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Abstract
In this paper, we study the periodic solutions of high order differential delay
equations with 2k – 1 lags. The 4k-periodic solutions are obtained by using the
variational method and the method of Kaplan–Yorke coupling system. These are new
types of differential delay equations compared with all previous research. And it
provides a precise counting method for the number of periodic solutions. Two
examples are given to demonstrate our main results.
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1 Introduction
Given f ∈ C0(R, R) with f (–x) = –f (x), xf (x) > 0, x �= 0. Kaplan and Yorke [13] studied the
existence of 4-periodic and 6-periodic solutions to the differential delay equations

x′(t) = –f
(
x(t – 1)

)
(1)

and

x′(t) = –f
(
x(t – 1)

)
– f

(
x(t – 2)

)
, (2)

respectively. The method they applied is transforming the two equations into adequate
ordinary differential equations by regarding the retarded functions x(t – 1) and x(t – 2) as
independent variables. They guessed that the existence of 2(n + 1)-periodic solution to the
equation

x′(t) = –
n∑

i=1

f
(
x(t – i)

)
(3)

could be studied under the restriction

x
(
t – (n + 1)

)
= –x(t),

which was proved by Nussbaum [20] in 1978 by the use of a fixed point theorem on cones.
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After that a lot of papers [3–12, 14–18] discussed the existence and multiplicity of 2(n +
1)-periodic solutions to Eq. (3) and its extension

x′(t) = –
n∑

i=1

∇F
(
x(t – i)

)
, (4)

where F ∈ C1(RN , R), ∇F(–x) = –∇F(x), F(0) = 0. But they all studied first order equations.
In this paper, we study the periodic orbits to two types of high order differential delay

equations with 2k – 1 lags in the form

x(2s+1)(t) = –
2k–1∑

i=1

f
(
x(t – i)

)
, (5)

and

x(2s+1)(t) = –
2k–1∑

i=1

(–1)i+1f
(
x(t – i)

)
, (6)

which are different from (3) and can be regarded as a new extension of (3). The method
applied in this paper is the variational approach in the critical point theory [1, 2, 19].

We suppose that

f ∈ C0(R, R), f (–x) = –f (x) (7)

and there are α,β ∈ R such that

lim
x→0

f (x)
x

= α, lim
x→∞

f (x)
x

= β . (8)

Let F(x) =
∫ x

0 f (s) ds. Then F(–x) = F(x) and F(0) = 0. For convenience, we make the fol-
lowing assumptions:

(S1) f satisfies (7) and (8),
(S2) there exist M > 0 and a function r ∈ C0(R+, R+) satisfying r(s) → ∞, r(s)/s → 0 as

s → ∞ such that
∣∣
∣∣F(x) –

1
2
βx2

∣∣
∣∣ > r

(|x|) – M,

(S±
3 ) ±[F(x) – 1

2βx2] > 0, |x| → ∞,
(S±

4 ) ±[F(x) – 1
2αx2] > 0, 0 < |x| � 1.

In this paper, we need the following lemma as the base of our discussion.
Let X be a Hilbert space, L : X → X be a linear operator, and Φ : X → R be a differentiable

functional.

Lemma 1.1 ([3], Lemma 2.4) Assume that there are two closed s1-invariant linear sub-
spaces, X+ and X–, and r > 0 such that

(a) X+ ∪ X– is closed and of finite codimensions in X ,
(b) L̂(X–) ⊂ X–, L̂ = L + P–1A0 or L̂ = L + P–1A∞,
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(c) there exists c0 ∈ R such that

inf
x∈X+

Φ(x) ≥ c0,

(d) there is c∞ ∈ R such that

Φ(x) ≤ c∞ < Φ(0) = 0, ∀x ∈ X– ∩ Sr =
{

x ∈ X– : ‖x‖ = r
}

,

(e) Φ satisfies the (P.S)c-condition, c0 < c < c∞, i.e., every sequence {xn} ⊆ X with
Φ(xn) → c and Φ ′(xn) → 0 possesses a convergent subsequence.

Then Φ has at least 1
2 [dim(X+ ∩X–) – codimX(X+ ∪X–)] generally different critical orbits

in Φ–1([c0, c∞]) if [dim(X+ ∩ X–) – codimX(X+ ∪ X–)] > 0.

Definition 1.2 We say that Φ satisfies the (P.S)-condition if every sequence {xn} with
Φ(xn) is bounded and Φ ′(xn) → 0 possesses a convergent subsequence.

Remark 1.3 We may use the (P.S)-condition to replace condition (e) in Lemma 1.1 since
the (P.S)-condition implies that the (P.S)c-condition holds for each c ∈ R.

2 Space X, functional Φ , and its differential Φ ′

We are concerned with the 4k-periodic solutions to (5) and (6) and suppose

x(t – 2k) = –x(t), k ≥ 1. (9)

Let

X̂ =
{

x ∈ L2 : x(t – 2k) = –x(t)
}

=

{ ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
: ai, bi ∈ R

}

,

X = cl

{ ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
: ai, bi ∈ R,

∞∑

i=0

(2i + 1)
(
a2

i + b2
i
)

< ∞
}

⊂ X̂,

and define P : X → L2 by

Px(t) = P

( ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

))

=
∞∑

i=0

(2i + 1)2s+1
(

ai cos
(2i + 1)π t

2k
+ bi sin

(2i + 1)π t
2k

)
. (10)

Let

P–1x(t) =
∞∑

i=0

1
(2i + 1)2s+1

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
.
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Then the inverse P–1 of P exists. For x ∈ X, define

〈x, y〉 =
∫ 4k

0

(
Px(t), y(t)

)
dt, ‖x‖ =

√〈x, x〉,

〈x, y〉2 =
∫ 4k

0

(
x(t), y(t)

)
dt, ‖x‖2 =

√〈x, x〉2.

Therefore (X,‖ · ‖) is an H 1
2 space.

For (5), define a functional Φ : X → R by

Φ(x) =
1
2
〈Lx, x〉 +

∫ 4k

0
F
(
x(t)

)
dt, (11)

where

Lx = –P–1
2k–1∑

i=1

(–1)i+1x(2s+1)(t – i). (12)

Let m = k – 1 and

X(i) =
{

x(t) = ai cos
(2i + 1)π t

2k
+ bi sin

(2i + 1)π t
2k

: ai, bi ∈ R
}

.

We have

X =
∞∑

l=0

[ m∑

i=0

(
X(2lk + i) + X(2lk + 2k – i – 1)

)
]

. (13)

If xi(t) = ai cos (2i+1)π t
2k + bi sin (2i+1)π t

2k ∈ X(i), i ∈ N , we have

Lx = (–1)s+1
(

π

2k

)2s+1
( ∞∑

i=0

xi tan
(2i + 1)π

4k

)

. (14)

Obviously, L|X(i) : X(i) → X(i) is invertible.
Based on the theorem given by Mawhin and Willem [19, Theorem 1.4] the differential

of functional Φ is differentiable, and its differential is

P–1Φ ′(x) = Lx + K(x), (15)

where K(x) = P–1f (x). It is easy to prove that K : (X,‖x‖2) → (X,‖x‖2
2) is compact.

Therefore, from (14) we have that if

x(t) =
∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
,
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then

〈Lx, x〉 = (–1)s+1
∞∑

i=0

(
π

2k

)2s+1

2k(2i + 1)2s+1(a2
i + b2

i
)

tan
(2i + 1)π

4k

=
∞∑

l=0

[ m∑

i=0

(–1)s+1
(

π

2k

)2s+1

2k(4lk + 2i + 1)2s+1(a2
2lk+i + b2

2lk+i
)

tan
(2i + 1)π

4k

–
m∑

i=0

(–1)s+1
(

π

2k

)2s+1

2k(4lk + 4k – 2i – 1)2s+1

× (
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
tan

(2i + 1)π
4k

]

.

On the other hand,

〈
P–1βx, x

〉
=

∞∑

i=0

2kβ
(
a2

i + b2
i
)

=
∞∑

l=0

[ m∑

i=0

2kβ
(
a2

2lk+i + b2
2lk+i

)
+

m∑

i=0

2kβ
(
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

,

〈
P–1αx, x

〉
=

∞∑

i=0

2kα
(
a2

i + b2
i
)

=
∞∑

l=0

[ m∑

i=0

2kα
(
a2

2lk+i + b2
2lk+i

)
+

m∑

i=0

2kα
(
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

.

Therefore, we have

〈(
L + P–1β

)
x, x

〉

= 2k
∞∑

l=0

[ m∑

i=0

(
(–1)s+1

(
π

2k

)2s+1

(4lk + 2i + 1)2s+1 tan
(2i + 1)π

4k
+ β

)
(
a2

2lk+i + b2
2lk+i

)

+
m∑

i=0

(
–(–1)s+1

(
π

2k

)2s+1

(4lk + 4k – 2i – 1)2s+1 tan
(2i + 1)π

4k
+ β

)

× (
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

,

〈(
L + P–1α

)
x, x

〉

= 2k
∞∑

l=0

[ m∑

i=0

(
(–1)s+1

(
π

2k

)2s+1

(4lk + 2i + 1)2s+1 tan
(2i + 1)π

4k
+ α

)
(
a2

2lk+i + b2
2lk+i

)

+
m∑

i=0

(
–(–1)s+1

(
π

2k

)2s+1

(4lk + 4k – 2i – 1)2s+1 tan
(2i + 1)π

4k
+ α

)

× (
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

.
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For (6), define the functional Ψ : X → R by

Ψ (x) =
1
2
〈Lx, x〉 +

∫ 4k

0
F
(
x(t)

)
dt, (16)

where

Lx = –P–1
2k–1∑

i=1

x(2s+1)(t – i). (17)

Let m = k – 1 and

X(i) =
{

x(t) = ai cos
(2i + 1)π t

2k
+ bi sin

(2i + 1)π t
2k

: ai, bi ∈ R
}

.

We have

X =
∞∑

l=0

[ m∑

i=0

(
X(2lk + i) + X(2lk + 2k – i – 1)

)
]

. (18)

If xi(t) = ai cos (2i+1)π t
2k + bi sin (2i+1)π t

2k ∈ X(i), i ∈ N , we have

Lx = (–1)s+1
(

π

2k

)2s+1
( ∞∑

i=0

xi cot
(2i + 1)π

4k

)

. (19)

Obviously, L|X(i) : X(i) → X(i) is invertible.
Based on the theorem given by Mawhin and Willem [16, Theorem 1.4] the differential

of functional Φ is differentiable, and its differential is

P–1Ψ ′(x) = Lx + K(x), (20)

where K(x) = P–1f (x). It is easy to prove that K : (X,‖x‖2) → (X,‖x‖2
2) is compact.

Therefore, from (14) we have that if

x(t) =
∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
,

then

〈Lx, x〉 = (–1)s+1
∞∑

i=0

(
π

2k

)2s+1

2k(2i + 1)2s+1(a2
i + b2

i
)

cot
(2i + 1)π

4k

=
∞∑

l=0

[ m∑

i=0

(–1)s+1
(

π

2k

)2s+1

2k(4lk + 2i + 1)2s+1(a2
2lk+i + b2

2lk+i
)

cot
(2i + 1)π

4k

–
m∑

i=0

(–1)s+1
(

π

2k

)2s+1

2k(4lk + 4k – 2i – 1)2s+1(a2
2lk+2k–i–1 + b2

2lk+2k–i–1
)

× cot
(2i + 1)π

4k

]

.
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On the other hand,

〈
P–1βx, x

〉
=

∞∑

i=0

2kβ
(
a2

i + b2
i
)

=
∞∑

l=0

[ m∑

i=0

2kβ
(
a2

2lk+i + b2
2lk+i

)
+

m∑

i=0

2kβ
(
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

.

〈
P–1αx, x

〉
=

∞∑

i=0

2kα
(
a2

i + b2
i
)

=
∞∑

l=0

[ m∑

i=0

2kα
(
a2

2lk+i + b2
2lk+i

)
+

m∑

i=0

2kα
(
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

.

Therefore, we have

〈(
L + P–1β

)
x, x

〉

= 2k
∞∑

l=0

[ m∑

i=0

(
(–1)s+1

(
π

2k

)2s+1

(4lk + 2i + 1)2s+1 cot
(2i + 1)π

4k
+ β

)

× (
a2

2lk+i + b2
2lk+i

)

+
m∑

i=0

(
–(–1)s+1

(
π

2k

)2s+1

(4lk + 4k – 2i – 1)2s+1 cot
(2i + 1)π

4k
+ β

)

× (
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

,

〈(
L + P–1α

)
x, x

〉

= 2k
∞∑

l=0

[ m∑

i=0

(
(–1)s+1

(
π

2k

)2s+1

(4lk + 2i + 1)2s+1 cot
(2i + 1)π

4k
+ α

)

× (
a2

2lk+i + b2
2lk+i

)

+
m∑

i=0

(
–(–1)s+1

(
π

2k

)2s+1

(4lk + 4k – 2i – 1)2s+1 cot
(2i + 1)π

4k
+ α

)

× (
a2

2lk+2k–i–1 + b2
2lk+2k–i–1

)
]

.

Lemma 2.1 Each critical point of the functional Φ is a 4k-periodic classical solution of
Eq. (5) satisfying (9).

Proof Let x be a critical point of the functional Φ . Then x(t) satisfies

–
2k–1∑

i=1

(–1)i+1x(2s+1)(t – i) + f
(
x(t)

)
= 0, a.e. t ∈ [0, 4k]. (21)
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Consequently,

–
2k–1∑

i=1

(–1)i+1x(2s+1)(t – i – 1) + f
(
x(t – 1)

)
= 0, (21.1)

–
2k–1∑

i=1

(–1)i+1x(2s+1)(t – i – 2) + f
(
x(t – 2)

)
= 0, (21.2)

–
2k–1∑

i=1

(–1)i+1x(2s+1)(t – i – 3) + f
(
x(t – 3)

)
= 0, (21.3)

...

–
2k–1∑

i=0

(–1)i+1x(2s+1)(t – i – (2k – 1)
)

+ f
(
x
(
t – (2k – 1)

))
= 0. (21.(2k-1))

Calculating (21.1) + (21.2) + (21.3) + · · · + (21.(2k-1)), we can get

x(2s+1)(t) +
2k–1∑

i=1

f
(
x(t – i)

)
= 0, a.e. t ∈ [0, 4k],

namely

x(2s+1)(t) = –
2k–1∑

i=1

f
(
x(t – i)

)
, a.e. t ∈ [0, 4k],

which implies that x satisfies the above equation for all t ∈ [0, 4k] since the function on the
right-hand side is continuous, then x is a classical solution to (5). �

Lemma 2.2 Each critical point of the functional Ψ is a 4k-periodic classical solution of
Eq. (6) satisfying (9).

Proof Let x be a critical point of the functional Ψ . Then x(t) satisfies

–
2k–1∑

i=1

x(2s+1)(t – i) + f
(
x(t)

)
= 0, a.e. t ∈ [0, 4k]. (22)

Consequently,

–
2k–1∑

i=1

x(2s+1)(t – i – 1) + f
(
x(t – 1)

)
= 0, (22.1)

–
2k–1∑

i=1

x(2s+1)(t – i – 2) + f
(
x(t – 2)

)
= 0, (22.2)

–
2k–1∑

i=1

x(2s+1)(t – i – 3) + f
(
x(t – 3)

)
= 0, (22.3)

...
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–
2k–1∑

i=1

x(2s+1)(t – i – (2k – 1)
)

+ f
(
x
(
t – (2k – 1)

))
= 0. (22.(2k-1))

Calculating (22.1) – (22.2) + (22.3) – · · · + (22.(2k-1)), we can get

x(2s+1)(t) +
2k–1∑

i=1

(–1)i+1f
(
x(t – i)

)
= 0, a.e. t ∈ [0, 4k],

namely

x(2s+1)(t) = –
2k–1∑

i=1

(–1)i+1f
(
x(t – i)

)
, a.e. t ∈ [0, 4k],

which implies that x satisfies the above equation for all t ∈ [0, 4k] since the function on the
right-hand side is continuous, then x is a classical solution to (6). �

3 Partition of space X and symbols
For (5), let

X+
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β > 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β > 0

}
,

X–
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β < 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β < 0

}
,

X+
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α > 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α > 0

}
,
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X–
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α < 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α < 0

}
.

On the other hand,

X0
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β = 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β = 0

}
,

X0
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α = 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ α = 0

}
.

Obviously, dim X0∞ < ∞ and dim X0
0 < ∞.

Lemma 3.1 Under assumptions (S1) and (S2), there is σ > 0 such that

〈(
L + P–1β

)
x, x

〉
> σ‖x‖2, x ∈ X+

∞ and
〈(

L + P–1β
)
x, x

〉
< –σ‖x‖2, x ∈ X–

∞.
(23)

Proof First, we have that, for β ≥ 0 and s = even, (–1)s+1 = –1, i ∈ {0, 1, . . . , m},

–
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β

> –
(

(4l+(i)k + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β > 0,
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where l+(i) = max{l ∈ N : –( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k + β > 0} and

–
(

(4lk + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β

< –
(

(4l–(i)k + 2i + 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β < 0,

where l–(i) = min{l ∈ N : –( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k + β < 0}.
In this case, we may choose

σi = min

{
–
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

β

(4l+(i)k + 2i + 1)2s+1 ,

(
π

2k

)2s+1

tan
(2i + 1)π

4k
–

β

(4l–(i)k + 2i + 1)2s+1

}
> 0,

and let σ = min{σ0,σ1, . . . ,σm} > 0.
Second, we have that, for β ≥ 0 and s = odd, (–1)s+1 = 1, i ∈ {0, 1, . . . , m},

–
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β

> –
(

(4l+(i)k + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β > 0,

where l+(i) = max{l ∈ N : –( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k + β > 0} and

–
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β

< –
(

(4l–(i)k + 4k – 2i – 1)π
2k

)2s+1

tan
(2i + 1)π

4k
+ β < 0,

where l–(i) = min{l ∈ N : –( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k + β < 0}.
In this case, we may choose

σi = min

{
–
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

β

(4l+(i)k + 4k – 2i – 1)2s+1 ,

(
π

2k

)2s+1

tan
(2i + 1)π

4k
–

β

(4l–(i)k + 4k – 2i – 1)2s+1

}
> 0,

and let σ = min{σ0,σ1, . . . ,σm} > 0. The proof for the case β < 0 is similar. We omit it. The
inequalities in (23) are proved. �

Lemma 3.2 Under conditions (S1) and (S2), the functional Φ defined by (11) satisfies the
(P.S)-condition.
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Proof Let Π , N, Z be the orthogonal projections from X onto X+∞, X–∞, X0∞, respectively.
From the second condition in (8) it follows that

∣
∣〈P–1(f (x) – βx

)
, x
〉∣∣ <

σ

2
‖x‖2 + M, x ∈ X (24)

for some M > 0.
Assume that {xn} ⊂ X is a subsequence such that Φ ′(xn) → 0 and Φ(xn) is bounded. Let

wn = Πxn, yn = Nxn, zn = Zxn. Then we have

Π
(
L + P–1β

)
=
(
L + P–1β

)
Π , N

(
L + P–1β

)
=
(
L + P–1β

)
N. (25)

From

〈
Φ ′(xn), xn

〉
=
〈
Lxn + P–1f (xn), xn

〉
=
〈(

L + P–1β
)
xn, xn

〉
+
〈
P–1(f (xn) – βxn

)
, xn

〉

and (25), we have

〈
ΠΦ ′(xn), xn

〉
=
〈
Π
(
L + P–1β

)
xn, xn

〉
+
〈
ΠP–1(f (xn) – βxn

)
, xn

〉

=
〈(

L + P–1β
)
wn, wn

〉
+
〈
ΠP–1(f (xn) – βxn

)
, wn

〉
,

and then, by (23), we have

〈(
L + P–1β

)
wn, wn

〉
+
〈
ΠP–1(f (xn) – βxn

)
, wn

〉
>

σ

2
‖wn‖2 – M‖wn‖,

which, together with ΠΦ ′(xn) → 0, implies the boundedness of wn. Similarly we have the
boundedness of yn. At the same time, (S2) yields

Φ(xn) =
1
2
〈(

L + P–1β
)
xn, xn

〉
+
∫ 4k

0
F(xn) dt –

β

2
‖xn‖2

2

=
1
2
〈(

L + P–1β
)
wn, wn

〉
+

1
2
〈(

L + P–1β
)
yn, yn

〉

+
∫ 4k

0
F(xn) dt –

β

2
(‖wn‖2

2 + ‖yn‖2
2 + ‖zn‖2

2
)
.

Then the boundedness of Φ(x) implies that ‖zn‖2 is bounded. Consequently ‖zn‖ is
bounded since X0∞ is finite-dimensional. Therefore, ‖xn‖ is bounded.

It follows from (15) that

(Π + N)Φ ′(xn) = (Π + N)Lxn + (Π + N)K(xn)

= L(wn + yn) + (Π + N)K(xn).

From the compactness of operator K and the boundedness of xn, we have that K(xn) → u.
Then

L|x+∞+x–∞ (wn + yn) → –(Π + N)u. (26)
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The finite-dimensionality of X0∞ and the boundedness of zn = Zxn imply zn → ϕ ∈ X0∞.
Therefore,

xn = zn + wn + yn → ϕ – (L|x+∞+x–∞ )–1(Π + N)u,

which implies the (P.S)-condition.
For (6), let

X+
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β > 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β > 0

}
,

X–
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β < 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β < 0

}
,

X+
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α > 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α > 0

}
,

X–
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α < 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α < 0

}
.
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On the other hand,

X0
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β = 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ β = 0

}
,

X0
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ m,

(–1)s+1
(

(4lk + 2i + 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α = 0

}

∪
{

X(2lk + 2k – i – 1) : l ≥ 0, 0 ≤ i ≤ m,

–(–1)s+1
(

(4lk + 4k – 2i – 1)π
2k

)2s+1

cot
(2i + 1)π

4k
+ α = 0

}
.

Obviously, dim X0∞ < ∞ and dim X0
0 < ∞. �

Lemma 3.3 Under assumptions (S1) and (S2), there is σ > 0 such that

〈(
L + P–1β

)
x, x

〉
> σ‖x‖2, x ∈ X+

∞ and
〈(

L + P–1β
)
x, x

〉
< –σ‖x‖2, x ∈ X–

∞.
(27)

Proof The proof is similar to Lemma 3.1, we omit it. �

Lemma 3.4 Under conditions (S1) and (S2), the functional Ψ defined by (16) satisfies the
(P.S)-condition.

Proof The proof is similar to Lemma 3.2, we omit it. �

4 Notations and main results of this paper
We first give some notations.

For (5), if (–1)s+1 = –1, denote

N1(α) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k < –α}, α < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k < α}, α ≥ 0.

N1(β) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k < –β}, β < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k < β}, β ≥ 0.
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And

N0
1 (α–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= –α

}
, α < 0,

N0
1 (α+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= α

}
, α ≥ 0,

N0
1 (β–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= –β

}
, β < 0,

N0
1 (β+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= β

}
, β ≥ 0.

Alternatively, if (–1)s+1 = 1, denote

N1(α) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k < –α}, α < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k < α}, α ≥ 0.

N1(β) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 tan (2i+1)π

4k < –β}, β < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 tan (2i+1)π

4k < β}, β ≥ 0.

And

N0
1 (α–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= –α

}
, α < 0,

N0
1 (α+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= α

}
, α ≥ 0,

N0
1 (β–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= –β

}
, β < 0,

N0
1 (β+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

tan
(2i + 1)π

4k
= β

}
, β ≥ 0.

For (6), if (–1)s+1 = –1, denote

N2(α) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 cot (2i+1)π

4k < –α}, α < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 cot (2i+1)π

4k < α}, α ≥ 0.

N2(β) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 cot (2i+1)π

4k < –β}, β < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 cot (2i+1)π

4k < β}, β ≥ 0.

And

N0
2 (α–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= –α

}
, α < 0,
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N0
2 (α+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= α

}
, α ≥ 0,

N0
2 (β–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= –β

}
, β < 0,

N0
2 (β+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= β

}
, β ≥ 0.

Alternatively, if (–1)s+1 = 1, denote

N2(α) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 cot (2i+1)π

4k < –α}, α < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 cot (2i+1)π

4k < α}, α ≥ 0.

N2(β) =

⎧
⎨

⎩
–
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+2i+1)π
2k )2s+1 cot (2i+1)π

4k < –β}, β < 0,
∑m

i=0 card{l ≥ 0 : 0 < ( (4lk+4k–2i–1)π
2k )2s+1 cot (2i+1)π

4k < β}, β ≥ 0.

And

N0
2 (α–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= –α

}
, α < 0,

N0
2 (α+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= α

}
, α ≥ 0,

N0
2 (β–) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 2i + 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= –β

}
, β < 0,

N0
2 (β+) =

m∑

i=0

card

{
l ≥ 0 : 0 <

(
(4lk + 4k – 2i – 1)π

2k

)2s+1

cot
(2i + 1)π

4k
= β

}
, β ≥ 0.

Now we give the main results of this paper.

Theorem 4.1 Suppose that (S1) and (S2) hold. Then Eq. (5) possesses at least

n = max
{

N1(β) – N1(α) – N0
1 (β–) – N0

1 (α+), N1(α) – N1(β) – N0
1 (α–) – N0

1 (β+)
}

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.

Theorem 4.2 Suppose that (S1), (S2), (S+
3 ), and (S–

4 ) hold. Then Eq. (5) possesses at least

n = N1(β) – N1(α) + N0
1 (β+) + N0

1 (α–)

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.

Theorem 4.3 Suppose that (S1), (S2), (S–
3 ), and (S+

4 ) hold. Then Eq. (5) possesses at least

n = N1(α) – N1(β) + N0
1 (α+) + N0

1 (β–)

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.
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Theorem 4.4 Suppose that (S1) and (S2) hold. Then Eq. (6) possesses at least

n = max
{

N2(β) – N2(α) – N0
2 (β–) – N0

2 (α+), N2(α) – N2(β) – N0
2 (α–) – N0

2 (β+)
}

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.

Theorem 4.5 Suppose that (S1), (S2), (S+
3 ), and (S–

4 ) hold. Then Eq. (6) possesses at least

n = N2(β) – N2(α) + N0
2 (β+) + N0

2 (α–)

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.

Theorem 4.6 Suppose that (S1), (S2), (S–
3 ), and (S+

4 ) hold. Then Eq. (6) possesses at least

n = N2(α) – N2(β) + N0
2 (α+) + N0

2 (β–)

4k-periodic solutions satisfying x(t – 2k) = –x(t) provided that n > 0.

5 Proof of main results of this paper

Proof of Theorem 4.1 Suppose without loss of generality that

n = N1(β) – N1(α) – N0
1 (β–) – N0

1 (α+).

Let X+ = X+∞ and X– = X–
0 . Then

X \ (X+ ∪ X–) = X \ (X+
∞ ∪ X–

0
)⊆ X0

∞ ∪ X0
0 ∪ (

X+
∞ ∩ X–

0
)
.

Obviously,

codimX
(
X+ + X–)≤ dim X0

∞ + dim X0
0 + dim

(
X+

∞ ∩ X–
0
)

< ∞,

which implies that condition (a) in Lemma 1.1 holds. Let A∞ = β . Then condition (b) in
Lemma 1.1 holds since, for each j ∈ N , we have that x ∈ X(j) yields (L + P–1β)x ∈ X(j).

At the same time, Lemma 3.2 gives the (P.S)-condition.
Now it suffices to show that conditions (c) and (d) in Lemma 1.1 hold under assumptions

(S1) and (S2).
In fact, we have shown in Lemma 3.1 that there is σ > 0 such that 〈(L+P–1β)x, x〉 > σ‖x‖2,

x ∈ X+∞. And the second condition in (8) implies that |F(x) – 1
2βx2| < 1

4σ |x|2 + M1, x ∈ R
for some M1 > 0.

Then

Φ(x) =
1
2
〈Lx, x〉 +

∫ 4k

0
F
(
x(t)

)
dt

=
1
2
〈(

L + P–1β
)
x, x

〉
+
∫ 4k

0

[
F
(
x(t)

)
–

1
2
β
∣
∣x(t)

∣
∣2
]

dt
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≥ 1
2
σ‖x‖2 –

1
4
σ‖x‖2 – 4kM1

≥ 1
4
σ‖x‖2 – 4kM1

if x ∈ X+. Clearly, there is c0 ∈ R such that

inf
x∈X+

Φ(x) ≥ c0.

On the other hand, we have shown in Lemma 3.1 that there is σ > 0 such that 〈(L +
P–1β)x, x〉 < –σ‖x‖2, x ∈ X–∞. And we can show that there are r,σ > 0 such that |F(x) –
1
2βx2| < 1

4σ |x|2, ‖x‖ = r. So

Φ(x) =
1
2
〈Lx, x〉 +

∫ 4k

0
F
(
x(t)

)
dt

=
1
2
〈(

L + P–1β
)
x, x

〉
+
∫ 4k

0

[
F
(
x(t)

)
–

1
2
β
∣∣x(t)

∣∣2
]

dt

≤ –
1
2
σ‖x‖2 +

1
4
σ‖x‖2

≤ –
1
4
σ‖x‖2.

That is, there are r > 0 and c∞ < 0 such that

Φ(x) ≤ c∞ < 0 = Φ(0), ∀x ∈ X– ∩ Sr =
{

x ∈ X : ‖x‖ = r
}

.

Our last task is to compute the value of

n =
1
2

[
dim

(
X+ ∩ X–

)
– codimX

(
X+ + X–)

]

=
1
2

[
dim

(
X+

∞ ∩ X–
0

)
– codimX

(
X+

∞ + X–
0
)]

=
1
2

∞∑

j=0

[
dim

(
X+

∞(j) ∩ X–
0 (j)

)
– codimX(j)

(
X+

∞(j) + X–
0 (j)

)]
.

By computation we get that, for each i ∈ {0, 1, . . . , m},

〈(
L + P–1β

)
x, x

〉
=
(

(–1)s+1
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

β

(4lk + 2i + 1)2s+1

)
‖x‖2,

x ∈ X(2lk + i),

〈(
L + P–1β

)
x, x

〉
=
(

–(–1)s+1
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

β

(4lk + 4k – 2i – 1)2s+1

)
‖x‖2,

x ∈ X(2lk + 2k – i – 1),
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and

〈(
L + P–1α

)
x, x

〉
=
(

(–1)s+1
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

α

(4lk + 2i + 1)2s+1

)
‖x‖2,

x ∈ X(2lk + i),

〈(
L + P–1α

)
x, x

〉
=
(

–(–1)s+1
(

π

2k

)2s+1

tan
(2i + 1)π

4k
+

α

(4lk + 4k – 2i – 1)2s+1

)
‖x‖2,

x ∈ X(2lk + 2k – i – 1).

Therefore,
X+∞(2lk + i) = X+∞ ∩ X(2lk + i) = ∅,
X+∞(2lk + 2k – i – 1) = X+∞ ∩ X(2lk + 2k – i – 1) = X(2lk + 2k – i – 1),
X–

0 (2lk + i) = X–
0 ∩ X(2lk + i) = X(2lk + i),

X–
0 (2lk + 2k – i – 1) = X–

0 ∩ X(2lk + 2k – i – 1) = ∅
if i ∈ {0, 1, . . . , m} and (–1)s+1 = 1 and l ≥ 0 is large enough, which means that there is M > 0
such that dim(X+∞(j) ∩ X–

0 (j)) – codimX(X+∞(j) + X–
0 (j)) = 0, j > M, from which it follows that

n =
1
2

M∑

j=0

[
dim

(
X+

∞(j) ∩ X–
0 (j)

)
– codimX(j)

(
X+

∞(j) + X–
0 (j)

)]

=
1
2

M∑

j=0

[
dim X+

∞(j) + dim X–
0 (j) – 2

]

=
1
2

M∑

j=0

[
dim X+

∞(j) + dim X–
0 (j)

]
– (M + 1).

Then we have

M∑

j=0

dim
(
X+

∞(j)
)

= 2

⎧
⎨

⎩
N1(β) + card{2lk + 2k – i – 1 : 0 ≤ 2lk + 2k – i – 1 ≤ M}, β ≥ 0,

N1(β) – N0
1 (β–) + card{2lk + 2k – i – 1 : 0 ≤ 2lk + 2k – i – 1 ≤ M}, β < 0,

M∑

j=0

dim
(
X–

0 (j)
)

= 2

⎧
⎨

⎩
–N1(α) – N0

1 (α+) + card{2lk + i : 0 ≤ 2lk + i ≤ M}, α ≥ 0,

–N1(α) + card{2lk + i : 0 ≤ 2lk + i ≤ M}, α < 0,

and

M∑

j=0

[
dim X+

∞(j) + dim X–
0 (j)

]
= 2

[
N1(β) – N1(α) – N0

1 (β–) – N0
1 (α+)

]
+ 2(M + 1). (28)

Therefore

n = N1(β) – N1(α) – N0
1 (β–) – N0

1 (α+).

The proof for the case (–1)s+1 = –1 is similar.
Theorem 4.1 is proved. �
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Proof of Theorem 4.2 and Theorem 4.3 Since the proof for the two theorems is similar, we
prove only Theorem 4.2.

Let X+ = X+∞ + X0∞, X– = X0
– + X0

0 . Then, as in the proof of Theorem 4.1, we check condi-
tions (a), (b), (c), (d), and (e). In the present case, we may suppose that (28) still holds for
some M > 0. Let X0∞(i) = X0∞ ∩ X(i), X0

0 (i) = X0
0 ∩ X(i). Then

n =
1
2

M∑

i=0

[
dim

(
X+

∞(i) ∩ X–
0 (i)

)
– codimX(i)

(
X+

∞(i) + X–
0 (i)

)]
+
(
dim X0

∞ + dim X0
0
)

=
1
2

M∑

i=0

[
dim X+

∞(i) + dim X–
0 (i) – 2

]
+
(
dim X0

∞ + dim X0
0
)

=
1
2

M∑

i=0

[
dim X+

∞(i) + dim X–
0 (i)

]
– (M + 1) +

(
dim X0

∞ + dim X0
0
)

= N(β) – N(α) – N0(β–) – N0(α+) +
(
N0(β+) + N0(β–) + N0(α+) + N0(α–)

)

= N(β) – N(α) + N0(β+) + N0(α–). �

Proof of Theorem 4.4, Theorem 4.5, and Theorem 4.6 Since the proof of Theorem 4.4 is
similar to that of Theorem 4.1, and the proofs of Theorems 4.5 and 4.6 are similar to that
of Theorem 4.2, we omit it. Our proof is completed. �

6 Examples
Example 6.1 Suppose that f ∈ C0(R, R) satisfies

f (x) =

⎧
⎨

⎩
5π3x + x

1
5 , |x| � 1,

–π3x – x5, |x| � 1.

We are to discuss the multiplicity of 8-periodic solutions of the equation

x(3)(t) = –
3∑

i=1

f
(
x(t – i)

)
. (29)

In this case, s = 1, (–1)s+1 = 1, k = 2, m = 1, α = –π3, β = 5π3. This yields that

N1(α) = – card

{
l ≥ 0 : 0 <

(
(8l + 1)π

4

)3

tan
π

8
< π3

}

– card

{
l ≥ 0 : 0 <

(
(8l + 3)π

4

)3

tan
3π

8
< π3

}
= –1,

N1(β) = card

{
l ≥ 0 : 0 <

(
(8l + 8 – 1)π

4

)3

tan
π

8
< 5π3

}

+ card

{
l ≥ 0 : 0 <

(
(8l + 8 – 2 – 1)π

4

)3

tan
3π

8
< 5π3

}
= 2,

and N0
1 (α+) = N0

1 (β–) = N0
1 (α–) = N0

1 (β+) = 0.
Applying Theorem 4.2, we conclude that Eq. (29) possesses at least three different 8-

periodic orbits satisfying x(t – 4) = –x(t).
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Example 6.2 Suppose that f ∈ C0(R, R) satisfies

f (x) =

⎧
⎨

⎩
3πx + x 1

3 , |x| � 1,

πx – x3, |x| � 1.

We are to discuss the multiplicity of 12-periodic solutions of the equation

x′(t) = –
5∑

i=1

(–1)i+1f
(
x(t – i)

)
. (30)

In this case, s = 0, (–1)s+1 = –1, k = 3, m = 2, α = π , β = 3π . This yields that

N2(α) = card

{
l ≥ 0 : 0 <

(12l + 1)π
6

cot
π

12
< π

}

+ card

{
l ≥ 0 : 0 <

(12l + 3)π
6

cot
3π

12
< π

}

+ card

{
l ≥ 0 : 0 <

(12l + 5)π
6

cot
5π

12
< π

}
= 4,

N2(β) = card

{
l ≥ 0 : 0 <

(12l + 1)π
6

cot
π

12
< 3π

}

+ card

{
l ≥ 0 : 0 <

(12l + 3)π
6

cot
3π

12
< 3π

}

+ card

{
l ≥ 0 : 0 <

(12l + 5)π
6

cot
5π

12
< 3π

}
= 9,

and N0
2 (α+) = N0

2 (β–) = N0
2 (α–) = N0

2 (β+) = 0.
Applying Theorem 4.5, we conclude that Eq. (30) possesses at least five different 12-

periodic orbits satisfying x(t – 6) = –x(t).
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