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Abstract
In this paper, we study the uniqueness of solutions for a fractional differential
equation with dependence on the first order derivative. By means of Banach’s
contraction mapping principle and a weighted norm in product space, sufficient
conditions for the uniqueness of solutions are investigated. An example is given to
illustrate the main results.
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1 Introduction
In this paper, we consider the following Dirichlet boundary value problem for fractional
differential equation:

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where 1 < α ≤ 2 and f ∈ C([0, 1] × R
2,R). Here, Dα

0+u(t) denotes the standard Riemann–
Liouville fractional derivative of u : [0, 1] → R defined by

Dα
0+ u(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0

u(s)
(t – s)α–n+1 ds,

where n – 1 ≤ α < n, provided that the right-hand side is pointwise defined on (0,∞).
The problem of the existence of solutions for fractional differential equation with various

boundary conditions has received an increased attention by using variational methods
and critical point theory, the theory of coincidence degree, some well-known fixed point
theorems, upper and lower solution method; see the monographs of Kilbas et al. [17],
Miller and Ross [21], Podlubny [23], the papers [1–5, 12, 14–16, 18, 19, 24–27, 29–31, 33,
35, 36, 38, 40–42], and the references therein. For example, Bai and Lü [5] considered the
special case of BVP (1.1) that f does not contain first order derivative term u′:

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)
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where 1 < α ≤ 2 and f ∈ C([0, 1] × [0, +∞), [0, +∞)). The authors obtained the existence
and multiplicity of positive solutions by means of the Krasnosel’skii fixed point theorem
and the Leggett–Williams fixed point theorem. In [18], the existence of at least one so-
lution for BVP (1.1) is proved by the Leray–Schauder continuation principle. In [2], the
authors investigated the fractional differential equations

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t), Dμ

0+u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

where 1 < α < 2, μ > 0 are real numbers, α – μ ≥ 1, f is a Carathéodory function, and
f (t, x, y) is singular at x = 0. The authors obtained the existence of positive solutions based
on regularization and sequential techniques. Recently, the authors of [9] proved unique-
ness results for BVP (1.2) by means of Banach’s contraction mapping principle and the
theory of linear operator.

At present, many papers are devoted to the uniqueness results for BVP; see [6–11,
13, 20, 22, 28, 34, 37, 39]. Some nonlinear analytical techniques have been used to study
the uniqueness of solutions for differential equation and differential systems such as the
method of Banach’s contraction mapping principle, fixed point theorems for mixed mono-
tone operators, the maximal principle, u0-positive operator, and linear operator theory.
On the other hand, there are some papers studying fractional differential equations and
fractional differential systems in which the fractional orders are involved in the nonlin-
earity, we refer the reader to [2, 18, 32]. Motivated by the results above, utilizing Banach’s
contraction mapping principle, we investigate the uniqueness result for solution of BVP
(1.1).

It should noted here that our main result has various new system features. First of all,
BVP (1.1) is reformulated as a fixed point problem for system of integral equations. Sec-
ond, a weighted norm in product space is introduced. Third, the first order derivative is
involved in the nonlinear terms.

Throughout the paper, we assume that the following condition holds:
(H) f : [0, 1] ×R

2 → R is a continuous function and there exist constants A, B > 0 such
that

∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ A|u1 – u2| + B|v1 – v2|, t ∈ [0, 1],

for all u1, u2, v1, v2 ∈R.

2 Preliminaries
Define two functions G, G1 as follows:

G(t, s) =
1

Γ (α)

⎧
⎨

⎩

(t(1 – s))α–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

(t(1 – s))α–1, 0 ≤ t ≤ s ≤ 1,
(2.1)

G1(t, s) =
α – 1
Γ (α)

⎧
⎨

⎩

tα–2(1 – s)α–1 – (t – s)α–2, 0 ≤ s ≤ t ≤ 1,

tα–2(1 – s)α–1, 0 ≤ t ≤ s ≤ 1.
(2.2)
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Lemma 2.1 ([5]) Let G be as in (2.1). Then

0 ≤ G(t, s) ≤ 1
Γ (α)

tα–1(1 – s)α–1, t, s ∈ [0, 1].

After routine calculation we get the following four inequalities:

Γ (α)
∫ 1

0
G(t, s)sα–1 ds

=
∫ 1

0

(
t(1 – s)

)α–1sα–1 ds –
∫ t

0
(t – s)α–1sα–1 ds

= tα–1B(α,α) – t2α–1
∫ 1

0
(1 – s)α–1sα–1 ds

= B(α,α)tα–1(1 – tα
) ≤ B(α,α)tα–1, (2.3)

Γ (α)
∫ 1

0
G(t, s)sα–2 ds

=
∫ 1

0

(
t(1 – s)

)α–1sα–2 ds –
∫ t

0
(t – s)α–1sα–2 ds

= tα–1B(α,α – 1) – t2α–2B(α,α – 1) ≤ B(α,α – 1)tα–1, (2.4)

Γ (α)
α – 1

∫ 1

0

∣
∣G1(t, s)

∣
∣sα–1 ds

≤ tα–2
∫ 1

0
(1 – s)α–1sα–1 ds +

∫ t

0
(t – s)α–2sα–1 ds

= tα–2B(α,α) + t2α–2B(α – 1,α)

≤ (
B(α,α) + B(α – 1,α)

)
tα–2, (2.5)

and

Γ (α)
α – 1

∫ 1

0

∣
∣G1(t, s)

∣
∣sα–2 ds

≤ tα–2
∫ 1

0
(1 – s)α–1sα–2 ds +

∫ t

0
(t – s)α–2sα–2 ds

= tα–2B(α,α – 1) + t2α–3B(α – 1,α – 1)

≤ (
B(α,α – 1) + B(α – 1,α – 1)

)
tα–2. (2.6)

Here, B(α,β) is the beta function defined by the Euler integral:

B(α,β) =
∫ 1

0
sα–1(1 – s)β–1 ds.

Lemma 2.2 ([5, 18]) Let h ∈ C[0, 1]. Then

u(t) =
∫ 1

0
G(t, s)h(s) ds
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is the unique solution of

⎧
⎨

⎩

Dα
0+u(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0.

Moreover, u′ ∈ C(0, 1] ∩ ACloc(0, 1], limt→0+ t2–αu′(t) exists and satisfies

u′(t) =
∫ 1

0
G1(t, s)h(s) ds.

We set E1 = C[0, 1] with the usual maximum norm denoted by ‖u‖E1 = maxt∈(0,1] |u(t)|.
Consider the Banach space

E2 =
{

v ∈ C(0, 1] : lim
t→0+

t2–αv(t) exists
}

with the norm ‖v‖E2 = supt∈(0,1] |t2–αv(t)|. Then E1 × E2 is a Banach space with the norm

∥
∥(u, v)

∥
∥

E1×E2
= max

{‖u‖E1 ,‖v‖E2

}
.

According to Lemma 2.2, BVP (1.1) has a solution u = u(t) if and only if (u, v) ∈ E1 × E2

solves the following integral equations:

⎧
⎨

⎩

u(t) =
∫ 1

0 G(t, s)f (s, u(s), v(s)) ds,

v(t) =
∫ 1

0 G1(t, s)f (s, u(s), v(s)) ds,

with v = u′. Define an operator T by

T(u, v) =
(
T1(u, v), T2(u, v)

)
, (u, v) ∈ E1 × E2,

where operators T1, T2 are defined by

T1(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds, (u, v) ∈ E1 × E2,

T2(u, v)(t) =
∫ 1

0
G1(t, s)f

(
s, u(s), v(s)

)
ds, (u, v) ∈ E1 × E2,

respectively. For (u, v) ∈ E, by Lemma 2.1 and (H), we have

∣
∣T1(u, v)(t)

∣
∣

≤
∫ 1

0
G(t, s)

∣
∣f

(
s, u(s), v(s)

)
– f (s, 0, 0)

∣
∣ds +

∫ 1

0
G(t, s)

∣
∣f (s, 0, 0)

∣
∣ds

≤ tα–1

Γ (α)

∫ 1

0

(
A

∣
∣u(s)

∣
∣ + B

∣
∣v(s)

∣
∣
)
(1 – s)α–1 ds +

tα–1

Γ (α)

∫ 1

0

∣
∣f (s, 0, 0)

∣
∣ds

≤ A‖u‖E1

Γ (α + 1)
tα–1 +

B‖v‖E2

Γ (α)

∫ 1

0
sα–2(1 – s)α–1 ds · tα–1
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+
tα–1

Γ (α)

∫ 1

0
(1 – s)α–1∣∣f (s, 0, 0)

∣
∣ds

=
(

A‖u‖E1

Γ (α + 1)
+

BΓ (α – 1)‖v‖E2

Γ (2α – 1)
+

1
Γ (α)

∫ 1

0

∣
∣f (s, 0, 0)

∣
∣ds

)

tα–1, (2.7)

which implies that T1 is well defined on E and T1(u, v) ∈ E1. In the same way, we can prove
that T2 is well defined on E and T2(u, v) ∈ E2 for all (u, v) ∈ E. Thus, the existence of a
solution of BVP (1.1) is equivalent to the existence of a fixed point of T on E1 × E2.

It follows from (2.7) that T1 maps all of E1 × E2 into the following vector subspace of E1:

E3 =
{

u ∈ E1 :
|u(t)|
tα–1 are bounded for t ∈ [0, 1]

}

.

Clearly, E3 is a Banach space with the norm

‖u‖E3 = sup
t∈(0,1]

t1–α
∣
∣u(t)

∣
∣.

Hence, in the following we only need to consider the fixed points of T in the Banach space
E = E3 × E2 with the weighted norm

∥
∥(u, v)

∥
∥

E = max

{

‖u‖E3 ,
‖v‖E2

θ

}

with a constant θ > 0.

Lemma 2.3 Let a, d ∈ [0, 1), b, c ∈ [0, +∞) with (1 – d)(1 – a) > bc. Then the system of
inequalities

⎧
⎨

⎩

a + bθ ≤ λ,
c
θ

+ d ≤ λ
(2.8)

has a solution (λ, θ ) with λ ∈ (0, 1) and θ > 0.

Proof For the case bc = 0, we may take λ = max{ d+1
2 , d+1

2 }. So it remains to consider the
case bc 
= 0. Let

φ(x) = (x – d)(x – a) – bc, x ∈R.

It follows from the derivative of φ(x) that φ(x) is increasing on [ a+d
2 , 1]. With the help of

the locally sign-preserving property of φ(x), we conclude that there exists λ ∈ [ a+d
2 , 1) such

that

(λ – d)(λ – a) ≥ bc.

The above inequality is equivalent to c
λ–d ≤ λ–a

b . Therefore (2.8) holds for θ ∈ [ c
λ–d , λ–a

b ]. �
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3 Main results
Set

a11 =
AΓ (α)
Γ (2α)

, a21 =
A(α – 1)(B(α,α) + B(α – 1,α))

Γ (α)
,

a12 =
BΓ (α – 1)
Γ (2α – 1)

, a22 =
B(α – 1)(B(α,α – 1) + B(α – 1,α – 1))

Γ (α)
.

Now, we show that a uniqueness result follows from Banach’s contraction mapping prin-
ciple.

Theorem 3.1 Suppose that condition (H) holds. In addition, we assume that the four con-
stants a11, a12, a21, a22 satisfy

a11 < 1, a22 < 1,

and

(1 – a11)(1 – a22) > a12a21.

Then BVP (1.1) has a unique solution.

Proof It follows from Lemma 2.3 that there exist λ ∈ (0, 1) and θ > 0 such that

⎧
⎨

⎩

a11 + a12θ ≤ λ,
a21
θ

+ a22 ≤ λ.
(3.1)

We shall apply Banach’s contraction mapping principle in E = E3 × E2 endowed with the
weighted norm

∥
∥(u, v)

∥
∥

E = max

{

‖u‖E3 ,
‖v‖E2

θ

}

with θ > 0 as in (3.1). More precisely, we prove that

∥
∥T(u1, v1) – T(u2, v2)

∥
∥

E ≤ λ
∥
∥(u1, v1) – (u2, v2)

∥
∥

E

for all (u1, v1), (u2, v2) ∈ E. In fact, by (2.3), (2.4), and (3.1), we have

∣
∣T1(u1, v1)(t) – T1(u2, v2)(t)

∣
∣

≤
∫ 1

0
G(t, s)

∣
∣f

(
s, u1(s), v1(s)

)
– f

(
s, u2(s), v2(s)

)∣
∣ds

≤
∫ 1

0
G(t, s)

(
A

∣
∣u1(s) – u2(s)

∣
∣ + B

∣
∣v1(s) – v2(s)

∣
∣
)

ds

≤
∫ 1

0
G(t, s)

(
A‖u1 – u2‖E3 sα–1 + B‖v1 – v2‖E2 sα–2)ds
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≤
(

a11‖u1 – u2‖E3 + a12θ
‖v1 – v2‖E2

θ

)

· tα–1

≤ λ
∥
∥(u1, v1) – (u2, v2)

∥
∥

E · tα–1.

Hence, from the definition of ‖ · ‖E3 , we have

∥
∥T1(u1, v1) – T1(u2, v2)

∥
∥

E3
≤ λ

∥
∥(u1, v1) – (u2, v2)

∥
∥

E . (3.2)

Similar, we have

1
θ

∣
∣T2(u1, v1)(t) – T2(u2, v2)(t)

∣
∣

≤ 1
θ

∫ 1

0

∣
∣G1(t, s)

∣
∣
∣
∣f

(
s, u1(s), v1(s)

)
– f

(
s, u2(s), v2(s)

)∣
∣ds

≤ 1
θ

∫ 1

0

∣
∣G1(t, s)

∣
∣
(
A

∣
∣u1(s) – u2(s)

∣
∣ + B

∣
∣v1(s) – v2(s)

∣
∣
)

ds

≤ 1
θ

∫ 1

0

∣
∣G1(t, s)

∣
∣
(
A‖u1 – u2‖E3 sα–1 + B‖v1 – v2‖E2 sα–2)ds

≤
(

1
θ

· a21‖u1 – u2‖E3 + a22
‖v1 – v2‖E2

θ

)

· tα–2

≤ λ
∥
∥(u1, v1) – (u2, v2)

∥
∥

E · tα–2.

Thus, we have

1
θ

∥
∥T2(u1, v1) – T2(u2, v2)

∥
∥

E2
≤ λ

∥
∥(u1, v1) – (u2, v2)

∥
∥

E . (3.3)

Now, both inequalities (3.2) and (3.3) can be rewritten equivalently as

∥
∥T(u1, v1) – T(u2, v2)

∥
∥

E ≤ λ
∥
∥(u1, v1) – (u2, v2)

∥
∥

E .

Note that λ ∈ (0, 1). The uniqueness result follows from Banach’s contraction mapping
principle. �

In what follows, we give an example to illustrate the application of our results.

Example 3.1 Consider the BVP

⎧
⎨

⎩

D
3
2
0+u(t) + 1

3
√

π
sin(6u(t) + u′(t)) + h(t) = 0,

u(0) = u(1) = 0,
(3.4)

where t ∈ [0, 1], α = 3
2 , and h ∈ C[0, 1]. Let f (t, u, v) = 1

3
√

π
sin(6u + v) + h(t). It is easy to see

that |f (t, u1, v1) – f (t, u2, v2)| ≤ 2√
π
|u1 – u2| + 1

3
√

π
|v1 – v2| for all t ∈ [0, 1], u1, u2, v1, v2 ∈R.

Then, for α = 3
2 , A = 2√

π
, and B = 1

3
√

π
, we have that a11 = 1

2 , a12 = 1
6 , a21 = 5

4 , and a22 = 1
2 .

So (1 – a11)(1 – a22) > a12a21 holds, and from Theorem 3.1 BVP (3.4) has a unique solution.
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2. Agarwal, R.P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional

differential equations. J. Math. Anal. Appl. 371, 57–68 (2010)
3. Ahmad, B., Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional

differential equations. Fixed Point Theory Appl. 2010, 364560 (2010)
4. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)
5. Bai, Z., Lü, H.: Positive solutions for boundary value problems of nonlinear fractional differential equation. J. Math.

Anal. Appl. 311, 495–505 (2005)
6. Bai, Z., Sun, S., Chen, Y.: The Existence and Uniqueness of a Class of Fractional Differential Equations. Abstr. Appl. Anal.

2014, 486040 (2014)
7. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51,

48–54 (2016)
8. Cui, Y., Liu, L., Zhang, X.: Uniqueness and existence of positive solutions for singular differential systems with coupled

integral boundary value problems. Abstr. Appl. Anal. 2013, 340487 (2013)
9. Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation.

Nonlinear Anal., Model. Control 23(1), 31–39 (2018). https://doi.org/10.15388/NA.2018.1.3
10. Cui, Y., Ma, W., Wang, X., Su, X.: Uniqueness theorem of differential system with coupled integral boundary conditions.

Electron. J. Qual. Theory Differ. Equ. 2018(9), 1 (2018). https://doi.org/10.14232/ejqtde.2018.1.9
11. Cui, Y., Zou, Y.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral

boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)
12. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative.

Bound. Value Probl. 2017, 5 (2017)
13. Graef, J., Kong, L., Kong, Q., Wang, M.: Uniqueness of positive solutions of fractional boundary value problems with

nonhomogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15(3), 509–528 (2012)
14. Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular fractional differential equations with infinite-point

boundary conditions. Nonlinear Anal., Model. Control 21(5), 635–650 (2016)
15. Hao, X., Sun, H., Liu, L.: Existence results for fractional integral boundary value problem involving fractional derivatives

on an infinite interval. Math. Methods Appl. Sci. 41(16), 6984–6996 (2018). https://doi.org/10.1002/mma.5210
16. Hao, X., Zuo, M., Liu, L.: Multiple positive solutions for a system of impulsive integral boundary value problems with

sign-changing nonlinearities. Appl. Math. Lett. 82, 24–31 (2018)
17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
18. Kosmatov, N.: A singular boundary value problem for nonlinear differential equations of fractional order. J. Appl.

Math. Comput. 29, 125–135 (2009)
19. Liu, L., Zhang, X., Jiang, J., Wu, Y.: The unique solution of a class of sum mixed monotone operator equations and its

application to fractional boundary value problems. J. Nonlinear Sci. Appl. 9(5), 2943–2958 (2016)
20. Meng, S., Cui, Y.: The Uniqueness Theorem of the Solution for a Class of Differential Systems with Coupled Integral

Boundary Conditions. Discrete Dyn. Nat. Soc. 2018, Article ID 9601868 (2018)
21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York

(1993)
22. Min, D., Liu, L., Wu, Y.: Uniqueness of positive solutions for the singular fractional differential equations involving

integral boundary value conditions. Bound. Value Probl. 2018, Article ID 23 (2018)
23. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York

(1999)
24. Pu, R., Zhang, X., Cui, Y., Li, P., Wang, W.: Positive solutions for singular semipositone fractional differential equation

subject to multipoint boundary conditions. J. Funct. Spaces 2017, Article ID 5892616 (2017)
25. Qi, T., Liu, Y., Cui, Y.: Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary

conditions. J. Funct. Spaces 2017, 6703860 (2017)
26. Qi, T., Liu, Y., Zou, Y.: Existence result for a class of coupled fractional differential systems with integral boundary value

conditions. J. Nonlinear Sci. Appl. 10, 4034–4045 (2017)

https://doi.org/10.15388/NA.2018.1.3
https://doi.org/10.14232/ejqtde.2018.1.9
https://doi.org/10.1002/mma.5210


Yue and Zou Advances in Difference Equations         (2019) 2019:38 Page 9 of 9

27. Sun, Q., Ji, H., Cui, Y.: Positive solutions for boundary value problems of fractional differential equation with integral
boundary conditions. J. Funct. Spaces 2018, Article ID 6461930 (2018)

28. Ur Rehman, M., Ali Khan, R.: Existence and uniqueness of solutions for multi-point boundary value problems for
fractional differential equations. Appl. Math. Lett. 23, 1038–1044 (2010)

29. Wang, Y., Liu, L.: Uniqueness and existence of positive solutions for the fractional integro-differential equation. Bound.
Value Probl. 2017, 12 (2017)

30. Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: The convergence analysis and error estimation for unique solution of a
p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, 82 (2018)

31. Xu, M., Han, Z.: Positive solutions for integral boundary value problem of two-term fractional differential equations.
Bound. Value Probl. 2018, 100 (2018)

32. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a singular fractional differential system involving
derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 1400–1409 (2013)

33. Zhang, X., Liu, L., Wu, Y., Cui, Y.: Entire blow-up solutions for a quasilinear p-Laplacian Schrodinger equation with a
non-square diffusion term. Appl. Math. Lett. 74, 85–93 (2017)

34. Zhang, X., Liu, L., Wu, Y., Zou, Y.: Existence and uniqueness of solutions for systems of fractional differential equations
with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, Article ID 204 (2018).
https://doi.org/10.1186/s13662-018-1650-7

35. Zhang, X., Shao, Z., Zhong, Q.: Positive solutions for semipositone (k,n – k) conjugate boundary value problems with
singularities on space variables. Appl. Math. Lett. 72, 50–57 (2017)

36. Zhang, X., Wu, Y., Cui, Y.: Existence and nonexistence of blow-up solutions for a Schrodinger equation involving a
nonlinear operator. Appl. Math. Lett. 82, 85–91 (2018)

37. Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type
integral conditions. Fract. Calc. Appl. Anal. 20(6), 1471–1484 (2017)

38. Zhang, X., Zhong, Q.: Triple positive solutions for nonlocal fractional differential equations with singularities both on
time and space variables. Appl. Math. Lett. 80, 12–19 (2018)

39. Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74,
68–73 (2017)

40. Zou, Y., He, G.: A fixed point theorem for systems of nonlinear operator equations and applications to
(p1,p2)-Laplacian system. Mediterr. J. Math. 15, 74 (2018)

41. Zou, Y., Liu, L., Cui, Y.: The existence of solutions for four-point coupled boundary value problems of fractional
differential equations at resonance. Abstr. Appl. Anal. 2014, 314083 (2014)

42. Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type
with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, 161 (2017)

https://doi.org/10.1186/s13662-018-1650-7

	New uniqueness results for fractional differential equation with dependence on the ﬁrst order derivative
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


