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Abstract
In this article, by using nonlinear Leray–Schauder-type alternative and Banach’s fixed
point theorem, we investigate existence and uniqueness of solutions. We also prove
Hyers–Ulam stability for the proposed coupled system of fractional differential
equations (FDEs) with the nonlinear p-Laplacian operator and Riemann–Liouville
integral boundary conditions (IBCs). An illustrative example is presented to
demonstrate our main results.

Keywords: Fractional differential equations; Riemann–Liouville integral boundary
conditions; p-Laplacian operator; Hyers–Ulam stability; Banach’s fixed point theorem

1 Introduction
Fractional calculus is a generalization of classical calculus. FDEs are proved to be valu-
able tools compared to integer order differential equations. Different physical and nat-
ural phenomena were modeled using FDEs in various disciplines, such as combustion
theory, papulation biology, non-Newtonian mechanics, control theory, aerodynamics,
hydro- and electro-dynamics, economics, bioengineering, networking, system of Monge–
Kantorovich partial differential equations, image and signal processing, viscoelasticity,
blood flow, game theory, chemistry; for details we refer to [1–10].

Recently, differential equations involving the nonlinear p-Laplacian operator gained at-
tention from researchers. Articles dealing with ordinary differential equations and partial
differential equations involving the nonlinear p-Laplacian operator have been studied. In
the last few years, the mentioned area was extended to FDEs using different fractional or-
der integrals and differential operators. By different mathematical approaches FDEs were
investigated for existence and uniqueness of solutions, as well as for multiple positive so-
lutions [11–20].

Further, FDEs involving the nonlinear p-Laplacian operator with integral boundary con-
ditions have attracted researchers of various disciplines, because such systems are increas-
ingly used in modeling [21–24]. Zhi et al. [14] have studied FDEs with the p-Laplacian
nonlinear operator aiming to show existence of positive solutions for a nonlocal boundary
value problem and have given a valuable example to demonstrate the results. The problem
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is given by

(
ϕp

(
Dθ1ω(x)

))′′ = F
(
x,ω(x),Dθ2ω(x)

)
, x ∈ (0, 1),

ω(x)|x=0 = ω′′(x)
∣∣
x=0 = 0, ω(1) =

∫ 1

0
g(θ )ω(θ ) dθ ,

(
ϕp

(
Dθ1

)
ω(0)

)′ = ξ1
(
ϕp

(
Dθ1

)
ω(a1)

)′,

ϕp
(
Dθ1

)
ω(1) = ξ2

(
ϕp

(
Dθ1

)
ω(b2)

)
,

where Dθ1 , Dθ2 represent derivatives of order θ1, θ2 in Caputo sense, where 2 < θ1 ≤ 3, 1 <
θ2 < θ1 – 1 < 2, 0 ≤ ξ1, ξ2 < 1, 0 < a1 ≤ b2 < 1, and ϕp is the nonlinear p-Laplacian operator.
Hu and Zhang [25] investigated a coupled system of FDEs with the nonlinear p-Laplacian
operator and infinite boundary conditions, namely the following problem:

Dθ∗
1 ϕp

(
Dθ1ω1(r)

)
= h

(
r,ω2(r),Dθ2–1,Dθ2–1ω2(r), . . . ,Dθ2–(n–1)ω2(r)

)
, r ∈ (0, 1),

Dθ∗
2 ϕp

(
Dθ2 y(r)

)
= g

(
r,ω1(r),Dθ1–1,Dθ1–1ω1(r), . . . ,Dθ1–(n–1)ω1(r)

)
, r ∈ (0, 1),

ω′
1(0) = · · · = ω

(n–1)
1 (0) = Dθ1ω1(0) = 0, ω1(0) =

∞∑

i=1

aiω1(μi),

ω′
2(0) = · · · = ω

(n–1)
2 (0) = Dθ2ω2(0) = 0, ω2(0) =

∞∑

i=1

biω2(νi),

whereDθ∗
i ,Dθi for i = 1, 2, are Caputo fractional derivatives, 0 < θ∗

1 , θ∗
2 < 1, n–1 < θ1, θ2 < n,

0 < μ1 < μ2 < · · · < μi < · · · < 1, 0 < ν1 < ν2 < · · · < νi < · · · < 1,
∑∞

i=1 |ai| < ∞,
∑∞

i=1 |bi| < ∞,
∑∞

i=1 ai =
∑∞

i=1 bi = 1, and h, g are real-valued continuous functions.
Recently, Ali et al. [26] investigated a coupled system of fractional differential equations

with noninteger order integral boundary conditions for the existence and uniqueness of
solutions, and furthermore, checked Hyers–Ulam stability. By using the topological de-
gree theory, some special conditions were developed to show stability. As an application,
an expressive example was provided to demonstrate the considered problem, which is
given below:

Dθ1ω1(r) – f
(
r,ω2(r)

)
= 0, r ∈ [0, 1],

Dθ2ω2(r) – g
(
r,ω1(r)

)
= 0, r ∈ [0, 1],

ω1(0) = 0, ω1(r)|t=1 =
1

Γ (γ )

∫ T

0
(r – s)γ –1p

(
ω1, (s)

)
ds,

ω2(0) = 0, ω2(r)|t=1 =
1

Γ (δ)

∫ T

0
(r – s)δ–1q

(
ω2(s)

)
ds,

where Dθ1 , Dθ2 are Caputo fractional derivatives, θ1, θ2,γ , δ ∈ (1, 2], p, q ∈ L[0, 1] and
f , g ∈ J ×R→R, the functions involved in fractional IBCs are continuous and also satisfy
certain growth conditions.

Inspired by the aforementioned work, we investigate existence and uniqueness of solu-
tions and prove Hyres–Ulam stability for the coupled suggested problem FDEs involving
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the nonlinear p-Laplacian operator with integral boundary conditions, namely

Dθ∗
1 ϕp

(
Dθ1ω1(r)

)
= f

(
r,ω1(r),ω2(r)

)
), r ∈ [0, 1],

Dθ∗
2 ϕp

(
Dθ2ω2(r)

)
= g

(
r,ω1(r),ω2(r)

)
), r ∈ [0, 1],

ϕp
(
Dθ1ω1(r)

)∣∣
r=0 = ω′

1(r)
∣
∣
r=0 = 0, ω1(r)|r=0 = γ Iα–1ω1(η),

ϕp
(
Dθ2ω2(r)

)∣∣
r=0 = ω′

2(r)|r=0 = 0, ω2(r)
∣∣
r=0 = δIβ–1ω2(ξ ),

(1.1)

where Dθi , Dθ∗
i for i = 1, 2 are Caputo fractional derivatives, θi ∈ (1, 2], θ∗

i ∈ (0, 1], f , g ∈
C([0, 1] × R2,R), i = 1, 2 are continuous functions and α,β ≥ 1, γ , δ ∈ [–1, 0] ϕp(ϑ) =
|ϑ |p–2ϑ is the p-Laplacian operator where 1/p + 1/q = 1, ϕq denotes the inverse of
p-Laplacian. For existence and uniqueness of solutions, employing nonlinear Leray–
Schauder-type alternative and Banach’s fixed point theorem, new results are obtained for
the coupled considered FDEs involving the nonlinear p-Laplacian operator with IBCs.
The important aspect of this article is to check stability for the coupled considered FDEs
involving the nonlinear p-Laplacian operator. In the literature, different types of stability
were presented for functional, differential and integral equations, for example, Lyapunov
and exponential stability [27, 28]. But checking such stability is difficult and time con-
suming due to calculation of Lyapunov functions. An interesting and motivating stability
method was introduced by Ulam and then by Hyers in 1941, which is known as Hyers–
Ulam stability [29, 30]. Such stability has outstanding applications in integer order and
fractional order differential equations appearing in physics, optimization, numerical anal-
ysis, biological phenomena, economic, biochemistry, etc. For the details of using Hyres–
Ulam stability, we suggest [9, 31–33]. In the following sections, we provide necessary def-
initions, lemmas, assumptions, as well as decribe the stability method and an example
for the coupled considered FDEs with the nonlinear p-Laplacian operator with integral
boundary conditions.

2 Background material and auxiliary results
Let us introduce X = {ω1(r)|ω1(r) ∈ C1([0, 1])} as the space all continuous functions, en-
dowed with a norm ‖ω1‖ = max{ω1(r), r ∈ [0, 1]}, here (X ,‖ · ‖) is obviously a Banach
space, let Y = {ω2(r)|ω2(r) ∈ C1}. Then the product space denoted by (X ×Y ,‖(ω1,ω2)‖),
equipped with the norm ‖(ω1,ω2)‖ = ‖ω1‖+‖ω2‖, is also a Banach space. This will be used
throughout in the considered coupled FDEs with the nonlinear p-Laplacian with IBCs.
Now recall the following definition which can be traced to [34–36].

Definition 2.1 Let � be a given function on a closed interval [0, b]. Then the non-integer
order derivative in the Caputo sense of � is defined by

Dθ1�(r) =
∫ r

0

(r – τ )n–θ1–1

Γ (n – θ1)

(
dn

dτ n �(τ )
)

dτ , θ1 ∈ (n – 1, n],

where n – 1 = [θ1]. In particular, if � is defined on the interval [0, b] and θ1 ∈ (0, 1), then

Dθ1�(r) =
1

Γ (1 – θ1)

∫ r

0

�
′(τ )

(r – τ )θ1
dτ , where ϕ′(s) =

dϕ(s)
ds

.

It is to be noted that the integral on the right-hand side is pointwise defined on R+.
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Definition 2.2 The integral of arbitrary order θ1 ∈ R+ in the Riemann–Liouville sense
for a function ϕ : R+ →R is given as

Iθ1�(r) =
1

Γ (θ1)

∫ r

0
(r – τ )θ1–1

�(τ ) dτ ,

so that the integral on the right-hand side is pointwise defined on R+.

Lemma 2.3 Let θ1 > 0 and ω1 ∈ C(0, 1) ∩L1(0, 1). Then the general solution of FDE

Dθ1ω1(r) = y(r),

is given by

ω1(r) = Iθ1 y(r) + ρ0 + ρ1t + ρ2t2 + · · · + ρm–1tm–1,

for some ρi ∈R, i = 0, 1, 2, . . . , m – 1, where m is the smallest integer such that m ≥ θ1.

Lemma 2.4 ([37]) Let ϕp be the p-Laplacian operator.
(i) If 1 < p ≤ 2, ζ1ξ2 > 0 and |ζ1|, |ξ2| ≥ m > 0, then

∣∣ϕp(ζ1) – ϕp(ζ2)
∣∣ ≤ (p – 1)mp–2|ζ1 – ζ2|.

(ii) If p > 2, and |ζ1|, |ζ2| ≤ M, then

∣∣ϕp(ζ1) – ϕp(ζ2)
∣∣ ≤ (p – 1)Mp–2|ζ1 – ζ2|.

Definition 2.5 Let T : L→L. Then the operator equation given by

T ω1(r) = ω1(r), r ∈ [0, 1],

is called Hyers–Ulam stable if, for any ξ > 0, the inequality

‖ω1 – T ω1‖ ≤ ξ ,ω1 ∈ [0, 1],

has a unique fixed point, say ω1
∗, with constant D > 0 such that ‖ω1 – ω1

∗‖ ≤ Dξ holds for
all ω1 ∈ [0, 1].

To proceed further, let the following hypothesis hold:
(H1) The nonlocal functions f , g , where ω1,ω2, x, y ∈R, satisfy the inequalities:

∣∣f (κ ,ω1,ω2) – f (κ , x, y)
∣∣ ≤Kf

(|ω1 – x| + |ω2 – y|),
∣
∣g(κ ,ω1,ω2) – g(κ , x, y)

∣
∣ ≤Kg

(|ω1 – x| + |ω2 – y|),

where Kf ,Kg ∈ [0, 1).
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Theorem 2.6 Let γ �= η(θ1+α–1)

Γ (θ1+α) . Then for a given g ∈ C([0, 1],R), the solution of the frac-
tional differential equation

Dθ∗
1 ϕp

(
Dθ1 x(r)

)
– g(r) = 0, θ1 ∈ (1, 2], θ∗

1 ∈ (0, 1], (2.1)

with the boundary condition

ϕp
(
Dθ1 x(r)

)∣∣
r=0 = x′(r)

∣∣
r=0 = 0, x(r)|r=0 = γ Iα–1h1(η), (2.2)

has a unique solution given by

x(r) =
1

Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
Iθ∗

1 g(s)
)

ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
Iθ∗

1 g(s)
)

ds. (2.3)

Proof Applying the operator Iθ∗
1 on (2.1) and using Lemma 2.3, we get from (2.1) the fol-

lowing equivalent integral form:

ϕp
(
Dθ1 x(r)

)
= A0 + Iθ∗

1 g(r), (2.4)

and then, by using condition ϕp(Dθ1 x(r))|r=0 = 0, we get A0 = 0. From (2.4), we have

Dθ1 x(r) = ϕq
(
Iθ∗

1 g(r)
)
. (2.5)

Applying the operator Iθ1
0 on (2.5) and using Lemma 2.3 again, we get from (2.5) the fol-

lowing equivalent integral form:

x(r) = A1 + A2r + Iθ1
(
ϕqIθ∗

1 g(r)
)
. (2.6)

By using the condition x′(r)|r=0 = 0 in (2.6), we obtain A2 = 0. Also in view of condition
x(r)|r=0 = γ Iα–1x(η) in (2.6), we get

A1 =
γ

�1
Iθ1+α–1(ϕqIθ∗

1 g(η)
)
, (2.7)

where �1 = (1 – γ

Γ α
). By substituting the values of A1 and A2 in (2.6), we get (2.3). �

With the help of Theorem 2.6, our coupled FDEs involving the p-Laplacian with integral
boundary conditions are equivalent to the following Hammerstein-type integral system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ω1(r) = 1
Γ (θ1)

∫ r
0 (r – s)θ1–1ϕq(Iθ∗

1 f (s,ω1(s),ω2(s)))) ds

+ γ

�1Γ (θ1+α–1)
∫ η

0 (η – s)θ1+α–2ϕq(Iθ∗
1 f (s,ω1(s),ω2(s))) ds,

ω2(r) = 1
Γ (θ2)

∫ r
0 (r – s)θ2–1ϕq(Iθ∗

2 g(s,ω1(s),ω2(s)))) ds

+ δ
�2Γ (θ2+β–1)

∫ ξ

0 (ξ – s)θ2+β–2ϕq(Iθ∗
2 g(s,ω1(s),ω2(s))) ds.

(2.8)
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3 Existence and uniqueness
For the sake of convenience, we set

M1 =
(

1
Γ (θ∗

1 + 1)

)q–1[ 1
Γ (θ1 + 1)

+
γ ηθ1+α–1

�1Γ (θ1 + α)

]
, (3.1)

M2 =
(

1
Γ (θ∗

1 + 1)

)q–1[ 1
Γ (θ2 + 1)

+
δξ θ2+β–1

�2Γ (θ2 + β)

]
, (3.2)

M0 = min
{

1 – (M1k1 + M2λ1), 1 – (M1k2 + M2λ2)
}

, (3.3)

�f =
(q – 1)Jq–2

1
Γ (θ∗

1 + 1)

[
1

Γ (θ1 + 1)
+

γ ηθ1+α–1

�1Γ (θ1 + α)

]
, (3.4)

�g =
(q – 1)Jq–2

2
Γ (θ∗

1 + 1)

[
1

Γ (θ2 + 1)
+

δξ θ2+β–1

�2Γ (θ2 + β)

]
. (3.5)

We define operators T1, T2 : X ×Y →X ×Y as

T1(ω1,ω2)(r) =
1

Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
) ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
ds,

T2(ω1,ω2)(r) =
1

Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
) ds

+
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
ds.

(3.6)

Lemma 3.1 ([9, 26, 30]) Let F : A → A be a completely continuous operator (i.e., a map
which, restricted to any bounded set in A, is compact). Let

ε(F ) =
{

x ∈A : x = λF (x), for some 0 < λ < 1
}

. (3.7)

Then either the set ε(F) is unbounded, or F has at least one fixed point.

Theorem 3.2 Suppose that γ �= η(θ1+α–1)

Γ (θ1+α) and δ �= ξ (θ2+β–1)

Γ (θ2+β) . Assume that there exist real con-
stants ki,λi ≥ 0 (i = 1, 2) and k0 > 0, λ0 > 0 such that for all xi ∈R (i = 1, 2), we have

∣
∣f (r, x1, x2)

∣
∣ ≤ ϕp

(
k0 + k1|x1| + k2|x2|

)
,

∣
∣g(r, x1, x2)

∣
∣ ≤ ϕp

(
λ0 + λ1|x1| + λ2|x2|

)
.

(3.8)

In addition, it is assumed that

M1k1 + M2λ1 < 1 and M1k2 + M2λ2 < 1,

where M1 and M2 are given by (3.1) and (3.2) respectively. Then the boundary value prob-
lem (1.1) has at least one solution.

Proof First, we show that the operator T : X × Y → X × Y is completely continuous.
By the continuity of functions f and g , the operator T is continuous. Let Ω ⊂ X × Y be
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bounded. Then there exist positive constants L1 and L2 such that

∣
∣f

(
r,ω1(r),ω2(r)

)∣∣ ≤ ϕp(L1),
∣
∣g

(
r,ω1(r),ω2(r)

)∣∣ ≤ ϕp(L2), ∀(ω1,ω2) ∈ Ω . (3.9)

Then for any (ω1, ,ω2) ∈ Ω , we have

∣∣T1(ω1,ω2)(r)
∣∣

=
∣∣
∣∣

1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
ds

∣∣
∣∣

≤ 1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1∣∣f

(
s,ω1(s),ω2(s)

)∣∣ds
)

+
γ

�1Γ (θ1 + α – 1)

×
∫ η

0
(η – s)θ1+α–2ϕq

(
1

Γ (θ∗
1 )

∫ η

0
(η – s)θ

∗
1 –1∣∣f

(
s,ω1(s),ω2(s)

)∣∣
)

ds

≤ 1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1ϕp(L1) ds

)

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
1

Γ (θ∗
1 )

∫ η

0
(η – s)θ

∗
1 –1ϕp(L1)

)
ds

≤ L1

(
1

Γ (θ∗
1 + 1)

)q–1[ 1
Γ (θ1 + 1)

+
γ ηθ1+α–1

�1Γ (θ1 + α)

]
= L1M1. (3.10)

And also,

∣
∣T2(ω1,ω2)(r)

∣
∣

=
∣∣
∣∣

1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
ds

+
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
ds

∣∣
∣∣

≤ 1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ22)

∫ r

0
(r – s)θ

∗
2 –1∣∣g

(
s,ω1(s),ω2(s)

)∣∣ds
)

+
δ

�2Γ (θ2 + β – 1)

×
∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ ξ

0
(ξ – s)θ

∗
2 –1∣∣g

(
s,ω1(s),ω2(s)

)∣∣
)

ds

≤ 1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1ϕp(L2) ds

)

+
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ ξ

0
(ξ – s)θ

∗
2 –1ϕp(L2)

)
ds

≤ L2

(
1

Γ (θ∗
2 + 1)

)q–1[ 1
Γ (θ2 + 1)

+
δξ θ2+β–1

�2Γ (θ2 + β)

]
= L2M2. (3.11)
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Thus, it follows from the above inequalities that the operator T is uniformly bounded.
Next we show that T is equicontinuous. Let 0 ≤ r1 ≤ r2 ≤ 1. Then we have

∣
∣T1

(
ω1(r2),ω2(r2)

)
– T1

(
ω1(r1),ω2(r1)

)∣∣

=
∣∣∣
∣

1
Γ (θ1)

∫ r2

0
(r2 – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

))
ds

–
1

Γ (θ1)

∫ r1

0
(r1 – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

)
)

ds
∣
∣∣
∣

≤
∣
∣∣∣

1
Γ (θ1)

∫ r2

0

[
(r2 – s)θ

∗
1 –1 – (r1 – s)θ

∗
1 –1]

× ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

)
)

ds

–
1

Γ (θ1)

∫ r2

r1

(r2 – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

))
ds

∣
∣∣∣

≤ L1

Γ (θ1 + 1)(Γ θ∗
1 + 1)q–1

(
rθ1

1 – rθ1
2

)
, (3.12)

∣
∣T2

(
ω1(r2),ω2(r2)

)
– T2

(
ω1(r1),ω2(r1)

)∣∣

=
∣∣∣
∣

1
Γ (θ2)

∫ r2

0
(r2 – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1f

(
s,ω1(s),ω2(s)

))
ds

–
1

Γ (θ2)

∫ r1

0
(r1 – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1f

(
s,ω1(s),ω2(s)

)
)

ds
∣
∣∣
∣

≤
∣
∣∣∣

1
Γ (θ2)

∫ r2

0

[
(r2 – s)θ

∗
2 –1 – (r1 – s)θ

∗
2 –1]

× ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1f

(
s,ω1(s),ω2(s)

)
)

ds

–
1

Γ (θ2)

∫ r2

r1

(r2 – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1f

(
s,ω1(s),ω2(s)

))
ds

∣∣
∣∣

≤ L1

Γ (θ2 + 1)(Γ θ∗
2 + 1)q–1

(
rθ2

1 – rθ2
2

)
. (3.13)

Therefore, the operator T(ω1,ω2) is equicontinuous, and thus the operator T(ω1,ω2)
is completely continuous. Finally, it will be verified that the set ε = {(ω1,ω2) ∈ X ×
Y|(ω1,ω2) = λT(ω1,ω2), 0 ≤ λ ≤ 1} is bounded. Let (ω1,ω2) ∈ ε, then (ω1,ω2) = λT(ω1,ω2).
For any r ∈ [0, 1], we have

ω1(r) = λr1(ω1,ω2), ω2(r) = λT2(ω1,ω2).

Then

∣∣ω1(r)
∣∣ =

(
1

Γ (θ∗
1 + 1)

)q–1[ 1
Γ (θ1 + 1)

+
γ ηθ1+α–1

�1Γ (θ1 + α)

]

× (
k0 + k1

∣∣ω1(r)
∣∣ + k2

∣∣ω2(r)
∣∣) (3.14)
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and

∣∣ω2(r)
∣∣ =

(
1

Γ (θ∗
2 + 1)

)q–1[ 1
Γ (θ2 + 1)

+
δξ θ2+β–1

�2Γ (θ2 + β)

]

× (
λ0 + λ1

∣
∣ω1(r)

∣
∣ + λ2

∣
∣ω2(r)

∣
∣). (3.15)

Hence we have

‖ω1‖ = M1
(
k0 + k1

∥
∥ω1(r)

∥
∥ + k2

∥
∥ω2(r)

∥
∥)

and

‖ω2‖ = M2
(
λ0 + λ1

∥
∥ω1(r)

∥
∥ + λ2

∥
∥ω2(r)

∥
∥)

.
(3.16)

From (3.16) we have

‖ω1‖ + ‖ω2‖ = (M1k0 + M2λ0) + (M1k1 + M2λ1)‖ω1‖ + (M1k2 + M2λ2)‖ω2‖. (3.17)

Consequently,

∥∥(ω1,ω2)
∥∥ ≤ M1k0 + M2λ0

M0
, (3.18)

for any r ∈ [0, 1], where M0 is defined in (3.3), which proves that ε is bounded. Thus, by
Lemma 3.2, operator T has at leat one fixed point. Hence, the boundary value problem
(1.1) has at least one solution. �

Theorem 3.3 Assume that f , g : [0, 1] ×R2 →R are continuous functions and there exist
constants mi, ni, i = 1, 2 such that for all r ∈ [0, 1] and ω1,ω2,�1,�2 ∈R,

∣∣f (r,ω1,�1) – f (r,ω2,�2)
∣∣ ≤ m1|ω1 – ω2| + n1|�1 – �2|,

∣∣g(r,ω1,�1) – g(r,ω2,�2)
∣∣ ≤ m2|ω1 – ω2| + n2|�1 – �2|. (3.19)

In addition, assume that

�f (m1 + m2) + �g(n1 + n2) < 1,

where�f and�g are given by (3.4) and (3.5), respectively. Then the boundary value problem
(1.1) has a unique solution.

Proof Consider a bounded set ‖T(ω1,ω2)(r)‖ ≤ r. For (�1,�2), (ω1,ω2) ∈ X × Y , and for
any r ∈ [0, 1], we get

∣
∣r1(�1,�2)(r) – r1(ω1,ω2)(r)

∣
∣

=
∣∣
∣∣

1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,�1(s),�2(s)

))
ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,�1(s),�2(s)

)
)

ds

–
1

Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

)
)

ds
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–
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

))
ds

∣∣
∣∣

≤ (q – 1)Jq–2
1

Γ (θ1)

∫ r

0

∣∣(r – s)θ1–1∣∣ 1
Γ (θ∗

1 )

∫ r

0

∣∣(r – s)θ
∗
1 –1∣∣∣∣f

(
s,�1(s),�2(s)

)

– f
(
s,ω1(s),ω2(s)

)∣∣ds

+
(q – 1)Jq–2

1 γ

�1Γ (θ1 + α – 1)

∫ η

0

∣
∣(η – s)θ1+α–2∣∣ 1

Γ (θ∗
1 )

∫ r

0

∣
∣(r – s)θ

∗
1 –1∣∣

∣
∣f

(
s,�1(s),�2(s)

)

– f
(
s,ω1(s),ω2(s)

)∣∣ds

≤ (q – 1)Jq–2
1

Γ (θ∗
1 + 1)

[
1

Γ (θ1 + 1)
+

γ ηθ1+α–1

�1Γ (θ1 + α)

](
m1|�1 – ω1| + m2|�2 – ω2|

)

≤ �f (m1 + m2)
(|�1 – ω1| + |�2 – ω2|

)
. (3.20)

Similarly, we have

∣∣T2(�1,�2)(r) – T2(ω1,ω2)(r)
∣∣

=
∣∣
∣∣

1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,�1(s),�2(s)

))
ds

+
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,�1(s),�2(s)

))
ds

–
1

Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

)
)

ds

–
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

)
)

ds

–
1

Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

))
ds

–
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

))
ds

∣∣
∣∣

≤ (q – 1)Jq–2
2

Γ (θ2)

∫ r

0

∣
∣(r – s)θ2–1∣∣ 1

Γ (θ∗
2 )

∫ r

0

∣
∣(r – s)θ

∗
2 –1∣∣

∣
∣g

(
s,�1(s),�2(s)

)

– g
(
s,ω1(s),ω2(s)

)∣∣ds

+
(q – 1)Jq–2

2 δ

�2Γ (θ2 + β – 1)

∫ ξ

0

∣∣(ξ – s)θ2+β–2∣∣ 1
Γ (θ∗

2 )

∫ r

0

∣∣(r – s)θ
∗
2 –1∣∣∣∣g

(
s,�1(s),�2(s)

)

– g
(
s,ω1(s),ω2(s)

)∣∣ds

≤ (q – 1)J (q–2)
2

Γ (θ∗
2 + 1)

[
1

Γ (θ2 + 1)
+

δξ θ2+β–1

�2Γ (θ2 + β)

]
(
n1|�1 – ω1| + n2|�2 – ω2|

)

≤ �g(n1 + n2)
(‖�1 – ω1‖ + ‖�2 – ω2‖

)
. (3.21)

Therefore, by (3.20) and (3.21), we have

∥∥T(�1,�2)(r) – T(ω1,ω2)(r)
∥∥

≤ [
�f (m1 + m2) + �g(n1 + n2)

](‖�1 – ω1‖ + ‖�2 – ω2‖
)
. (3.22)
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Hence �f (m1 + m2) + �g(n1 + n2) < 1, and therefore T is a contraction operator. So by
Banach’s fixed point theorem, the operator T has a unique fixed point, which is the unique
solution of problem (1.1). �

4 Hyers–Ulam stability of the coupled system
Definition 4.1 The coupled system of Hammerstein-type integral equations (2.8) is
Hyres–Ulam stable if there exist positive constants Di > 0 (i = 1, 2) satisfying:

For �i > 0, i = 1, 2, if

∣
∣∣
∣ω1(r) –

1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
ds

–
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
Iθ∗

1 f
(
s,ω1(s),ω2(s)

))
ds

∣
∣∣
∣ ≤ �1,

∣∣
∣∣ω2(r) –

1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
ds

–
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
Iθ∗

2 g
(
s,ω1(s),ω2(s)

))
ds

∣∣∣
∣ ≤ �2,

(4.1)

there exist (ω∗
1(r),ω∗

2(r)), satisfying

ω∗
1(r) =

1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
Iθ∗

1 f
(
s,ω∗

1(s),ω∗
2(s)

))
ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2ϕq

(
Iθ∗

1 f
(
s,ω∗

1(s),ω∗
2(s)

))
ds,

ω∗
2(r) =

1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
Iθ∗

2 g
(
s,ω∗

1(s),ω∗
2(s)

))
ds

+
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
Iθ∗

2 g
(
s,ω∗

1(s),ω∗
2(s)

))
ds,

(4.2)

such that

∣
∣ω1(r) – ω∗

1(r)
∣
∣ ≤ D1�1, x ∈ [0, 1],

∣
∣ω2(r) – ω∗

2(r)
∣
∣ ≤ D2�2, x ∈ [0, 1]. (4.3)

In the present section, we derive the Hyers–Ulam type stability for the solution of the
considered problem.

Theorem 4.2 By the assumption that f , g : [0, 1] ×R2 →R are continuous functions and
there exist constants mi, ni, i = 1, 2 such that for all r ∈ [0, 1] and ω1,ω2,�1,�2 ∈R,

∣∣f (r,ω1,�1) – f (r,ω2,�2)
∣∣ ≤ m1|ω1 – ω2| + n1|�1 – �2|,

∣∣g(r,ω1,�1) – g(r,ω2,�2)
∣∣ ≤ m2|ω1 – ω2| + n2|�1 – �2|,

(4.4)

system (1.1) is Hyers–Ulam stable.
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Proof By Theorem 3.3 and Definition 4.1, let (ω1(r),ω2(r)) be the exact solution, and
(ω∗

1(r),ω∗
2(r)) be any other solution of system (2.8). Then, with the help of (2.8), we have

∣∣ω1(r) – ω∗
1(r)

∣∣ ≤
∣∣∣
∣

1
Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

))
ds

+
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2

× ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω1(s),ω2(s)

))
ds

–
1

Γ (θ1)

∫ r

0
(r – s)θ1–1ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω∗

1(s),ω∗
2(s)

)
)

ds

–
γ

�1Γ (θ1 + α – 1)

∫ η

0
(η – s)θ1+α–2

× ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1f

(
s,ω∗

1(s),ω∗
2(s)

)
)

ds
∣
∣∣
∣

≤ 1
Γ (θ1)

∫ r

0

∣∣(r – s)θ1–1∣∣
∣
∣∣
∣ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1g

(
s,ω1(s),ω2(s)

)
ds

)

– ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1g

(
s,ω∗

1(s),ω∗
2(s)

)
ds

)∣∣
∣∣

+
γ

�1Γ (θ1 + α – 1)

∫ η

0

∣
∣(η – s)θ1+α–2∣∣

×
∣∣
∣∣ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1g

(
s,ω1(s),ω2(s)

)
ds

)

– ϕq

(
1

Γ (θ∗
1 )

∫ r

0
(r – s)θ

∗
1 –1g

(
s,ω∗

1(s),ω∗
2(s)

)
ds

)∣∣
∣∣

≤ (q – 1)Jq–2
1

Γ (θ1)

∫ r

0

∣∣(r – s)θ1–1∣∣ 1
Γ (θ∗

1 )

∫ r

0

∣∣(r – s)θ
∗
1 –1∣∣∣∣f

(
s,ω1(s),ω2(s)

)

– f
(
s,ω∗

1(s),ω∗
2(s)

)∣∣ds

+
(q – 1)Jq–2

1 γ

�1Γ (θ1 + α – 1)

∫ η

0

∣
∣(η – s)θ1+α–2∣∣

× 1
Γ (θ∗

1 )

∫ r

0

∣∣(r – s)θ
∗
1 –1∣∣∣∣f

(
s,ω1(s),ω2(s)

)
– f

(
s,ω∗

1(s),ω∗
2(s)

)∣∣ds

≤ (q – 1)Jq–2
1 Kf

Γ (θ1 + 1)Γ (θ∗
1 + 1)

(∣∣ω1(r) – ω∗
1(r)

∣∣ +
∣∣ω2(r) – ω∗

2(r)
∣∣)

+
(q – 1)Jq–2

1 γ ηθ1+α–1Kf

�1Γ (θ1 + α)Γ (θ∗
1 + 1)

(∣∣ω1(r) – ω∗
1(r)

∣
∣ +

∣
∣ω2(r) – ω∗

2(r)
∣
∣), (4.5)

which implies that

∥∥ω1 – ω∗
1
∥∥ ≤ (q – 1)Jq–2

1 Kf

Γ (θ∗
1 + 1)

[
1

Γ (θ1 + 1)
+

γ ηθ1+α–1

�1Γ (θ1 + α)

]

× (∥∥ω1 – ω∗
1
∥∥ +

∥∥ω2 – ω∗
2
∥∥)

≤ D1�1, (4.6)
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where D1 = (q–1)Jq–2
1 Kf

Γ (θ∗
1 +1) [ 1

Γ (θ1+1) + γ ηθ1+α–1

�1Γ (θ1+α) ]. Similarly, we further have

∣
∣ω2(r) – ω∗

2(r)
∣
∣ ≤

∣∣
∣∣

1
Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

))
ds

+
δ

�2Γ (θ2 + β – 1)

×
∫ ξ

0
(ξ – s)θ2+β–2ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

))
ds

–
1

Γ (θ2)

∫ r

0
(r – s)θ2–1ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω∗

1(s),ω∗
2(s)

))
ds

–
δ

�2Γ (θ2 + β – 1)

∫ ξ

0
(ξ – s)θ2+β–2

× ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω∗

1(s),ω∗
2(s)

)
)

ds
∣
∣∣
∣

≤ 1
Γ (θ2)

∫ r

0

∣
∣(r – s)θ2–1∣∣

∣∣
∣∣ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

)
ds

)

– ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω∗

1(s),ω∗
2(s)

)
ds

)∣∣
∣∣

+
δ

�2Γ (θ2 + β – 1)

×
∫ ξ

0

∣
∣(ξ – s)θ2+β–2∣∣

∣∣
∣∣ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω1(s),ω2(s)

)
ds

)

– ϕq

(
1

Γ (θ∗
2 )

∫ r

0
(r – s)θ

∗
2 –1g

(
s,ω∗

1(s),ω∗
2(s)

)
ds

)∣∣
∣∣

≤ (q – 1)Jq–2
2

Γ (θ2)

∫ r

0

∣∣(r – s)θ2–1∣∣ 1
Γ (θ∗

2 )

∫ r

0

∣∣(r – s)θ
∗
2 –1∣∣∣∣g

(
s,ω1(s),ω2(s)

)

– g
(
s,ω∗

1(s),ω∗
2(s)

)∣∣ds

+
(q – 1)Jq–2

2 δ

�2Γ (θ2 + β – 1)

∫ ξ

0

∣
∣(ξ – s)θ2+β–2∣∣ 1

Γ (θ∗
2 )

×
∫ r

0

∣∣(r – s)θ
∗
2 –1∣∣∣∣g

(
s,ω1(s),ω2(s)

)
– g

(
s,ω∗

1(s),ω∗
2(s)

)∣∣ds

≤ (q – 1)Jq–2
2 Kg

Γ (θ2 + 1)Γ (θ∗
2 + 1)

(∣∣ω1(r) – ω∗
1(r)

∣∣ +
∣∣ω2(r) – ω∗

2(r)
∣∣)

+
(q – 1)Jq–2

2 δξ θ2+α–1Kg

�2Γ (θ2 + β)Γ (θ∗
2 + 1)

(∣∣ω1(r) – ω∗
1(r)

∣
∣ +

∣
∣ω2(r) – ω∗

2(r)
∣
∣), (4.7)

which implies that

∥∥ω2 – ω∗
2
∥∥ ≤ (q – 1)Jq–2

2 Kg

Γ (θ∗
2 + 1)

[
1

Γ (θ2 + 1)
+

δξ θ2+β–1

�2Γ (θ2 + β)

]

× (∥∥ω1 – ω∗
1
∥
∥ +

∥
∥ω2 – ω∗

2
∥
∥)

≤ D2�2,
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where D2 = (q–1)Jq–2
2 Kg

Γ (θ∗
2 +1) [ 1

Γ (θ2+1) + δξθ2+β–1

�2Γ (θ2+β) ]. Hence in view of (4.5) and (4.7), the system of
integral equations (2.8) is Hyers–Ulam stable, and consequently, the solution of system
(1.1) is Hyers–Ulam stable. �

5 Illustrative example
Example 5.1 Consider the following coupled FDEs involving the nonlinear p-Laplacian
operator with IBCs:

D 1
2 ϕ3

(
D 3

2 ω1(r)
)

=
e–2rω1(r)

100
+

sin |ω1(r)| + cos |ω2(r)|
2(25 + r2)

, r ∈ [0, 1],

D 1
2 ϕ3

(
D 3

2 ω2(r)
)

=
sin |ω1(r)| + |ω2(r)|

10(r + 1)
+

e–2rω2(r)
20

, r ∈ [0, 1],

ϕ3
(
D 3

2 ω1(r)
)∣∣

r=0 = ω′
1(r)

∣∣
r=0 = 0, ω1(r)|r=0 =

√
2I

1
3 ω1

(
1
2

)
,

ϕ3
(
D 3

2 ω2(r)
)∣∣

r=0 = v′(r)
∣∣
r=0 = 0, ω2(r)|r=0 =

√
3I

1
2 ω2

(
1
3

)
.

(5.1)

The suggested parameter values are θi = 3/2, θ∗
i = 1/2 (i = 1, 2), p = 3, γ =

√
2, δ =

√
3,

η = 1/2, ξ = 1/3, p = 4/3, q = 3/2, f (r,ω1,ω2) = e–3rω1(r)
30 + sin |ω1(r)|+cos |ω2(r)|

(50+r2) and g(r,ω1,ω2) =
r3+sin |ω1(r)|+|ω2(r)|

25 + e–2rω1(r)
20 . Further, we have

∣
∣f (r,ω1,ω2) – f (r,ω1,ω2)

∣
∣ ≤ 1

50
|ω1 – ω2| +

1
50

|ω1 – ω2|,
∣∣g(r,ω1,ω2) – g(r,ω1,ω2)

∣∣ ≤ 1
10

|ω1 – ω2| +
1

10
|ω1 – ω2|.

Therefore, we have m1 = 0.3 = m2, n1 = 0.2 = n2

�f (m1 + m2) + �g(n1 + n2) =
( 3

2 – 1)2 –1
2

Γ 3
2

[
1

Γ 5
2

+
√

2( 1
2 )

11
6

(1 –
√

2
Γ 4

3
)Γ 17

6

]
(0.3 + 0.3)

+
( 3

2 – 1)2 –1
2

Γ 3
2

[
1

Γ 5
2

+
√

3( 1
3 )

11
6

(1 –
√

3
Γ 4

3
)Γ 17

6

]
(0.2 + 0.2)

< 1.

Hence all the conditions of Theorem 3.3 are satisfied, and so the coupled system (5.1) has
a unique solution and is Hyres–Ulam stable.

6 Conclusion
In this paper we investigated existence and uniqueness of solutions for coupled fractional
differential equations involving the nonlinear p-Laplacian operator with integral bound-
ary conditions, by using nonlinear Leray–Schauder-type alternative and Banach’s fixed
point theorem. We have also developed some conditions to prove Hyres–Ulam stability.
An illustrative example was provided to demonstrate the results. For further studies, we
suggest investigating our problem (1.1) for multiplicity results and exponential stability.
Readers may also consider the problem for the new established derivative known as ABC
fractional derivative.
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