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Abstract
In this paper, for a class of linear networked iterative learning control (ILC) systems,
methods to compensate dropped input data in time or iteration domain are
compared. Specifically, the transition matrices of input error at the controller side with
the two methods are derived first, respectively. After that, the varieties of eigenvalues
and elements in the lower triangular of the transition matrices are analyzed. Through
analyzing the varieties, it can be easily found that the two methods guarantee the
convergence of input error at the controller side, while only the compensation in
iteration domain guarantees the convergence of input error at the actuator side. Due
to the introduction of networks, the convergence of output error is determined by
the input error at the actuator side. Hence, a conclusion could be made naturally that
the output error converges to zero with compensation in iteration domain, while
compensation in time domain cannot guarantee that. Finally, numerical experiments
are given to corroborate the theoretical analysis.
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1 Introduction
Iterative learning control (ILC) is an effective method when it is used to deal with the
system that operates repetitively in a finite time interval [1–4]. The key feature of this
method is to use the output error obtained from the last and/or current iteration to enable
the output to converge to a desired trajectory. Convergence has been studied in ILC from
a number of different perspectives such as stochastic noise [5–7], initial input error [8, 9],
model uncertainty [10, 11], disturbance rejection [12], and parameter optimization [13].

In recent times, the system controlled over networks has attracted more and more devo-
tion of researchers [14, 15]. Contrary to classical control systems, networked control sys-
tems (NCSs) are closed via wired or wireless networks which transmit output data from
sensors to controllers and input data from controllers to actuators. Due to the introduction
of various networks, NCSs have advantages such as easy setup and maintenance, reduced
weight and wiring. These distinct features of NCSs make them particularly suitable for
several emerging applications including remote robot etc.

However, since the output and input data of NCSs need to be transmitted via networks,
the analysis and design of such systems render some new challenges due to complex inter-
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connections between sensor, controller, and actuator, such as limited bandwidth, quan-
tization error, input saturations, data dropouts, and so on. Thus, any control technique
using undistorted information is inapplicable to NCSs.

As for networked ILC systems, a recent paper summarized the progress on ILC in the
presence of data dropouts from three aspects including data dropout model, data dropout
position, and convergence meaning [16]. When reviewing the contribution of existing pa-
pers from the perspective of data dropout position, authors pointed out it can be easily
seen that the lost input data cannot be simply replaced by 0 because it would greatly dam-
age the tracking performance, which means the lost input data must be compensated with
suitable data to maintain the operation process of the plant. Authors further indicated
there are two kinds of methods to solve the problem of lost input data: Kalman filtering
and data compensation.

Based on the Kalman filtering approach, Ahn et al. considered a linear discrete-time
ILC system with random packet dropouts in the output and/or input data [17–20]. When
the output data is subject to data dropout, in [17], authors presented a mathematical for-
mulation problem of robust ILC design. Furthermore, a method was designed to select
learning gain optimally based on Kalman filtering such that the system eventually con-
verges to a desired trajectory as long as the output data is not dropped completely. In [18],
they further considered that each component in the output data vector was dropped inde-
pendently. After [17] and [18], convergence conditions for ILC systems were established
in the presence of data dropouts and delays in both input and output data simultaneously
in [19]. In [20], the author continued to consider the design of an optimal learning gain
matrix for the more realistic case of random data dropout.

As to data compensation, this approach can be further divided into two categories: time
domain compensation and iteration domain compensation. The former is similar to the
typical method to handle data dropout in general NCSs, which used input data at time
instant t – 1 to compensate the lost one at time instant t during kth iteration. Pan ear-
lier considered a class of ILC systems via networks with communication delay and data
dropouts first [21]. In the discussion, an event-driven model was used, which implies the
dropped data is compensated in time domain. Through the analysis of a variety of element
values in the transition matrix of input vector, convergence of the networked ILC systems
with data dropout compensation in time domain was improved. Moreover, this method
was then adopted by [22] to consider the problem of ILC over networks for a class of non-
linear systems with random packet dropouts in inputs and outputs simultaneously. This
paper proved that under some given conditions, the ILC can guarantee the convergence
of the tracking error although some packets are missing. The latter applies the data at the
(k – 1)th iteration to compensate the dropped one at the kth iteration at the same time in-
stant t, which was first used by [23]. In this paper, a discrete-time linear ILC system with
random input data dropouts was considered. The convergence property of output error
was proved by analyzing the element values of system transition matrix. Similar compen-
sation methods were used to deal with the effect of delay or data dropout in input and/or
output data of different networked ILC systems in [24, 25].

A comment should be made that general data dropout environments were considered
in the last two years. A derivative-type networked ILC scheme was proposed in [26] for
a class of repetitive discrete-time single-input-single-output systems with data dropouts
stochastically occurring in input and output communication channels. The compensation
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methods mended the dropped instant-wise output with the synchronous desired output
and drove the plant by refreshing the dropped instant-wise input with the used consensus-
instant input at the previous iteration. In [27], the author studied the ILC for a class of
nonlinear systems with random data dropouts occurring independently at both measure-
ment and actuator sides. Updated algorithms were proposed for the input data at both
the controller side and the actuator side. In [28], the similar compensation method was
used for a class of linear ILC systems with general data dropouts at both measurement
and actuator sides. In this paper, the sample path behavior along the iteration axis was
formulated as a Markov chain. Based on the Markov chain, the recursion of the input er-
ror was reformulated as a switching system. The author also used the Markov chain to
analyze the convergence of linear ILC stochastic systems under general data dropout en-
vironments in [29], and a new analysis method was developed to prove the convergence
in both mean square and almost sure senses. A data-driven learning control method for
stochastic nonlinear systems under random communication conditions was proposed in
[30], including data dropouts, communication delays, and packet transmission disorder-
ing. Specifically, the data arriving in the buffer was regulated by a renewal mechanism,
and a suitable update data was selected to the controller by a recognition mechanism.

Based on these aforementioned contributions, some results can be easily summarized
and listed as follows:

• Most works usually consider output data dropout occurring at sensor-to-controller
side, while input data at the controller-to-actuator side is assumed to work well. What
is more, the results to deal with data dropout in output cannot be extended to the case
that input suffered random data dropouts;

• Under some given conditions, the compensation methods in time or iteration domain
improve the convergence of networked ILC systems with random input and/or output
data dropout, while the work comparing the difference theoretically between the
methods in time or iteration domain to guarantee the convergence of networked ILC
systems with random data dropout is rarely seen.

Inspired by these observations, as a further study along this track, we continue to address
the convergence performance of networked ILC systems in presence of random input data
dropout and to compare the difference in convergence of the networked ILC systems with
lost data compensated in different domains. Specifically, our contributions lie in the fol-
lowing aspects:

• We consider a class of linear time-invariant systems controlled by a P-style ILC
algorithm over networks and establish a corresponding system model with data
dropouts taken into account;

• On the base of a single input data dropout, methods to compensate the dropped input
data in time or iteration domain are compared. The comparison is done through
analyzing the varieties of eigenvalues and elements in the lower triangular of the
transition matrices of input error at the controller side. Based on the analysis, a
conclusion is derived that the output error converges to zero with the dropped input
data compensated in iteration domain, while compensation in time domain cannot
guarantee that.

The remainder of this paper is organized as follows. In the next section, the ILC sys-
tem with random data dropout taken into account is formulated. After that, the transition
matrices of input error at the controller side are derived with compensation in time or it-
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eration domain, respectively. Through analyzing the varieties of eigenvalues and elements
in the lower triangular of the transition matrix, some useful results are derived to reveal
the difference in convergence of the system with the involved two compensation methods.
In Sect. 4, some numerical examples are given to illustrate the correctness of the results
derived theoretically in Sect. 3. Finally, some conclusions wrap up this paper in Sect. 5.

2 Problem formulation
Consider the discrete-time, linear, and time-invariant system described as follows:

⎧
⎨

⎩

xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where k = 0, 1, . . . is an iterative trial number, t ∈ [0, 1, . . . , T] denotes discrete time for the
periodic trial of the system, xk(t) ∈ Rn, uk(t) ∈ Rm, and yk(t) ∈ Rl represent the state, input,
and output, respectively, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n are known parameter matrices.

The system is controlled to track a known desired trajectory yd(t). For any realizable
trajectory and appropriate initial conditions, there exists a unique input ud(t) generating
the trajectory yd(t), which can be of the form

⎧
⎨

⎩

xd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t),
(2)

where xd(t) is the desired state. In order to track yd(t) accurately, various ILC schemes
have been proposed, and the typical one can be represented as

uk+1(t) = uk(t) + Γ (t)ek(t + 1), (3)

where Γ (t) ∈ Rr×l denotes learning gain, ek(t) = yd(t) – yk(t) is output error, t ∈ [0, 1, . . . ,
T – 1]. If Γ (t) is selected to satisfy the condition ‖I – Γ (t)CB‖ ≤ ρ < 1, the ILC algorithm
converges as the number of iterations goes to infinity. It is shown in [5] that a choice of
this learning gain matrix requires the matrix CB to be full-column rank.

The ILC system with output data transmitted from the sensor to the controller and input
data transmitted from the controller to the actuator through the network is illustrated in
Fig. 1.

Figure 1 Diagram of networked ILC system
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Taking the effect of data dropout in input and output into account, the system can be
represented as follows:

⎧
⎨

⎩

xk(t + 1) = Axk(t) + Bũk(t),

yk(t) = Cxk(t),
(4)

uk+1(t) = uk(t) + Γ (t)ẽk(t + 1), (5)

where ũk(t) is the input data received at the actuator side and ẽk(t + 1) is the output data
received at the controller side, which can be expressed as

ũk(t) = ξk(t)uk(t), (6)

ẽk(t + 1) = ηk(t)ek(t + 1). (7)

ξk(t) and ηk(t) are two scalar Bernoulli distributed random variables taking values 0 or 1,
which means ξk(t),ηk(t) ∈ {0, 1}, ∀k, t. Moreover, ξk(t) is uncorrelated with ηk(t). In this
expression, if the variable takes value 0, then the data is dropped correspondingly; other-
wise the data is not dropped. It can be easily seen that the lost data would greatly damage
the tracking performance of networked ILC systems, which means the lost data must be
compensated with a suitable data to guarantee the tracking performance of the plant. Ac-
cording to the characteristic of ILC system which operates in time and iteration domains
simultaneously, the lost data could be compensated in time or iteration domain. In order
to point out the difference therein, a comparison of compensation methods for dropped
input data in networked ILC systems would be done in the next section.

3 A comparison of compensation methods
In this section, the convergence of networked ILC system with the two compensation
methods is compared. Specially, the comparison would be done through analyzing the
varieties of eigenvalues and the elements in the lower triangular of the transition matrix
of input error at the controller side. In the analysis, we assume that the input data uk(t) is
dropped during transmission and compensated by uk(t – 1) in time domain or uk–1(t) in
iteration domain, which means ũk(t) = uk(t – 1) or ũk(t) = uk–1(t), respectively. In order to
simplify the analysis, the following assumption is made:

Assumption 1 xk(0) = xd(0), ∀k, u1(t) = 0, ∀t.

3.1 Compensation in time domain
When the dropped input data uk(t) is compensated in time domain, ũk(t) = uk(t – 1) at the
actuator side. According to ek(t) = yd(t) – yk(t), the output error ek(t) can be represented
as

ek(t + 1) = yd(t + 1) – yk(t + 1)

= Cδxk(t + 1). (8)
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Using (2), (4), and Assumption 1, the relationship between state error δxk(t) and input
error δuk(t) at the controller side can be expressed as

δxk(t + 1) = xd(t + 1) – xk(t + 1)

= Aδxk(t) + Bδũk(t)

= Aδxk(t) + B
(
ξk(t)δuk(t) +

(
1 – ξk(t)

)
δuk(t – 1)

)

=
t–1∑

i=0

At–iB
(
ξk(i)δuk(i) +

(
1 – ξk(i)

)
δuk(i – 1)

)
. (9)

Now we derive the expression of input error δuk(t) in iteration domain. From (5), (8),
(9), and ẽk(t + 1) = ek(t + 1), we have

δuk+1(t) = ud(t) – uk+1(t)

= ud(t) – uk(t) – Γ (t)ẽk(t + 1)

= δuk(t) – Γ (t)Cδxk(t + 1)

= δuk(t) – Γ (t)
t∑

i=0

CAt–iB
(
ξk(i)δuk(i) +

(
1 – ξk(i)

)
δuk(i – 1)

)
. (10)

If the input data uk(t) is dropped, the random parameter ξk(t) = 0 correspondingly. With
the method to compensate the dropped input data in time domain, uk(t – 1) would be used
to replace dropped uk(t), then (10) would be changed into

δuk+1(t) = δuk(t) – Γ (t)CBδuk(t – 1) –
t∑

i=1

Γ (t)CAiBδuk(t – i). (11)

Furthermore, the norm of input error at the controller side can be rewritten as ‖ψk+1‖ ≤
‖Hk‖‖ψk‖, where input error vector ψk and transition matrix Hk can be represented as
(12) and (13):

ψk =
[∥
∥δuk(0)

∥
∥,

∥
∥δuk(1)

∥
∥, . . . ,

∥
∥δuk(T – 1)

∥
∥
]T , (12)

Hk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I – Γ (0)CB 0 0 0 0 · · · 0

Γ (1)CAB
. . .

. . .
. . .

. . .
.
..

.

..
..
.

..

.
. . . 0

. . .
..
.

..

.

Γ (t)CAt B
.
.. Γ (t)CAB + Γ (t)CB I 0

.

..
.
..

..

.
..
. Γ (t)CA2B + Γ (t)CAB 0

. . . 0
..
.

.

..
.
..

.

..
.
..

.

..
. . . 0

Γ (T – 1)CAT–1B · · · Γ (t)CAT–t B + Γ (t)CAT–t–1B 0 · · · Γ (T – 1)CAB I – Γ (T – 1)CB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

When (13) is compared with the expression of transition matrix of input error at the con-
troller side in ideal situation, it can be easily seen that the compensation method brings
some changes in the value of transition matrix from (t + 1)st to (T)st rows. First, these
element values in (t + 1)st column are reduced. Specifically, the eigenvalue in (t + 1)st col-
umn is changed from I – Γ (t)CB to I , and the elements in (t + 1)st column from (t + 2)st
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to (T)st rows are reduced into 0. Second, the elements in (t)st column from (t + 1)st to
(T)st rows are increased with Γ (t)CAiB, 0 ≤ i ≤ T – t – 1. Interestingly, in each row from
(t + 1)st to (T)st, the increment of element in (t)st column just equals to the decrement
of the right adjacent element in (t + 1)st column. This phenomenon is caused by the com-
pensation method in time domain, which uses uk(t – 1) to replace dropped uk(t). Based on
these two discoveries, it can be easily seen that the transition matrix is still a lower trian-
gular, all its eigenvalues are the diagonal elements with one eigenvalue being I and other
eigenvalues are I – Γ (i)CB, i ∈ [0, 1, . . . , t, t + 2, . . . , T – 1]. If the learning gain is satisfied
‖I – Γ (i)CB‖ ≤ ρ < 1, i ∈ [0, 1, . . . , t, t + 2, . . . , T – 1], the asymptotic convergence property
of input error at the controller side can also be guaranteed along the iteration axis.

It is important to point out that this compensation method cannot guarantee that the
input error at the actuator side converges to zero, because the converged input data at the
controller side would suffer data drop again during transmission from the controller to the
actuator. In other words, this method guarantees limk→∞ ‖δuk(t)‖ = 0, t ∈ [0, T – 1] at the
controller side, while cannot guarantee limk→∞ ‖δũk(t)‖ = 0, t ∈ [0, T – 1] at the actuator
side, because limk→∞ ‖δũk(t)‖ = limk→∞ ‖ud(t) – uk(t – 1)‖ �= 0 when uk(t) is dropped and
compensated in time domain at the actuator side. Due to the introduction of networks,
the convergence of output error is determined by the input error at the actuator side. So,
this method cannot guarantee that the output error of networked ILC systems converges
to zero as iteration number goes on.

3.2 Compensation in iteration domain
When the dropped input data uk(t) is compensated in iteration domain, ũk(t) = uk–1(t) at
the actuator side. With this compensation method, the transition matrix of input error
uk(i), t ≤ i ≤ T – 1 at the controller side would be changed. In this part, the transition
matrix of δuk+1(t) would be derived first, and then transition matrix of δuk+1(i), t + 1 ≤ i ≤
T – 1 would be got.

3.2.1 Transition matrix of δuk+1(t)
If input data uk(t) is dropped and compensated by uk–1(t), the general expression of input
error in (10) can be easily rewritten as

δuk+1(t) = δuk(t) – Γ (t)CBδuk–1(t) – Γ (t)
t–1∑

i=0

CAt–iBδuk(i). (14)

Using (14), we can show δuk+1(t) by means of input error in (k – 1)st iteration, which is
given by

δuk+1(t) =
(
I – 2Γ (t)CB

)
δuk–1(t) – Γ (t)

t–1∑

i=0

CAt–iBδuk–1(i)

– Γ (t)
t–1∑

i=0

CAt–iB

(

δuk–1(i) – Γ (i)
i∑

j=0

CAi–jBδuk–1(j)

)

. (15)



Huang et al. Advances in Difference Equations         (2019) 2019:68 Page 8 of 16

Furthermore, (15) could be rewritten in the form of transition matrix

δuk+1(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ (t)CAtB
...
...

Γ (t)CAB
I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I – Γ (0)CB 0 · · · · · · 0

Γ (1)CAB
. . . . . .

...
...

...
. . . . . .

...
Γ (t – 1)CAt–1B · · · Γ (t – 1)CAB I – Γ (t – 1)CB 0

Γ (t)CAtB · · · · · · Γ (t)CAB I – 2Γ (t)CB

⎤

⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δuk–1(0)
...
...
...

δuk–1(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)

3.2.2 Transition matrix of δuk+1(i), t + 1 ≤ i ≤ T – 1
Similarly, δuk+1(t + 1) can be expressed as

δuk+1(t + 1) = δuk(t + 1)

– Γ (t + 1)
t+1∑

i=0

CAt+1–iB
(
ξk(i)δuk(i) +

(
1 – ξk(i)

)
δuk–1(i)

)
. (17)

With the compensation method in iteration domain, (17) could be further rewritten as

δuk+1(t + 1) =
(
I – Γ (t + 1)CB

)
δuk(t + 1)

– Γ (t)CABδuk–1(t) – Γ (t)
t–1∑

i=0

CAt–iBδuk(i). (18)

Expressing δuk+1(t + 1) by means of input error in (k – 1)st iteration, we have

δuk+1(t + 1)

=
(
I – Γ (t + 1)CB

)
(

δuk–1(t + 1) – Γ (t + 1)
t+1∑

i=0

CAt+1–iBδuk–1(i)

)

– Γ (t + 1)CABδuk–1(t)

– Γ (t + 1)
t–1∑

i=0

CAt+1–iB

(

δuk–1(i) – Γ (i)
i∑

j=0

CAi–jBδuk–1(j)

)

. (19)
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In the same way, it can be easy to derive the expression of ‖δuk+1(i)‖, t + 2 ≤ i ≤ T – 1.
According to the expression of ‖δuk+1(i)‖, t + 1 ≤ i ≤ T – 1, the transition matrices Hk and
Hk–1 can be described as

Hk

=

⎡

⎢
⎢
⎢
⎣

Γ (t + 1)CAt+1B · · · Γ (t + 1)CAB I – Γ (t + 1)CB 0 · · · 0
..
. · · · · · · · · ·

. . .
. . .

..

.
.
.. · · · · · · · · · · · ·

. . . 0
Γ (T – 1)CAT–1B · · · · · · · · · · · · Γ (T – 1)CAB I – Γ (T – 1)CB

⎤

⎥
⎥
⎥
⎦

, (20)

Hk–1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I – Γ (0)CB 0 · · · · · · · · · · · · · · · 0

Γ (1)CAB
. . .

. . .
. . .

. . .
. . .

. . .
.
..

..

.
..
.

..

. 0
. . .

. . .
..
.

Γ (t – 1)CAt–1B · · · Γ (t – 1)CB I – Γ (t – 1)CB
. . .

. . .
. . .

.

..

0 · · · · · · 0 I 0
. . .

..

.

Γ (t + 1)CAt+1B · · · · · · Γ (t)CAB I – Γ (t + 1)CB 0
. . .

.

..
..
.

..

.
..
.

..

.
..
.

..

.
. . . 0

Γ (T – 1)CAT–1B · · · · · · · · · · · · · · · Γ (T – 1)CAB I – Γ (T – 1)CB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(21)

When (16), (20), and (21) are compared with those in ideal situation, it can be easily seen
that compensation in iteration domain also brings some changes in the value of transition
matrix of input error at the controller side. First, the eigenvalue which determines the con-
vergence speed of ‖δuk+1(t)‖ is changed to I – 2Γ (t)CB in (16). If learning gain Γ (t) is se-
lected to satisfy the condition so that 0 < ρ(Γ (t)CB) < 1 is satisfied, then ‖I – Γ (t)CB‖ < 1
and ‖I – 2Γ (t)CB‖ < 1, which could guarantee the convergence of ‖δuk+1(t)‖. Second,
some element values in (t + 1)st row in (21) are changed. Specifically, the eigenvalue in
this row is changed to I , and other elements on the left-hand side of this eigenvalue are
all changed into 0. These two changes correspond to compensation method in iteration
domain which uses uk–1(t) to replace the dropped uk(t). Based on these two discoveries,
it can be easily seen that the convergence of input error at the controller side is still guar-
anteed.

Furthermore, the input error at the actuator side also converges to zero, because the
used input data at the actuator side is equal to the dropped input data when the input er-
ror at the controller side converges. That is to say, compensation in iteration domain not
only guarantees limk→∞ ‖δuk(t)‖ = 0, t ∈ [0, T – 1] at the controller side, but also guar-
antees limk→∞ ‖δũk(t)‖ = 0, t ∈ [0, T – 1] at the actuator side, because limk→∞ ‖δũk(t)‖ =
limk→∞ ‖ud(t) – uk–1(t)‖ = 0 when uk(t) is dropped and compensated in iteration domain
at the actuator side. Naturally, compensation in iteration domain guarantees that the out-
put error converges to zero as the number of iterations goes to infinity.

4 Simulation
In this section, some numerical examples are given to illustrate the correctness of the
results derived theoretically in the last section. Consider system (4) with matrices given
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by

xk(t + 1) =

⎡

⎢
⎣

–0.5 0 0
1 1.24 –0.87
0 0.87 0

⎤

⎥
⎦xk(t) +

⎡

⎢
⎣

1
0
0

⎤

⎥
⎦ ũk(t),

yk(t) =
[

2 2.6 –2.8
]

xk(t).

(22)

The desired trajectory is

yd(t) = 5 sin
[
8(t – 1)/T

]
. (23)

The P-style ILC method is described in (5). Initial state error δxk(0) and initial input
error δu0(t) are 0, respectively. T = 200, Γ (t) = 0.2, so 0 < ρ(Γ (t)CB) = 0.4 < 1 is satisfied.
The mean of output errors in each iteration is used to demonstrate the convergence of
output error. Stochastic parameter ξk(t) is a Bernoulli variable taking the values of 0 and 1
with Prob{ξk(t) = 1} = E{ξk(t) = 1} = α. In this part, the simulation is considered with two
cases as α = 0.97 and α = 0.94, respectively.

In order to compare the convergence of networked ILC systems with dropped input data
compensated in time or iteration domains, the convergence of system without compen-
sation is used as a benchmark, which is shown in Fig. 2. From Fig. 2, it can be easily seen
that the effect of input data dropouts increases generally with the increase of input data
dropout rate. Figure 3 shows the mean of output errors with compensation in time do-
main. From Fig. 3, it can be easily found that the effect of random input data dropouts on
the convergence of the output errors’ mean is reduced significantly with two different data
dropout rates, while both means of output errors cannot converge to zero. Figure 4 shows
the mean of output errors with compensation in iteration domain. From Fig. 4, it can be
easily seen that the mean of output errors converges to zero, whether the data dropout

Figure 2 The mean of output errors without compensation
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Figure 3 The mean of output errors compensated in time domain

Figure 4 The mean of output errors compensated in iteration domain

rate is α = 0.97 or α = 0.94. What is more, the convergence speed is decreased with the
increase of dropout rate. Through comparing these three figures, it can be easily found
that theoretical analysis in the last section is corroborated. Figures 5–7 show the system
output trajectories without compensation, with compensation in time domain, and with
compensation in iteration domain at three different iterations, respectively, which further
verifies the theoretical analysis in the last section from the perspective of trajectories in
different iterations.

5 Conclusion
In this paper, two compensation methods for random input data dropouts in the net-
worked ILC systems are compared. Through analyzing the variety of eigenvalues and ele-
ments in the lower triangular of the transition matrix of input error at the controller side,



Huang et al. Advances in Difference Equations         (2019) 2019:68 Page 12 of 16

Figure 5 The output without compensation at different iterations with α = 0.97

it can be easily found that the two compensation methods both can guarantee the conver-
gence of input errors at the controller side. What is more, the method in iteration domain
also guarantees the convergence of input errors at the actuator side, while the method in
time domain cannot do that. The reason is that converged input data at the controller side
would be dropped again during transmission. The convergence of output error is deter-
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Figure 6 The output compensated in time domain at different iterations with α = 0.97

mined by input error at the actuator side; consequently, only the method to compensate
the dropped input data in iteration domain guarantees that the output error of networked
ILC systems converges to zero.
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Figure 7 The output compensated in iteration domain at different iterations with α = 0.97
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