,6 = e–2αhT5,
ψ1,7 = –2e–2ατ (T3 + 2G3), ψ1,8 = –2e–2ατ1 (T1 + 2G1), ψ1,9 = –2e–2ατ2 (T2 + 2G2), ψ1,10 =
–PC + S1C – 2e–2αη(T4 + 2G4), ψ1,11 = PA – S1A + K2β1, ψ1,12 = PB – S1B, ψ1,13 = MT PM –
αPM – αMT P, ψ1,14 = –6e–2αηG4, ψ1,15 = –6e–2αηT4, ψ1,16 = –6e–2ατ T3, ψ1,17 = –6e–2ατ1 T1,
ψ1,18 = –6e–2ατ2 T2, ψ1,19 = 6e–2ατ G3, ψ1,20 = 6e–2ατ1 G1, ψ1,21 = 6e–2ατ2 G2, ψ1,22 = PD – S1D,
ψ1,23 = S1, ψ1,24 = PE – S1E, ψ2,2 = –e–2ατ Q1 – 4e–2ατ T3, ψ2,7 = –2e–2ατ (T3 + 2G3), ψ2,16 =
6e–2ατ G3, ψ2,19 = 6e–2ατ T3, ψ3,3 = –e–2ατ1 Q2 – 4e–2ατ1 T1, ψ3,8 = –2e–2ατ1 (T1 + 2G1), ψ3,17 =
6e–2ατ1 G1, ψ3,20 = 6e–2ατ1 T1, ψ4,4 = –e–2ατ2 Q3 –4e–2ατ2 T2, ψ4,9 = –2e–2ατ2 (T2 +2G2), ψ4,18 =
6e–2ατ2 G2, ψ4,21 = 6e–2ατ2 T2, ψ5,5 = –e–2αηR2 – 4e–2αηT4, ψ5,10 = –2e–2αη(T4 + 2G4), ψ5,13 =
–MT PM, ψ5,14 = 6e–2αηT4, ψ5,15 = 6e–2αηG4, ψ6,6 = –e–2αhT5, ψ7,7 = –(1 – μ)e–2ατ R3 –
4e–2ατ (2T3 +G3)–K1β2, ψ7,12 = K2β2, ψ7,16 = 6e–2ατ (T3 +G3), ψ7,19 = 6e–2ατ (T3 +G3), ψ8,8 =
–(1 – μ1)e–2ατ1 R4 – 4e–2ατ1 (2T1 + G1), ψ8,17 = 6e–2ατ1 (T1 + G1), ψ8,20 = 6e–2ατ1 (T1 + G1),
ψ9,9 = –(1 – μ2)e–2ατ2 R5 – 4e–2ατ2 (2T2 + G2), ψ9,18 = 6e–2ατ2 (T2 + G2), ψ9,21 = 6e–2ατ2 (T2 +
G2), ψ10,13 = MT PC, ψ10,10 = –(1 – μ3)e–2αηR1 – 4e–2αη(2T4 + G4), ψ10,14 = 6e–2αη(T4 +
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G4), ψ10,15 = 6e–2αη(T4 + G4), ψ10,23 = –S2C, ψ10,24 = –S3C, ψ11,11 = (δ2 – δ1)2L1 – β1,
ψ11,13 = –MT PA, ψ11,23 = S2A, ψ11,24 = S3A, ψ12,12 = –β2, ψ12,13 = –MT PB, ψ12,23 = S2B,
ψ12,24 = S3B, ψ13,13 = αMT PM – 2e–2αηL2, ψ13,22 = –MT PD, ψ13,24 = –MT PE, ψ13,25 =
–MP, ψ14,14 = –12e–2αηT4, ψ14,15 = –12e–2αηG4, ψ15,15 = –12e–2αηT4, ψ16,16 = –12e–2ατ T3,
ψ16,19 = –12e–2ατ G3, ψ17,17 = –12e–2ατ1 T1, ψ17,20 = –12e–2ατ1 G1, ψ18,18 = –12e–2ατ2 T2,
ψ18,21 = –12e–2ατ2 G2, ψ19,19 = –12e–2ατ T3, ψ20,20 = –12e–2ατ1 T1, ψ21,21 = –12e–2ατ2 T2,
ψ22,22 = –e–2αδ2 L1, ψ22,23 = S2D, ψ22,24 = S3D, ψ23,23 = τ4

1
4 U1 + τ4

2
4 U2 + τ4

4 U3 – S2 + τ 2
1 T1 +

τ 2
2 T2 + τ 2T3 + η2T4 + h2T5, ψ23,24 = S2E, ψ24,24 = S3E + ET S3 + S3, ψ25,25 = S2, Υ T

k =
[Γ1k ,Γ2k ,Γ3k ,Γ4k ,Γ5k ,Γ6k]T (k = 1, 2, 3, 4), Γ T

11 = Γ T
12 = τ1(e1 – e20), Γ T

13 = Γ T
14 = 0, Γ T

21 =
Γ T

22 = 0, Γ T
23 = Γ T

24 = τ1(e1 – e17), Γ T
31 = Γ T

33 = τ2(e1 – e21), Γ T
32 = Γ T

34 = 0, Γ T
41 = Γ T

43 = 0,
Γ T

42 = Γ T
44 = τ2(e1 – e18), Γ T

51 = τ (e1 – e19), Γ T
52 = τ1(e1 – e19), Γ T

53 = τ2(e1 – e19), Γ T
54 = Γ T

61 = 0,
Γ T

62 = τ2(e1 – e16), Γ T
63 = τ1(e1 – e16), Γ T

64 = τ (e1 – e19), ei = [0n×(i–1)n, In×n, 0n×(25–i)n] (i =
1, 2, . . . , 25), then the neural network (2.2) is exponentially dissipative, and

S =
{

x : |x| ≤ |(P – S1)| +
√|(P – S1)|2 + λmin(Q1)λmax(S3)

λmin(Q1)
Γu

}

is a positively invariant and globally exponentially attractive set, where the external input
|u(t)| ≤ Γu, Γu > 0 is a bound of the external input u(t) on R+. In addition, the exponential
dissipativity rate index α can be used in the Φ .

Proof Considering the following Lyapunov–Krasovskii function:

V
(
t, x(t)

)
=

6∑

k=1

Vk(t), (3.2)

where

V1
(
t, x(t)

)
=
[

x(t) – M
∫ t

t–η

x(s) ds
]T

P
[

x(t) – M
∫ t

t–η

x(s) ds
]

,

V2
(
t, x(t)

)
=
∫ t

t–τ

e2α(s–t)xT (s)Q1x(s) ds +
∫ t

t–τ1

e2α(s–t)xT (s)Q2x(s) ds

+
∫ t

t–τ2

e2α(s–t)xT (s)Q3x(s) ds,

V3
(
t, x(t)

)
=
∫ t

t–η(t)
e2α(s–t)xT (s)R1x(s) ds +

∫ t

t–η

e2α(s–t)xT (s)R2x(s) ds

+
∫ t

t–τ (t)
e2α(s–t)x(s)T R3x(s) ds +

∫ t

t–τ1(t)
e2α(s–t)x(s)T R4x(s) ds

+
∫ t

t–τ2(t)
e2α(s–t)x(s)T R5x(s) ds,

V4
(
t, x(t)

)
= τ1

∫ 0

–τ1

∫ t

t+θ

e2α(s–t)ẋT (s)T1ẋ(s) ds dθ

+ τ2

∫ 0

–τ2

∫ t

t+θ

e2α(s–t)ẋT (s)T2ẋ(s) ds dθ

+ τ

∫ 0

–τ

∫ t

t+θ

e2α(s–t)ẋT (s)T3ẋ(s) ds dθ
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+ η

∫ 0

–η

∫ t

t+θ

e2α(s–t)ẋT (s)T4ẋ(s) ds dθ

+ h
∫ 0

–h

∫ t

t+θ

e2α(s–t)ẋT (s)T5ẋ(s) ds dθ ,

V5
(
t, x(t)

)
= (δ2 – δ1)

∫ –δ1

–δ2

∫ t

t+θ

e2α(s–t)f T(x(s)
)
L1f
(
x(s)
)

ds dθ

+ η

∫ 0

–η

∫ t

t+θ

e2α(s–t)xT (s)L2x(s) ds dθ ,

V6
(
t, x(t)

)
=

τ 2
1
2

∫ 0

–τ1

∫ 0

θ

∫ t

t+λ

e2α(s–t)ẋT (s)U1ẋ(s) ds dλdθ

+
τ 2

2
2

∫ 0

–τ2

∫ 0

θ

∫ t

t+λ

e2α(s–t)ẋT (s)U2ẋ(s) ds dλdθ

+
τ 2

2

∫ 0

–τ

∫ 0

θ

∫ t

t+λ

e2α(s–t)ẋT (s)U3ẋ(s) ds dλdθ .

Calculating the derivative of V (t, x(t)) along the trajectory of neural network (2.2), it can
be deduced that

V̇1
(
t, x(t)

)
= 2
[

xT (t) –
∫ t

t–η

xT (s) ds × M
]

P
[

–Cx
(
t – η(t)

)
+ Af

(
x(t)
)

+ Bf
(
x
(
t – τ1(t) – τ2(t)

))
+ D
∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds + Eẋ
(
t – h(t)

)

+ u(t) – Mx(t) + Mx(t – η)
]

, (3.3)

V̇2
(
t, x(t)

)≤ x(t)T [Q1 + Q2 + Q3]x(t) – e–2ατ x(t – τ )T Q1x(t – τ )

– e–2ατ1 x(t – τ1)T Q2x(t – τ1) – e–2ατ2 x(t – τ2)Q3x(t – τ2)

– 2αV2
(
t, x(t)

)
, (3.4)

V̇3
(
t, x(t)

)≤ xT (t)[R1 + R2 + R3 + R4 + R5]x(t) – e–2αηxT (t – η)R2x(t – η)

– (1 – μ3)e–2αηxT(t – η(t)
)
R1x
(
t – η(t)

)

– (1 – μ)e–2ατ xT(t – τ (t)
)
R3x
(
t – τ (t)

)

– (1 – μ1)e–2ατ1(t)xT(t – τ1(t)
)
R4x(t – τ1)

– (1 – μ2)e–2ατ2 xT(t – τ2(t)
)
R5x
(
t – τ2(t)

)
– 2αV3

(
t, x(t)

)
, (3.5)

V̇4
(
t, x(t)

)≤ τ 2
1 ẋT (t)T1ẋ(t) – τ1e–2ατ1

∫ t

t–τ1

ẋT (s)T1ẋ(s) ds

+ τ 2
2 ẋT (t)T2ẋ(t) – τ2e–2ατ2

∫ t

t–τ2

ẋT (s)T2ẋ(s) ds

+ τ 2ẋT (t)T3ẋ(t) – τe–2ατ

∫ t

t–τ

ẋT (s)T3ẋ(s) ds

+ η2ẋT (t)T4ẋ(t) – ηe–2αη

∫ t

t–η

ẋT (s)T4ẋ(s) ds

+ h2ẋT (t)T5ẋ(t) – he–2αh
∫ t

t–h
ẋT (s)T5ẋ(s) ds – 2αV4

(
t, x(t)

)
, (3.6)
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V̇5
(
t, x(t)

)≤ (δ2 – δ1)2f T(x(t)
)
L1f
(
x(t)
)

+ η2xT (t)L2x(t)

– e2αδ2
(
δ2(t) – δ1(t)

)
∫ t–δ1(t)

t–δ2(t)
f T(x(s)

)
L1f
(
x(s)
)

ds

– ηe–2αη

∫ t

t–η

xT (s)L2x(s) ds – 2αV5
(
t, x(t)

)
, (3.7)

V̇6
(
t, x(t)

)≤ τ 4
1
4

ẋ(t)U1ẋ(t) +
τ 4

2
4

ẋ(t)U2ẋ(t) +
τ 4

4
ẋ(t)U3ẋ(t)

–
τ 2

1
2

e–2ατ1

∫ 0

–τ1

∫ t

t+θ

ẋT (s)U1ẋ(s) ds

–
τ 2

2
2

e–2ατ2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)U2ẋ(s) ds

–
τ 2

2
e–2ατ

∫ 0

–τ

∫ t

t+θ

ẋT (s)U3ẋ(s) ds – 2αV6
(
t, x(t)

)
. (3.8)

For any matrix G1 with [ T1 G1
∗ T1

] ≥ 0, by using Lemmas 1 and 4, we can obtain the following:

– τ1e–2ατ1

∫ t

t–τ1

ẋT (s)T1ẋ(s) ds

= –τ1e–2ατ1

[∫ t–τ1(t)

t–τ1

ẋT (s)T1ẋ(s) ds +
∫ t

t–τ1(t)
ẋT (s)T1ẋ(s) ds

]

≤ e–2ατ1

{

–
τ1

τ1 – τ1(t)
[
ϑT

1 (t)T1ϑ1 + 3ϑT
2 (t)T1ϑ2(t)

]

–
τ1

τ1(t)
[
ϑT

3 (t)T1ϑ3(t) + 3ϑT
4 (t)T1ϑ4(t)

]
}

≤ e–2ατ1
[
–ϑT

1 (t)T1ϑ1(t) – 3ϑT
2 (t)T1ϑ2(t) – ϑT

3 (t)T1ϑ3(t)

– 3ϑT
4 (t)T1ϑ4(t) – 2ϑT

1 (t)G1ϑ3(t) – 6ϑT
2 (t)G1ϑ4(t)

]
, (3.9)

where

ϑ1(t) = x
(
t – τ1(t)

)
– x(t – τ1);

ϑ2(t) = x
(
t – τ1(t)

)
+ x(t – τ1) –

2
τ1 – τ1(t)

∫ t–τ1(t)

t–τ1

x(s) ds;

ϑ3(t) = x(t) – x
(
t – τ1(t)

)
; ϑ4(t) = x(t) + x

(
t – τ1(t)

)
–

2
τ1(t)

∫ t

t–τ1(t)
x(s) ds.

Similarly, it holds that

–τ2e–2ατ2

∫ t

t–τ2

ẋT (s)T2ẋ(s) ds

≤ e–2ατ2
[
–ϑT

5 (t)T2ϑ5(t) – 3ϑT
6 (t)T2ϑ6(t) – ϑT

7 (t)T2ϑ7(t) – 3ϑT
8 (t)T2ϑ8(t)

– 2ϑT
5 (t)G2ϑ7(t) – 6ϑT

6 (t)G2ϑ8(t)
]
, (3.10)
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–τe–2ατ

∫ t

t–τ

ẋT (s)T3ẋ(s) ds

≤ e–2ατ
[
–ϑT

9 (t)T3ϑ9(t) – 3ϑT
10(t)T3ϑ10(t) – ϑT

11(t)T3ϑ11(t) – 3ϑT
12(t)T3ϑ12(t)

– 2ϑT
9 (t)G3ϑ11(t) – 6ϑT

10(t)G3ϑ12(t)
]
, (3.11)

–ηe–2αη

∫ t

t–η

ẋT (s)T4ẋ(s) ds

≤ e–2αη
[
–ϑT

13(t)T4ϑ13(t) – 3ϑT
14(t)T4ϑ14(t) – ϑT

15(t)T4ϑ15(t) – 3ϑT
16(t)T4ϑ16(t)

– 2ϑT
13(t)G4ϑ15(t) – 6ϑT

14(t)G4ϑ16(t)
]
, (3.12)

where

ϑ5(t) = x
(
t – τ2(t)

)
– x(t – τ2);

ϑ6(t) = x
(
t – τ2(t)

)
+ x(t – τ2) –

2
τ2 – τ2(t)

∫ t–τ2(t)

t–τ2

x(s) ds;

ϑ7(t) = x(t) – x
(
t – τ2(t)

)
; ϑ8(t) = x(t) + x

(
t – τ2(t)

)
–

2
τ2(t)

∫ t

t–τ2(t)
x(s) ds;

ϑ9(t) = x
(
t – τ (t)

)
– x(t – τ );

ϑ10(t) = x
(
t – τ (t)

)
+ x(t – τ ) –

2
τ – τ (t)

∫ t–τ (t)

t–τ

x(s) ds; ϑ11(t) = x(t) – x
(
t – τ (t)

)
;

ϑ12(t) = x(t) + x
(
t – τ (t)

)
–

2
τ (t)

∫ t

t–τ (t)
x(s) ds; ϑ13(t) = x

(
t – η(t)

)
– x(t – η);

ϑ14(t) = x
(
t – η(t)

)
+ x(t – η) –

2
η – η(t)

∫ t–η(t)

t–η

x(s) ds; ϑ15(t) = x(t) – x
(
t – η(t)

)
;

ϑ16(t) = x(t) + x
(
t – η(t)

)
–

2
η(t)

∫ t

t–η(t)
x(s) ds.

Applying Lemma 1 and Newton–Leibniz formula, we have

– he–2αh
∫ t

t–h
ẋT (s)T5ẋ(s) ds

≤ –e–2αh
[∫ t

t–h
ẋ(s) ds

]T

T5

[∫ t

t–h
ẋ(s) ds

]

≤ [x(t) – x(t – h)
]T[–e–2αhT5

][
x(t) – x(t – h)

]
. (3.13)

Similarly, it holds that

–e2αδ2
(
δ2(t) – δ1(t)

)
∫ t–δ1(t)

t–δ2(t)
f T(x(s)

)
L1f
(
x(s)
)

ds

≤ –e2αδ2

[∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds
]T

L1

[∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds
]

, (3.14)
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–e2αηη

∫ t

t–η

(x(s)T L2x(s) ds

≤ –e2αη

[∫ t

t–η

x(s) ds
]T

L2

[∫ t

t–η

x(s) ds
]

. (3.15)

The second term of Eq. (3.8) can be written as

–
τ 2

1
2

e–2ατ1

∫ 0

–τ1

∫ t

t+θ

ẋT (s)U1ẋ(s) ds dθ

= –
τ 2

1
2

e–2ατ1

∫ –τ1(t)

–τ1

∫ t

t+θ

ẋT (s)U1ẋ(s) ds dθ

–
τ 2

1
2

e–2ατ1

∫ 0

–τ1(t)

∫ t

t+θ

ẋT (s)U1ẋ(s) ds dθ . (3.16)

By Lemma 3, we obtain

–
τ 2

1
2

e–2ατ1

∫ 0

–τ1

∫ t

t+θ

ẋT (s)U1ẋ(s) ds dθ

≤ –
τ 2

1
τ 2

1 – τ 2
1 (t)

e–2ατ1

[∫ –τ1(t)

–τ1

∫ t

t+θ

ẋ(s) ds dθ

]T

U1

[∫ –τ1(t)

–τ1

∫ t

t+θ

ẋ(s) ds dθ

]

–
τ 2

1
τ 2

1 (t)
e–2ατ1

[∫ 0

–τ1(t)

∫ t

t+θ

ẋ(s) ds dθ

]T

U1

[∫ 0

–τ1(t)

∫ t

t+θ

ẋ(s) ds dθ

]

. (3.17)

Applying Lemma 4, for any matrix V1 with [ U1 V1
∗ U1

] ≥ 0, the above inequality becomes:

–
τ 2

1
2

e–2ατ1

∫ 0

–τ1

∫ t

t+θ

ẋT (s)U1ẋ(s) ds dθ

≤ e–2ατ1

{

–
[∫ –τ1(t)

–τ1

∫ t

t+θ

ẋ(s) ds dθ

]T

U1

[∫ –τ1(t)

–τ1

∫ t

t+θ

ẋ(s) ds dθ

]}

+ e–2ατ1

{

–
[∫ 0

–τ1(t)

∫ t

t+θ

ẋ(s) ds dθ

]T

2V1

[∫ –τ1(t)

–τ1

∫ t

t+θ

ẋ(s) ds dθ

]}

+ e–2ατ1

{

–
[∫ 0

–τ1(t)

∫ t

t+θ

ẋ(s) ds dθ

]T

U1

[∫ 0

–τ1(t)

∫ t

t+θ

ẋ(s) ds dθ

]}

≤ e–2ατ
(
–ςT

1 U1ς1 – 2ςT
1 V1ς2 – ςT

2 U1ς2
)

= ξT (t)e–2ατ
[
–Γ T

1 (t)U1Γ1(t) – 2Γ T
2 (t)V1Γ1(t) – Γ T

2 (t)U1Γ2(t)
]
ξ (t), (3.18)

where

ς1 =
(
τ1 – τ1(t)

)
x(t) –

∫ t–τ1(t)

t–τ1

x(s) ds; ς2 = τ1(t) –
∫ t

t–τ1(t)
x(s) ds;

Γ1(t) =
(
τ1 – τ1(t)

)
(e1 – e20); Γ2(t) = τ1(t)(e1 – e17).
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Similarly, by Lemmas 3 and 4, we have

–
τ 2

2
2

e–2ατ2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)U2ẋ(s) ds dθ

≤ e–2ατ
(
–ςT

3 U2ς3 – 2ςT
3 V2ς4 – ςT

4 U2ς4
)

= ξT (t)e–2ατ
[
–Γ T

3 (t)U2Γ3(t) – 2Γ T
4 (t)V2Γ3(t) – Γ T

4 (t)U4Γ2(t)
]
ξ (t), (3.19)

–
τ 2

2
e–2ατ

∫ 0

–τ

∫ t

t+θ

ẋT (s)U3ẋ(s) ds dθ

≤ e–2ατ
(
–ςT

5 U3ς5 – 2ςT
5 V3ς6 – ςT

6 U3ς6
)

= ξT (t)e–2ατ
[
–Γ T

5 (t)U3Γ5(t) – 2Γ T
6 (t)V3Γ5(t) – Γ T

6 (t)U3Γ6(t)
]
ξ (t), (3.20)

where

ς3 =
(
τ2 – τ2(t)

)
x(t) –

∫ t–τ2(t)

t–τ2

x(s) ds; ς4 = τ2(t) –
∫ t

t–τ2(t)
x(s) ds;

Γ3(t) =
(
τ2 – τ2(t)

)
(e1 – e21); Γ4(t) = τ2(t)(e1 – e18);

ς4 =
(
τ – τ (t)

)
x(t) –

∫ t–τ (t)

t–τ

x(s) ds; ς5 = τ (t) –
∫ t

t–τ (t)
x(s) ds;

Γ4(t) =
(
τ – τ (t)

)
(e1 – e19); Γ5(t) = τ (t)(e1 – e16).

By using Assumption 2, we can obtain the following:

[
fi
(
x(t)
)

– l–
i x(t)

][
fi
(
x(t)
)

– l+
i x(t)

]≤ 0 (i = 1, 2, . . . , n),

which can be compactly written as

[
x(t)

f (x(t))

]T [
K1 –K2

∗ I

][
x(t)

f (x(t))

]

≤ 0,

[
x(t – τ1(t) – τ2(t))

f (x(t – τ1(t) – τ2(t)))

]T [
K1 –K2

∗ I

][
x(t – τ1(t) – τ2(t))

f (x(t – τ1(t) – τ2(t)))

]

≤ 0.

Then for any positive matrices β1 = diag(β1s,β2s, . . . ,βns) and β2 = diag(β̃1s, β̃2s, . . . , β̃ns), the
following inequalities hold true:

[
x(t)

f (x(t))

]T [
K1β1 –K2β1

∗ β1

][
x(t)

f (x(t))

]

≤ 0, (3.21)

[
x(t – τ1(t) – τ2(t))

f (x(t – τ1(t) – τ2(t)))

]T [
K1β2 –K2β2

∗ β2

][
x(t – τ1(t) – τ2(t))

f (x(t – τ1(t) – τ2(t)))

]

≤ 0. (3.22)
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Note that

ẋ(t) + Cx
(
t – η(t)

)
– Af

(
x(t)
)

– Bf
(
x
(
t – τ1(t) – τ2(t)

))

– D
∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds – Eẋ
(
t – h(t)

)
– u(t) = 0.

For any appropriately dimensioned matrix S1, the following is satisfied:

2xT (t)S1ẋ(t) + 2xT (t)S1Cx
(
t – η(t)

)
– 2xT (t)S1Af

(
x(t)
)

– 2xT (t)S1Bf
(
x
(
t – τ1(t) – τ2(t)

))
– 2xT (t)S1D

∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds

– 2xT (t)S1Eẋ
(
t – h(t)

)
– 2xT (t)S1u(t) = 0. (3.23)

Similarly, we have

2ẋT (t)S2ẋ(t) + 2ẋT (t)S2Cx
(
t – η(t)

)
– 2ẋT (t)S2Af

(
x(t)
)

– 2ẋT (t)S2Bf
(
x
(
t – τ1(t) – τ2(t)

))
– 2ẋT (t)S2D

∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds

– 2ẋT (t)S2Eẋ
(
t – h(t)

)
– 2ẋT (t)S2u(t) = 0, (3.24)

2ẋT(t – h(t)
)
S3ẋ(t) + 2ẋT(t – h(t)

)
S3Cx

(
t – η(t)

)
– 2ẋT(t – h(t)

)
S3Af (x(t)

– 2ẋT(t – h(t)
)
S3Bf

(
x
(
t – τ1(t) – τ2(t)

))
– 2ẋT(t – h(t)

)
S3Eẋ

(
t – h(t)

)

– 2ẋT(t – h(t)
)
S3D

∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds – 2ẋT(t – h(t)
)
S3u(t) = 0. (3.25)

In addition, it follows from Lemma 2 that for every H ≥ 0, N ≥ 0,

2ẋT (t)S2u(t) ≤ ẋT (t)Hẋ(t) + uT (t)S2H–1S2u(t), (3.26)

2ẋT(t – h(t)
)
S3u(t) ≤ ẋT(t – h(t)

)
Nẋ
(
t – h(t)

)
+ uT (t)S3N–1S3u(t). (3.27)

From Eqs. (3.2)–(3.27), if we let H = S2, N = S3, we can derive that

V̇
(
t, x(t)

)
+ 2αV

(
t, x(t)

)

≤ –xT (t)Q1x(t) + xT (t)[2P – 2S1]u(t) + uT (t)S3u(t) + ξT (t)Φξ (t), (3.28)

where

ξ (t) =
[

x(t), x(t – τ ), x(t – τ1), x(t – τ2), x(t – η), x(t – h), x
(
t – τ (t)

)
,

x
(
t – τ1(t)

)
, x
(
t – τ2(t)

)
, x
(
t – η(t)

)
, f
(
x(t)
)
, f
(
x
(
t – τ (t)

))
,

∫ t

t–η

x(s) ds,
1

η – η(t)

∫ t–η(t)

t–η

x(s) ds,
1

η(t)

∫ t

t–η(t)
x(s) ds,

1
τ (t)

∫ t

t–τ (t)
x(s) ds,

1
τ1(t)

∫ t

t–τ1(t)
x(s) ds,

1
τ2(t)

∫ t

t–τ2(t)
x(s) ds,
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1
τ – τ (t)

∫ t–τ (t)

t–τ

x(s) ds,
1

τ1 – τ1(t)

∫ t–τ1(t)

t–τ1

x(s) ds,

1
τ2 – τ2(t)

∫ t–τ2(t)

t–τ2

x(s) ds,
∫ t–δ1(t)

t–δ2(t)
f
(
x(s)
)

ds, ẋ(t), ẋ
(
t – h(t)

)
, u(t)

]T

,

Φ = Ψ – e–2ατ
[
–Γ T

1 (t)U1Γ1(t) – 2Γ T
2 (t)V1Γ1(t) – Γ T

2 (t)U1Γ2(t)

– Γ T
3 (t)U2Γ3(t) – 2Γ T

4 (t)V2Γ3(t) – Γ T
4 (t)U2Γ4(t)

– Γ T
5 (t)U3Γ5(t) – 2Γ T

6 (t)V3Γ5(t) – Γ T
6 (t)U3Γ6(t)

]
.

Letting τ1(t) = 0, τ1(t) = τ1 and τ2(t) = 0, τ2(t) = τ2, we can get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ1 = Φ(0, 0),

Φ2 = Φ(0, τ2),

Φ3 = Φ(τ1, 0),

Φ4 = Φ(τ1, τ2).

From Eq. (3.2) it is easy to deduce that

λ1
∣
∣x(t)

∣
∣2 ≤ V

(
t, x(t)

)≤ λ2
∥
∥x(t)

∥
∥2, (3.29)

where

∥
∥x(t)

∥
∥

τ∗ = sup
θ∈[–τ∗ ,0]

{∣∣x(t + θ )
∣
∣,
∣
∣ẋ(t + θ )

∣
∣}

and

λ1 = λmin(P),

λ2 = λmax(P) + τλmax(Q1) + τ1λmax(Q2) + τ2λmax(Q3)

+ ηλmax(R1) + ηλmax(R2) + τλmax(R3) + τ1λmax(R4)

+ τ2λmax(R5) + τ 2
1 λmax(T1) + τ 2

2 λmax(T2) + τ 2λmax(T3)

+ η2λmax(T4) + h2λmax(T5) +
τ 3

1
2

λmax(U1) +
τ 3

2
2

λmax(U2)

+
τ 3

2
λmax(U3) + η2λmax(L2) + max

j∈{1,2,...,n}
Fj(δ2 – δ1)2λmax(L1).

Then according to the LMI (3.1) and Eq. (3.29), we have

V̇
(
t, x(t)

)
+ 2αV

(
t, x(t)

)

≤ –xT (t)Q1x(t) + xT (t)[2P – 2S1]u(t) + uT (t)S3u(t)

≤ –λmin(Q1)
∣
∣x(t)

∣
∣2 + 2

∣
∣x(t)

∣
∣ · ∣∣(P – S1)

∣
∣ · ∣∣u(t)

∣
∣ + λmax(S3)

∣
∣u(t)

∣
∣2

≤ –λmin(Q1)
∣
∣x(t)

∣
∣2 + 2

∣
∣x(t)

∣
∣ · ∣∣(P – S1)

∣
∣ · Γu + λmax(S3)Γ 2

u

≤ –λmin(Q1)
(∣∣x(t)

∣
∣ – φ1

)(∣∣x(t)
∣
∣ – φ2

)
,
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where

φ1 =
|(P – S1)| +

√|(P – S1)|2 + λmin(Q1)λmax(S3)
λmin(Q1)

Γu,

φ2 =
|(P – S1)| –

√|(P – S1)|2 + λmin(Q1)λmax(S3)
λmin(Q1)

Γu.

Note that φ2 ≤ 0 and φ2 = 0 if and only if external input u = 0. Hence, one may deduce that
when |x(t)| > φ1, i.e., x /∈ S, it holds that

V̇
(
t, x(t)

)
+ 2αV

(
t, x(t)

)≤ 0, t ∈ R+, V
(
t, x(t)

)≤ V (0,φ)e–2αt , t ∈ R+,

λ1
∣
∣x(t, 0,φ)

∣
∣2 ≤ V

(
t, x(t)

)≤ V (0,φ)e–2αt ≤ λ2e–2αt‖φ‖2
τ∗.

Hence when x /∈ S, we finally obtain that

∣
∣x(t, 0,φ)

∣
∣≤
√

λ2

λ1
‖φ‖τ∗e–αt , t ∈ R+.

Note that S is a sphere, when x /∈ S, M =
√

λ2
λ1

‖φ‖τ∗,

inf
x̃∈S

{∣
∣x(t, 0,φ) – x̃

∣
∣
}≤ ∣∣x(t, 0,φ) – 0

∣
∣≤ Me–αt , t ∈ R+.

According to Definition 2, we can get that system (2.2) is globally exponentially dissipative
with positively invariant and globally exponentially attractive set S. This completes the
proof. �

Remark 4 In the proof of Theorem 3.1, an LMI-based condition imposed on global ex-
ponential dissipativity of system (2.2) was given. It is worth mentioning that in order to
derive the globally exponentially attractive set S and guarantee the practicability of dis-
sipativity criteria, we chose two special but suitable H = S2 and N = S3 in (3.28). From
Theorem 3.1, we can find that the globally exponentially attractive set S can be directly
obtained by using the LMIs.

Remark 5 In Theorem 3.1, we firstly transform system (2.1) to system (2.2) by using a con-
vex combination technique and Filippov’s theorem. In addition, we introduce the double
and triple integrals in the LKF by considering leakage, discrete and two additive time-
varying delays. The problem has not been solved in [29, 30, 40]. Constructing this form of
double and triple integral terms in the LKF is a recent tool to get less conservative results.

If in Theorem 3.2 we take the exponential dissipativity rate index α = 0 and replace the
exponential-type Lyapunov–Krasovskii functional in Theorem 3.1, then we can obtain the
following theorem.

Theorem 3.2 Under the same conditions as in Theorem 3.1, system (2.2) is global dissipa-
tive, and S given in Theorem 3.1 is the positively invariant and globally attractive set if the
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following LMI holds:

Φk = Θ – Υ T
k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U1 V1 0 0 0 0
∗ U1 0 0 0 0
∗ ∗ U2 V2 0 0
∗ ∗ ∗ U2 0 0
∗ ∗ ∗ ∗ U3 V3

∗ ∗ ∗ ∗ ∗ U3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Υk < 0 (k = 1, 2, 3, 4), (3.30)

whereΘ = [Θ]l×n (l, n = 1, 2, . . . , 25), Θ1,1 = –PM – MT P + 2Q1 + Q2 + Q3 + R1 + R2 + R3 +
R4 + R5 – 4T1 – 4T2 – 4T3 – 4T4 – 4T5 +η2L2 – K1β1, Θ1,2 = –2G3, Θ1,3 = –2G1, Θ1,4 = –2G2,
Θ1,5 = PM – 2G4, Θ1,6 = T5, Θ1,7 = –2(T3 + 2G3), Θ1,8 = –2(T1 + 2G1), Θ1,9 = –2(T2 + 2G2),
Θ1,10 = –PC +S1C –2(T4 +2G4), Θ1,11 = PA – S1A + K2β1, Θ1,12 = PB–S1B, Θ1,13 = MT PM,
Θ1,14 = –6G4, Θ1,15 = –6T4, Θ1,16 = –6T3, Θ1,17 = –6T1, Θ1,18 = –6T2, Θ1,19 = 6G3, Θ1,20 =
6G1, Θ1,21 = 6G2, Θ1,22 = PD – S1D, Θ1,23 = –S1, Θ1,24 = PE – S1E, Θ2,2 = –Q1 – 4T3,
Θ2,7 = –2(T3 + 2G3), Θ2,18 = 6G3, Θ2,21 = 6T3, Θ3,3 = –Q2 – 4T1, Θ3,8 = –2(T1 + 2G1),
Θ3,19 = 6G1, Θ3,22 = 6T1, Θ4,4 = –Q3 – 4T2, Θ4,9 = –2(T2 + 2G2), Θ4,20 = 6G2, Θ4,23 =
6T2, Θ5,5 = –R2 – 4T4, Θ5,10 = –2(T4 + 2G4), Θ5,13 = –MT PM, Θ5,14 = 6T4, Θ5,15 = 6G4,
Θ6,6 = –T5, Θ7,7 = –(1 – μ)R3 – 4(2T3 + G3) – K1β2, Θ7,12 = –K2β2, Θ7,16 = 6(T3 + G3),
Θ7,19 = 6(T3 + G3), Θ8,8 = –(1 – μ1)R4 – 4(2T1 + G1), Θ8,17 = 6(T1 + G1), Θ8,20 = 6(T1 + G1),
Θ9,9 = –(1 – μ2)R5 – 4(2T2 + G2), Θ9,18 = 6(T2 + G2), Θ9,21 = 6(T2 + G2), Θ10,10 = –(1 –
μ3)R1 –4(2T4 +G4), Θ10,13 = MT PC, Θ10,14 = 6(T4 +G4), Θ10,15 = 6(T4 +G4), Θ10,23 = –S2C,
Θ10,24 = –S3C, Θ11,11 = (δ2 – δ1)2L1 – β1, Θ11,13 = –MT PA, Θ11,23 = S2A, Θ11,24 = –S3A,
Θ12,12 = –β2, Θ12,13 = –MT PB, Θ12,23 = S2B, Θ12,24 = –S3B, Θ13,13 = –2L2, Θ13,21 = –MT PD,
Θ13,24 = –MT PE, Θ13,25 = –2MP, Θ14,14 = –12T4, Θ14,15 = –12G4, Θ15,15 = –12T4, Θ16,16 =
–12T3, Θ16,19 = –12G3, Θ17,17 = –12T1, Θ17,20 = –12G1, Θ18,18 = –12T2, Θ18,21 = –12G2,
Θ19,19 = –12T3, Θ20,20 = –12T1, Θ21,21 = –12T2, Θ22,22 = –L1, Θ22,23 = S2D, Θ22,24 = –S3D,
Θ23,23 = τ4

1
4 U1 + τ4

2
4 U2 + τ4

4 U3 – S2 + τ 2
1 T1 + τ 2

2 T2 + τ 2T3 + η2T4 + h2T5, Θ23,24 = S2E, Θ24,24 =
S3E + ET S3 + S3, Θ25,25 = S2, Υ T

k = [Γ1k ,Γ2k ,Γ3k ,Γ4k ,Γ5k ,Γ6k]T (k = 1, 2, 3, 4), Γ T
11 = Γ T

12 =
τ1(e1 – e20), Γ T

13 = Γ T
14 = 0, Γ T

21 = Γ T
22 = 0, Γ T

23 = Γ T
24 = τ1(e1 – e17), Γ T

31 = Γ T
33 = τ2(e1 – e21),

Γ T
32 = Γ T

34 = 0, Γ T
41 = Γ T

43 = 0, Γ T
42 = Γ T

44 = τ2(e1 – e18), Γ T
51 = τ (e1 – e19), Γ T

52 = τ1(e1 – e19),
Γ T

53 = τ2(e1 – e19), Γ T
54 = Γ T

61 = 0, Γ T
62 = τ2(e1 – e16), Γ T

63 = τ1(e1 – e16), Γ T
64 = τ (e1 – e19),

ei = [0n×(i–1)n, In×n, 0n×(25–i)n] (i = 1, 2, . . . , 25).

Proof Replace the exponential-type Lyapunov–Krasovskii functional in Theorem 3.1 by

V
(
t, x(t)

)
=

6∑

k=1

Vk(t), (3.31)

where

V1
(
t, x(t)

)
=
[

x(t) – M
∫ t

t–η

x(t) ds
]T

P
[

x(t) – M
∫ t

t–η

x(t) ds
]

,

V2
(
t, x(t)

)
=
∫ t

t–τ

xT (s)Q1x(s) ds +
∫ t

t–τ1

xT (s)Q2x(s) ds

+
∫ t

t–τ2

xT (s)Q3x(s) ds,
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V3
(
t, x(t)

)
=
∫ t

t–η(t)
xT (s)R1x(s) ds +

∫ t

t–η

xT (s)R2x(s) ds

+
∫ t

t–τ (t)
x(s)T R3x(s) ds +

∫ t

t–τ1(t)
x(s)T R4x(s) ds

+
∫ t

t–τ2(t)
x(s)T R5x(s) ds,

V4
(
t, x(t)

)
= τ1

∫ 0

–τ1

∫ t

t+θ

ẋT (s)T1ẋ(s) ds dθ

+ τ2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)T2ẋ(s) ds dθ

+ τ

∫ 0

–τ

∫ t

t+θ

ẋT (s)T3ẋ(s) ds dθ + η

∫ 0

–η

∫ t

t+θ

ẋT (s)T4ẋ(s) ds dθ

+ h
∫ 0

–h

∫ t

t+θ

ẋT (s)T5ẋ(s) ds dθ ,

V5
(
t, x(t)

)
= (δ2 – δ1)

∫ –δ1

–δ2

∫ t

t+θ

f T(x(s)
)
L1f
(
x(s)
)

ds dθ + η

∫ 0

–η

∫ t

t+θ

xT (s)L2x(s) ds dθ ,

V6
(
t, x(t)

)
=

τ 2
1
2

∫ 0

–τ1

∫ 0

θ

∫ t

t+λ

ẋT (s)U1ẋ(s) ds dλdθ

+
τ 2

2
2

∫ 0

–τ2

∫ 0

θ

∫ t

t+λ

ẋT (s)U2ẋ(s) ds dλdθ

+
τ 2

2

∫ 0

–τ

∫ 0

θ

∫ t

t+λ

ẋT (s)U3ẋ(s) ds dλdθ .

The rest of the proof of Theorem 3.2 is similar to that of Theorem 3.1, so the details are
omitted. �

Remark 6 In particular, when E = 0 and D = 0, system (2.2) is written as system (4) in [19],
we can see that the system is dissipative from [19]. Furthermore, we discuss the global
exponential dissipativity of system (2.2): our model can be regarded as an extension of
system (4) from [19].

Remark 7 If τ1(t) + τ2(t) = τ (t), 0 ≤ τ (t) ≤ τ , |τ̇ (t) ≤ μ|, E = 0 and η(t) = 0, i.e., system
(2.2) is without two additive time-varying as well as leakage delays and neural term, then
system (2.2) is reduced to the following neural network:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ(t) = –Cx(t) + Af (x(t)) + Bf (x(t – τ (t)))

+ D
∫ t–δ1(t)

t–δ2(t) f (x(s)) ds + μ(t),

y(t) = f (x(t)),

x(t) = φ(t), t ∈ (–τ ∗, 0).

So the system is no longer a neutral-type memristive neural network. We find that the
dissipativity of other types of neural network model has been discussed in [30, 41, 42].
When some terms are removed, the dissipativity result of Theorem 3.1 can be obtained
by utilizing LMI. So our system is more general.
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4 Example and simulation
In this section, we give a numerical example to illustrate the effectiveness of our results.

Example 1 Consider the two-dimensional MNNs (2.1) with the following parameters:

a11
(
x1(t)

)
=

⎧
⎨

⎩

1.2, |x1(t)| ≤ 1,

–1, |x1(t)| > 1,
a12
(
x1(t)

)
=

⎧
⎨

⎩

0.3, |x1(t)| ≤ 1,

0.5, |x1(t)| > 1,

a21
(
x2(t)

)
=

⎧
⎨

⎩

0.7, |x2(t)| ≤ 1,

–1, |x2(t)| > 1,
a22
(
x2(t)

)
=

⎧
⎨

⎩

2.5, |x2(t)| ≤ 1,

–0.3, |x2(t)| > 1,

b11
(
x1(t)

)
=

⎧
⎨

⎩

0.8, |x1(t)| ≤ 1,

0.2, |x1(t)| > 1,
b12
(
x1(t)

)
=

⎧
⎨

⎩

0.05, |x1(t)| ≤ 1,

–0.05, |x1(t)| > 1,

b21
(
x2(t)

)
=

⎧
⎨

⎩

0.3, |x2(t)| ≤ 1,

1, |x2(t)| > 1,
b22
(
x2(t)

)
=

⎧
⎨

⎩

0.9, |x2(t)| ≤ 1,

–0.3, |x2(t)| > 1,

d11
(
x1(t)

)
=

⎧
⎨

⎩

–0.9, |x1(t)| ≤ 1,

2, |x1(t)| > 1,
d12
(
x1(t)

)
=

⎧
⎨

⎩

–0.5, |x1(t)| ≤ 1,

–0.3, |x1(t)| > 1,

d21
(
x2(t)

)
=

⎧
⎨

⎩

2, |x2(t)| ≤ 1,

0.3, |x2(t)| > 1,
d22
(
x2(t)

)
=

⎧
⎨

⎩

1.5, |x2(t)| ≤ 1,

1, |x2(t)| > 1.

The activation function are f1(s) = tanh(0.3s) – 0.2 sin(s), f2(s) = tanh(0.2s) + 0.3 sin(s).
Let α = 0.01, c1 = c2 = 2, e1 = e2 = 0.2, m1 = 2, m2 = 3.56, h(t) = 0.1 sin(2t) + 0.5, η(t) =
0.1 sin(2t) + 0.2, τ1(t) = 0.1 sin(t) + 0.2, τ2(t) = 0.1 cos(t) + 0.5, δ1(t) = 0.4 sin(t) + 0.4, δ2(t) =
0.4 sin(t) + 0.6, u = [0.5 sin(t); 0.25 cos(t)]T . So η = 0.4, h̄ = 0.6, τ1 = 0.3, τ2 = 0.6, τ = 0.9,
δ1 = 0, δ2 = 1, μ1 = 0.1, μ2 = 0.1, μ = 0.2. Then K–

1 = –0.2, K+
1 = 0.5, K–

2 = –0.3 and K+
2 = 0.5,

i.e.,

K1 =

[
–0.1 0

0 –0.15

]

, K2 =

[
0.15 0

0 0.1

]

.

With the above parameters, using LMI toolbox in MATLAB, we obtain the following fea-
sible solution to LMIs in Theorem 3.1:

P = 1.0 × 10–11

[
0.0764 –0.0110

–0.0110 0.1583

]

, Q1 = 1.0 × 10–11

[
–0.6182 –0.0001
–0.0001 –0.6132

]

,

Q2 = 1.0 × 10–11

[
0.1918 0.0006
0.0006 0.2014

]

, Q3 = 1.0 × 10–11

[
0.2056 –0.0002

–0.0002 0.2169

]

,

U1 = 1.0 × 10–10

[
0.2502 0.0004
0.0004 0.2525

]

, U2 = 1.0 × 10–10

[
0.1844 0.0010
0.0010 0.1857

]

,

U3 = 1.0 × 10–12

[
0.3907 0.0451
0.0451 0.4122

]

, R1 = 1.0 × 10–11

[
0.3373 0.0191
0.0191 0.4588

]

,
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R2 = 1.0 × 10–11

[
0.3207 –0.0053

–0.0053 0.3337

]

, R3 = 1.0 × 10–10

[
0.1887 –0.0002

–0.0002 0.1863

]

,

R4 = 1.0 × 10–11

[
0.2471 0.0008
0.0008 0.2573

]

, R5 = 1.0 × 10–11

[
0.3801 0.0002
0.0002 0.3920

]

,

T1 = 1.0 × 10–10

[
0.6706 0.0008
0.0008 0.6752

]

, T2 = 1.0 × 10–11

[
0.3678 0.0005
0.0005 0.3711

]

,

T3 = 1.0 × 10–11

[
0.1644 0.0005
0.0005 0.1672

]

, T4 = 1.0 × 10–11

[
0.5042 –0.0251

–0.0251 0.4591

]

,

T5 = 1.0 × 10–12

[
–0.4935 0.1301
0.1301 –0.5262

]

, G1 = 1.0 × 10–10

[
0.2745 0.0004
0.0004 0.2766

]

,

G2 = 1.0 × 10–12

[
0.1888 0.0007
0.0007 0.1930

]

, G3 = 1.0 × 10–12

[
–0.3413 0.0003
0.0003 –0.3296

]

,

G4 = 1.0 × 10–12

[
–0.5025 –0.0079
–0.0079 –0.5993

]

, L1 = 1.0 × 10–12

[
–0.9111 –0.3262
–0.3262 –0.8944

]

,

L2 = 1.0 × 10–9

[
0.1237 –0.0008

–0.0008 0.1207

]

, S2 = 1.0 × 10–12

[
–0.4977 0.1688
0.1688 –0.2524

]

,

S3 = 1.0 × 10–13

[
0.0904 –0.4569

–0.4569 –0.7191

]

, β1 = 1.0 × 10–9

[
0.1429 0

0 0.1061

]

,

β2 = 1.0 × 10–9

[
0.2035 0

0 0.1523

]

, S1 = 1.0 × 10–11

[
0.2004 –0.0384

–0.0303 0.1845

]

,

V1 =

[
74.2116 0

0 74.2116

]

, V2 =

[
74.2116 0

0 74.2116

]

,

V3 =

[
74.2116 0

0 74.2116

]

.

Then system (2.1) is a globally exponentially dissipative system, and the set S = {x : |x| ≤
8.333}. Figure 1 shows trajectories of neuron states x1(t) and x2(t) of neutral-type MNNs
(2.1). Figure 2 shows three-dimensional space trajectories of neuron states x1(t) and x2(t)
of neutral-type MNNs (2.1). It can be seen that neuron states x1(t) and x2(t) are becoming
periodic when the outputs of neutral-type MNNs (2.1) controllers are designed as periodic
signals. According to Theorem 3.1 and Definition 2, system (2.1) is globally dissipative.
Under the same conditions, if we take the external input u(t) = 0, then by Theorem 3.2,
we know that the invariant set is S = {0} and system (2.1) is globally stable as shown in
Fig. 3.

5 Conclusions
This paper has investigated the dissipativity of neutral-type memristive neural network
with two additive time-varying delays, as well as distribution time and time-varying leak-
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Figure 1 State trajectories of x1(t), x2(t)

Figure 2 State trajectories of x1, x2 in three-dimensional space

age delays. By applying novel linear matrix inequalities, Lyapunov–Krasovskii functional
and Newton–Leibniz formula, the dissipativity of the system was obtained. Even though
the dissipative of MNNs has been reported before, there are few references about the dis-
sipativity of neutral-type MNNs. We have considered adding neutral terms to the model,
which made the model more realistic. Finally, we have given a numerical example to illus-
trate the effectiveness and exactness of our results. When Markovian jumping is added to
this model, how to study the dissipativity of neutral-type MNNs with mixed delays in such
a model becomes an interesting question. We will extend our work towards this direction
in the future.
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Figure 3 State trajectories of x1, x2 in three-dimensional space when u(t) = 0
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