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Abstract
In this paper, studies on the synchronization of fractional-order Takagi–Sugeno (T-S)
fuzzy neural networks are performed. By employing a linear matrix inequality and
constructing a skillful Lyapunov function, sufficient conditions are derived to
guarantee that the master system synchronizes the slave system. Finally, an example
and its simulations are presented to demonstrate the feasibility of the synchronization
scheme.
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1 Introduction
Neural networks are playing a more and more important role in the reconstruction of im-
ages, signal processing, optimization problems, artificial intelligence, etc. However, neural
networks can arise chaotic behaviors due to an unpredictable disturbance. To control the
chaos arising in the neural networks, a variety of synchronization schemes have been pro-
posed, including projective synchronization [22], event-based synchronization [13], expo-
nential synchronization [8, 15], finite-time synchronization [29, 36], generalized synchro-
nization [2, 10], pinning synchronization [9, 31], lag synchronization [26, 32], adaptive
synchronization [3, 11, 18, 24, 27, 36], impulsive synchronization [14, 17, 28, 30, 31], and
so on. Recently, another important topic is the fractional calculus, which depicts arbitrary
non-integer-order differentiation and integration. The fractional-order neural networks
have been proposed in theory and practice due to the great significance of the fractional
calculus. Stability analysis of a fractional-order system with impulses was performed in
[21]. Synchronization schemes were proposed for the fractional-order neural networks
with delays (see, e.g., [33, 35]). Memristor-based fractional-order cellular neural networks
were studied in [7, 20].

Fuzzy logic theory is a powerful tool to deal with synthesis of integer-order complex sys-
tems (see [4–6, 23, 25, 38]). However, they have not considered the effects of fuzzy logic
on the fractional-order neural networks. There are few papers considering the stability
and synchronization of Takagi–Sugeno (T-S) fuzzy neural networks. Recently, state esti-
mation was given for T-S fuzzy delayed Hopfield neural networks in [1]. Adaptive fuzzy
sliding mode control scheme was proposed for the uncertain fractional-order chaotic sys-
tems [16]. Finite stability analysis was performed for a memristor-based fractional-order
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fuzzy cellular neural networks in [37]. In [19], impulsive synchronization was proposed for
fractional T-S fuzzy networks by utilizing the comparison principle. In [22], the authors
studied the adaptive projective synchronization for fractional-order T-S fuzzy neural net-
works with uncertain parameters. In the previous works, they considered the projective
synchronization and the impulsive synchronization of fractional-order T-S fuzzy neural
networks. However, different from their consideration and method, we construct a differ-
ent Lyapunov function and employ the linear matrix inequality. Some sufficient conditions
are obtained to guarantee the master–slave synchronization of fractional-order T-S neural
networks. This is the highlight of this paper.

This paper is organized as follows. Definitions and lemmas are presented in the next
section. Section 3 is devoted to obtaining the sufficient conditions for synchronization of
fractional-order neural networks. Finally, an example and its simulations are given.

2 Preliminaries
In this section, the assumptions, definitions, and some lemmas are given. Two definitions
of the Caputo fractional-order integrals and derivatives are introduced.

Definition 2.1 For a function x(t) and non-integer real number α > 0, the Caputo frac-
tional integral is defined as

Iαx(t) =
1

Γ (α)

∫ t

t0

(t – τ )α–1x(τ ) dτ ,

where the gamma function Γ (·) satisfies Γ (s) =
∫ ∞

0 ts–1e–t dt, t0 is the initial time, t ≥ t0.

Definition 2.2 For a function x(t) and non-integer real number α > 0, the Caputo frac-
tional derivative is defined as

Dαx(t) =
1

Γ (n – α)

∫ t

t0

(t – τ )n–α–1x(n)(τ ) dτ ,

where t0 is the initial time, t ≥ t0, n – 1 < α < n ∈ Z+.

We need the following lemmas.

Lemma 2.1 ([12]) For the Caputo fractional-order derivative, when n – 1 < α < n, n ∈ N+,
we have

D–α
(
Dα

)
f (t) = f (t) –

n–1∑
i=1

f i(t0)
i!

(t – t0)i.

In particular, when 0 < α < 1,

D–α
(
Dα

)
f (t) = f (t) – f (t0), D–α

(
Iα

)
f (t) = f (t).

Lemma 2.2 ([1]) For any matrices X ∈ Rm×n, Y ∈ Rm×n, Λ = ΛT > 0, Λ ∈ Rn×n, the in-
equality XT Y + Y T X ≤ XTΛX + Y TΛ–1Y holds.
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Lemma 2.3 ([34]) Given constant matrices Ξ1, Ξ2, Ξ3, where Ξ1 = ΞT
1 , Ξ2 = ΞT

2 , and
Ξ2 > 0, then Ξ1 + ΞT

3 Ξ–1
2 Ξ3 < 0 if and only if

(
Ξ1 ΞT

3

Ξ3 –Ξ2

)
< 0, or

(
–Ξ2 ΞT

3

Ξ3 Ξ1

)
< 0.

3 Model formulations and synchronization schemes
In this section, we discuss the master–slave synchronization of fractional-order T-S fuzzy
delayed neural networks. The aim is to achieve the synchronization of the T-S fuzzy
master–slave systems by using a state feedback controller. Consider a vector form of the
neural network as follows:

Dαx(t) = Cx(t) + Af
(
x(t)

)
+ Bg

(
u(t – τ )

)
+ I(t). (1)

If we take (1) as the master system, the corresponding slave system can be given as

Dαv(t) = Cv(t) + Af
(
v(t)

)
+ Bg

(
v(t – τ )

)
– U(t) + I(t), (2)

where x(t) = [u1(t), . . . , un(t)]T ∈ Rn is the state vector, v(t) = [v1(t), . . . , vn(t)]T ∈ Rn is the
output vector, C = diag(–c1, . . . , –cn) (ck > 0, k = 1, . . . , n) is the self-feedback matrix, U(t) is
a suitable controller, A and B ∈ Rn×n, I(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]T ∈ Rn is the external input
vector, f (x(t)) = [f1(u1(t)), . . . , fn(un(t))]T and g(u(t – τ )) = [g1(u1(t – τ )), . . . , gn(un(t – τ ))]T

denotes the output vector at time t and t – τ , respectively.
Motivated by [1], we define the fuzzy rule k as follows:
IF ω1 is μk1 and · · · ωs is μks, THEN

Dαx(t) = Ckx(t) + Akf
(
x(t)

)
+ Bkg

(
u(t – τ )

)
+ Ik(t), (3)

Dαv(t) = Civ(t) + Akf
(
v(t)

)
+ Bkg

(
v(t – τ )

)
– U(t) + Ik(t). (4)

The meaning of parameters ωk ,μkq (k = 1, 2, . . . , r, q = 1, 2, . . . , s), r is the same as in [1].
Using a standard fuzzy inference method, we have from (3)–(4) that

Dαu(t) =
r∑

k=1

hk(ω)
[
Cku(t) + Akf

(
u(t)

)
+ Bkg

(
u(t – τ )

)
+ Ik(t)

]
, (5)

Dαv(t) =
r∑

k=1

hk(ω)
[
Ckv(t) + Akf

(
v(t)

)
+ Bkg

(
v(t – τ )

)
– U(t) + Ik(t)

]
, (6)

where hk(ω) = ωk (ω)∑s
k=1 ωk (ω) satisfies

hk(ω) ≥ 0,
n∑

i=1

hk(ω) = 1. (7)

Throughout this paper, we make the following assumption.
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Assumption 3.1 The neuron activation functions fj(x) and gj(x) satisfy the following Lip-
schitz conditions:

∣∣fj(x) – fj(y)
∣∣ ≤ lj|x – y|

and

∣∣gj(x) – gj(y)
∣∣ ≤ hj|x – y|

for all x, y ∈ R, where lj > 0, hj > 0 are Lipschitz constants.

Let e(t) = v(t) – u(t) be the synchronization error, select the control input function

U(t) = Φ
(
v(t) – u(t)

)
, (8)

where Φ = diag(φ1,φ2, . . . ,φn) is the controller feedback matrix.
Then we can obtain the error system as follows:

Dαe(t) =
r∑

k=1

hk(ω)
{

(Ck – Φ)e(t) + Ak
[
f
(
v(t)

)
– Akf

(
u(t)

)]

+ Bk
[
g
(
v(t – τ )

)
– Bkg

(
u(t – τ )

)]}
. (9)

Theorem 3.1 If there exist positive definite matrices P, Q, R, S, and V such that

⎛
⎜⎜⎜⎜⎜⎜⎝

Ψ 0 V PAk PBk

0 H – R –V 0 0
V –V – 1

τ
Q 0 0

AT
k P 0 0 –E 0

BT
k P 0 0 0 –E

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0 (10)

for all k (k = 1, 2, . . . , r), where Ψ = (Ck – Φ)T P + P(Ck – Φ) + L + τQ + R + S, L =
diag{l2

1, l2
2, . . . , l2

n}, H = diag{h2
1, h2

2, . . . , h2
n}, E is an identity matrix, then the fractional-order

T-S fuzzy system (5) synchronizes to system (6).

Proof We define the following Lyapunov function:

V (t) = Dα–1[eT (t)Pe(t)
]

+
∫ 0

–τ

∫ t

t+θ

e( )T Qe( ) d dθ

+
[∫ 0

–τ

e(t + σ ) dσ

]T

V
[∫ 0

–τ

e(t + σ ) dσ

]

+
∫ 0

–τ

eT (t + σ )Re(t + σ ) dσ , (11)

where

e(t) =
(
e1(t), e2(t), . . . , en(t)

)T . (12)
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Calculation on the derivative along (9) leads to

V̇ (t) = Dα
[
eT (t)Pe(t)

]
+ τeT (t)Qe(t)

–
∫ t

t–τ

eT (σ )Qe(σ ) dσ + eT (t)Re(t)

– eT (t – τ )Re(t – τ ) +
[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]

+
[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]

=
r∑

k=1

hk(ω)
[
eT (t)

(
CT

k – ΦT)
+

(
f
(
v(t)

)
– f

(
u(t)

))T AT
k +

(
g
(
v(t – τ )

)

– g
(
u(t – τ )

))T BT
k
]
Pe(t) + eT (t)P

r∑
k=1

hk(ω)
[
(Ck – Φ)e(t)

+ Ak
(
f
(
v(t)

)
– f

(
u(t)

))
+ Bk

(
g
(
v(t – τ )

)
– g

(
u(t – τ )

))]

+ τeT (t)Qe(t) –
∫ t

t–τ

eT (σ )Qe(σ ) dσ + eT (t)Re(t) – eT (t – τ )Re(t – τ )

+
[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]

+
[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]

=
r∑

k=1

hk(ω)
{

eT (t)
[
(Ck – Φ)T P + P(Ck – Φ)

]
e(t) +

(
f
(
v(t)

)

– f
(
u(t)

))T AT
k Pe(t) + eT (t)PAk

(
f
(
v(t)

)
– f

(
u(t)

))
+

(
g
(
v(t – τ )

)

– g
(
u(t – τ )

))T BT
k Pe(t) + eT (t)PBk

(
g
(
v(t – τ )

)
– g

(
u(t – τ )

))}

+ τeT (t)Qe(t) –
∫ t

t–τ

eT (σ )Qe(σ ) dσ + eT (t)Re(t) – eT (t – τ )Re(t – τ )

+
[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]

+
[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]
.

In view of Lemma 2.2, we obtain

(
f
(
v(t)

)
– f

(
u(t)

))T AT
k Pe(t) + eT (t)PAk

(
f
(
v(t)

)
– f

(
u(t)

))

≤
n∑

j=1

l2
j e2

j (t) + eT (t)PAkAT
k Pe(t)

≤ eT (t)
(
L + PAiAT

k P
)
e(t),
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and

(
g
(
v(t – τ )

)
– g

(
u(t – τ )

))T BT
k Pe(t) + eT (t)PBk

(
g
(
v(t – τ )

)
– g

(
u(t – τ )

))

≤
n∑

j=1

h2
j e2

j (t – τ ) + eT (t)PBkBT
k Pe(t)

≤ eT (t – τ )He(t – τ ) + eT (t)PBkBT
k Pe(t),

where L = diag{l2
1, l2

2, . . . , l2
n}, H = diag{h2

1, h2
2, . . . , h2

n}. Thus, we have

V̇ (t) ≤
r∑

k=1

hk(ω)
{

eT (t)
[
(Ck – Φ)T P + P(Ck – Φ)

]
e(t) + eT (t)Le(t)

+ eT (t)PAkAT
k Pe(t) + eT (t – τ )He(t – τ ) + eT (t)PBkBT

k Pe(t)
}

+ τeT (t)Qe(t) –
∫ t

t–τ

eT (σ )Qe(σ ) dσ + eT (t)Re(t) – eT (t – τ )Re(t – τ )

+
[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]
+

[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]
.

By using the inequality

[∫ t

t–τ

e(σ ) dσ

]T

Q
[∫ t

t–τ

e(σ ) dσ

]
≤ τ

∫ t

t–τ

e(σ )T Qe(σ ) dσ ,

we have

∫ t

t–τ

e(σ )T Qe(σ ) dσ ≥ 1
τ

[∫ t

t–τ

e(σ ) dσ

]T

Q
[∫ t

t–τ

e(σ ) dσ

]
.

Thus,

V̇ (t) ≤
r∑

k=1

hk(ω)
{

eT (t)
[
(Ck – Φ)T P + P(Ck – Φ)

]
e(t) + eT (t)Le(t) + eT (t)PAkAT

k Pe(t)

+ eT (t – τ )He(t – τ ) + eT (t)PBkBT
k Pe(t)

}
+ τeT (t)Qe(t)

–
1
τ

[∫ t

t–τ

e(σ ) dσ

]T

Q
[∫ t

t–τ

e(σ ) dσ

]
+ eT (t)Re(t) – eT (t – τ )Re(t – τ )

+
[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]
+

[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]

=
r∑

k=1

hk(ω)
{

eT (t)
[
(Ck – Φ)T P + P(Ck – Φ) + L + PAkAT

k P

+ PBkBT
k P + τQ + R

]
e(t)

}
+ eT (t – τ )(H – R)e(t – τ )

–
1
τ

[∫ t

t–τ

e(σ ) dσ

]T

Q
[∫ t

t–τ

e(σ ) dσ

]
+

[
e(t) – e(t – τ )

]T V
[∫ t

t–τ

e(σ ) dσ

]

+
[∫ t

t–τ

e(σ ) dσ

]T

V
[
e(t) – e(t – τ )

]
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=
r∑

k=1

hk(ω)

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝

e(t)
e(t – τ )∫ t

t–τ
e(σ ) dσ

⎞
⎟⎠

T ⎛
⎜⎝

Π 0 V
0 H – R –V
V –V – 1

τ
Q

⎞
⎟⎠

⎛
⎜⎝

e(t)
e(t – τ )∫ t

t–τ
e(σ ) dσ

⎞
⎟⎠

– e(t)T Se(t)

⎫⎪⎬
⎪⎭ ,

where

Π = (Ck – Φ)T P + P(Ck – Φ) + L + PAkAT
k P + PBkBT

k P + τQ + R + S.

Note that, by Lemma 2.3, the matrix inequality

⎛
⎜⎜⎜⎜⎜⎜⎝

Ψ 0 V PAk PBk

0 –R –V 0 0
V –V – 1

τ
Q 0 0

AT
k P 0 0 –E 0

BT
k P 0 0 0 –E

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0

implies that the following inequality holds:

⎛
⎜⎝

Π 0 V
0 H – R –V
V –V – 1

τ
Q

⎞
⎟⎠ < 0. (13)

Therefore,

V̇ (t) <
r∑

k=1

hk(ω)
{

–e(t)T Se(t)
}

= –e(t)T Se(t) < 0.

This implies that the fractional-order T-S fuzzy neuron system (5) synchronizes to sys-
tem (6). �

Remark 3.1 We construct a skillful Lyapunov function with the Caputo fractional-order
integral, definite integral, and double integral in the proof of Theorem 3.1.

4 Numerical example
In this section, as an example, we consider a fractional-order T-S fuzzy delayed neural
networks with two neurons.

Fuzzy Rule 1 IF ω1 is μ11 and · · · ωs is μ1s, THEN

Dαu(t) = C1u(t) + A1f
(
u(t)

)
+ B1g

(
u(t – τ )

)
+ I1(t), (14)

Dαv(t) = C1v(t) + A1f
(
v(t)

)
+ B1g

(
v(t – τ )

)
– Φe(t) + I1(t). (15)
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Fuzzy Rule 2 IF ω1 is μ21 and · · · ωs is μ2s, THEN

Dαu(t) = C2u(t) + A2f
(
u(t)

)
+ B2g

(
u(t – τ )

)
+ I2(t), (16)

Dαv(t) = C2v(t) + A2f
(
v(t)

)
+ B2g

(
v(t – τ )

)
– Φe(t) + I2(t). (17)

Using a standard fuzzy inference method, system (12)–(13) is inferred as follows:

Dαu(t) =
2∑

k=1

hk(ω)
[
Cku(t) + Akf

(
u(t)

)
+ Bkg

(
u(t – τ )

)
+ Ik(t)

]
, (18)

Dαv(t) =
2∑

k=1

hk(ω)
[
Ckv(t) + Akf

(
v(t)

)
+ Bkg

(
v(t – τ )

)
– Φe(t) + Ik(t)

]
, (19)

with r = 2,

f1
(
u1(t)

)
= g1

(
u1(t)

)
=

1
1 + e–u1(t) ,

f2
(
u2(t)

)
= g2

(
u2(t)

)
=

1
1 + e–u2(t) .

Correspondingly,

u(t) =

(
u1(t)
u2(t)

)
, v(t) =

(
v1(t)
v2(t)

)
,

A1 = B1 =

(
–1 0.4
0 –0.1

)
, C1 =

(
–4.5 0

0 –0.5

)
,

A2 = B2 =

(
1 –0.8

0.4 0.5

)
, C2 =

(
–2.1 0

0 –2.8

)
,

Φ =

(
11 0
0 11

)
, I1(t) =

(
sin 2t
– cos t

)
, I2(t) =

(
sin t
cos t

)
.

Taking h1(ω) = sin2(10 tanh π (t+2)
2 ), h2(ω) = cos2(10 tanh π (t+2)

2 ). Select τ = 1, α = 0.9, and
the initial conditions of u(t) and v(t)

x(0) =

(
–4.2
1.2

)
, y(0) =

(
2.1

–1.7

)
.

Based on these parameters, we obtain the solution of the linear matrix inequality (10) by
using Matlab LMI toolbox:

P =

(
0.1490 0.0001
0.0001 0.1490

)
, Q =

(
1.0569 0.003
0.003 1.0569

)
,

R =

(
1.0986 0.0003
0.0003 1.1114

)
, S =

(
0.9998 0.0009
0.009 1.0384

)
,
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V =

(
0.1206 0

0 0.1206

)
.

Obviously, P, Q, R, S, and V are positive definite matrices. The simulation results for the
synchronization of our drive-master systems are shown in Figs. 1–3. In this numerical
example, we employed the first type of Lagrange interpolation approximation to draw the
image of the fractional-order Caputo derivative.

Figure 1 Dynamics of states u1(t) and v1(t)

Figure 2 Dynamics of states u2(t) and v2(t)
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Figure 3 Dynamics of states e1(t) and e2(t)
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