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Abstract
In this paper, we consider a numerical solution for nonlinear advection–diffusion
equation by a backward semi-Lagrangian method. The numerical method is based on
the second-order backward differentiation formula for the material derivative and the
fourth-order finite difference formula for the diffusion term along the characteristic
curve. A modified error correction scheme is newly introduced to efficiently find the
departure point of the characteristic curve. Through several numerical simulations,
we demonstrate that the proposed method has second and third convergence
orders in time and space, respectively, and is efficient and accurate compared to
existing techniques. In addition, it is numerically shown that the proposed method
has good properties in terms of energy and mass conservation.

Keywords: Semi-Lagrangian method; Advection–diffusion equations; Burgers
equations

1 Introduction
The nonlinear advection–diffusion type equation is one of the popular and important
models describing many phenomena derived from various areas of mathematical physics
and engineering fields such as gas dynamics, hydrodynamics, shock waves, heat conduc-
tion and so on. Also, the type of equation represents the Burgers equation, the heat con-
duction equation, the nonlinear Schrödinger equation, the Navier–Stokes equation, etc.
Hence, the development of efficient and accurate algorithms for solving the equations is
of great importance in the computational fluid dynamics community and has been widely
studied by many researchers. To solve theses equations, there has become a great quantity
of research available [1–14] in recent decades. In particular, the error correction method
(ECM) [15, 16] for solving the characteristic curve in the backward semi-Lagrangian
method (BSLM) [17, 18] was recently developed. This method solves a problem implic-
itly along the characteristic curves of fluid particles in the opposite direction with large
time steps, which is the main advantage of the BSLM [17, 19]. Also, the method does not
only have second and third convergence orders in time and space, respectively, but also
does not have any iterative processes required to solve a nonlinear initial value problem
(IVP) for departure points. To discretize the material derivative and the diffusion term
along the characteristic curve in the BSLM framework, the backward difference formula
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(BDF2) and the fourth-order finite difference method (FDM) [20] are applied, respectively.
The departure point of the characteristic curve is found by the ECM.

The aim of this article is to introduce newly a modified ECM instead of simply using
the conventional ECM, motivated by the success of the ECM combined with the BSLM.
To do this, we firstly present a modified Euler polygon, for the consideration of the phys-
ical domains in which the particles can move (see Sect. 3 for more information). In ad-
dition, boundary values are calculated by the same fourth-order finite difference scheme,
unlike previous work that used a lower order scheme for boundary conditions. More-
over, to reduce the computational cost, the proposed scheme approximates the Jacobian
value as a fixed one while maintaining the scale of the error, whereas the conventional
ECM once again performs the interpolation with the derivatives of the original interpo-
lation function. The interpolation for Jacobian in the conventional ECM required consid-
erable computational cost since it occurs in every spatial variables at each time step. As
a simple model to show this technique effectively, we apply the proposed method to the
one-dimensional and the two-dimensional Burgers equations. Through several numerical
simulations, it is shown that the proposed method has second temporal and third spatial
convergence orders. Further, we discuss the energy and the mass conservation properties
and numerically show a good performance on these properties.

The remainder of this paper is organized as follows. In Sect. 2, the BSLM based on the
FDM and the BDF2 is reviewed for the Burgers equations. In Sect. 3, we introduce a mod-
ified error correction technique to solve the highly nonlinear IVP. Three test problems are
numerically solved in Sect. 4 in order to demonstrate the accuracy and the efficiency of
the proposed method. Finally, conclusions are given in Sect. 5.

2 Backward semi-Lagrangian method
This section aims to give brief descriptions for the BSLM based on both the FDM and the
BDF2 for the one-dimensional case and the system of Burgers equations.

2.1 One-dimensional Burgers equation
As a model problem, we consider the one-dimensional Burgers equation described by

ut + uux = νuxx, xL < x < xR, 0 < t ≤ T , (1)

with the boundary and the initial conditions given by

⎧
⎨

⎩

u(t, xL) = g1(t), u(t, xR) = g2(t), t > 0,

u(0, x) = u0(x), x ∈ [xL, xR],

where ν > 0 is the coefficient of kinematic viscosity. Here, u0(x) and gk(t) (k = 1, 2) are
assumed to be sufficiently smooth functions for the existence and the uniqueness of the
solution [21, 22]. The solution u may represent a temperature for heat transfer or a species
concentration for mass transfer at position x and time t with the advection velocity u.

From the Lagrangian view, consider the characteristic curve π (xi, tn+1; t) satisfying the
following IVP with an initial value π (x, s; s) = x:

dπ (x, s; t)
dt

= u
(
t,π (x, s; t)

)
, t ≤ s, (2)
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where u(t, ·) is the solution of (1). Then the material derivative D
Dt u(t,π (x, s; t)) satisfies

D
Dt

u
(
t,π (x, s; t)

)
= νuxx

(
t,π (x, s; t)

)
, (3)

which is valid along the characteristic curve π (x, s; t). Solving these two equations (2) and
(3) simultaneously, the solution u of (1) can be obtained.

For further discussion, we introduce uniform discretizations of the temporal and the
spatial domains as follows:

tn = nh (0 ≤ n ≤ N), xi = xL + i�x (0 ≤ i ≤ Mx), (4)

where h := T/N and �x := (xR – xL)/Mx are the temporal step and the spatial grid sizes,
respectively. Additionally, to approximate the first and the second-order partial derivatives
in the considered backward semi-Lagrangian algorithm, we introduce the fourth-order
finite difference weight matrices of size M̂x := Mx + 1 (see [20]) as follows:

W1
x =

1
12�x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–25 48 –36 16 –3 · · · 0
–3 –10 18 –6 1
1 –8 0 8 –1

. . . . . . . . . . . .
1 –8 0 8 –1

–1 6 –18 10 3
0 · · · 3 –16 36 –48 25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

W2
x =

1
12�x2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

45 –154 214 –156 61 –10 · · · 0
10 –15 –4 14 –6 1
–1 16 –30 16 –1

–1 16 –30 16 –1
. . . . . . . . . . . . . . .

–1 16 –30 16 –1
1 –6 14 –4 –15 10

0 · · · –10 61 –156 214 –154 45

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

These sparse matrices W1
x and W2

x can be obtained by using a five point finite difference
scheme [20] at the interior points and one-side method for points near the boundary.
Using these matrices, the partial derivatives of a smooth function f can be expressed in
matrix form as follows:

∂m

∂xm f (xi) =
(
Wm

x f
)

i + O
(
�x4), m = 1, 2, (5)

where f := (fi)M̂x×1 for fi := f (xi) and (a)i denotes the ith component of a vector a. In the
proposed scheme, W1

x and W2
x are used for the interpolation scheme and the diffusion

term, respectively.
The BSLM we are concerned with is combined with both the BDF2 and the FDM to

find an approximation of the solution u in each grid point xi at t = tn+1 as follows. Firstly,
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we denote un(xi) := u(tn, xi) and its approximation by Un
i for each xi at time t = tn. In ad-

dition, we introduce the notations Un := [Un
0 , Un

1 , . . . , Un
Mx ]T and Ũn := [Un

1 , Un
2 , . . . , Un

Mx
]T

for Mx := Mx – 1 and the superscript T denotes the transpose. Here, we assume that the
approximations Uk

i (k ≤ n) have been previously calculated at all grid points. After evalu-
ating (3) at point (t, x) = (tn+1, xi) and applying the BDF2 for the material derivative in the
left hand side of (3), we get the following formula:

un+1(xi) – μ̃un+1
xx (xi) =

4
3

un(π (xi, tn+1; tn)
)

–
1
3

un–1(π (xi, tn+1; tn–1)
)

+ O
(
h3), (6)

for each i (i = 1, . . . , Mx) with μ̃ = 2hν
3 .

By applying the finite difference formula (5) with m = 2 to the diffusion term of (6), we
get the semi-discretization system in matrix form as follows:

AŨn+1 = dn+1 + μbn+1,

A :=
(
I – μ̃W̃2

x
)
, dn+1 :=

[
dn+1

1 , dn+1
2 , . . . , dn+1

Mx

]T ,

bn+1 :=
[
10g1(tn+1), –g1(tn+1), 0, . . . , 0, –g2(tn+1), 10g2(tn+1)

]T ,

dn+1
i =

4
3

un(π (xi, tn+1; tn)
)

–
1
3

un–1(π (xi, tn+1; tn–1)
)

+ O
(
h3 + h�x4),

(7)

where I denotes an identity matrix of size Mx and W̃2
x is the matrix constructed from W2

x

by taking the interior elements (i, j) = (1 : Mx, 1 : Mx).
For the full-discretization of (7), let π

n+1,k
i be an approximation of the departure position

π (xi, tn+1; tk) of grid point (tn+1, xi) at each time step tk , which are discussed in detail in
Sect. 3. Because these departure points generally do not coincide with any grid points and
we only know the approximate values on the grid points at t ≤ tn, a proper interpolation
method is needed. In the proposed scheme, the Hermite cubic interpolation IH [23] is
adopted among various interpolation schemes.

Now, after the use of the interpolation scheme, taking Taylor expansions of un(·) and
un–1(·) about π

n+1,k
i (k = n, n – 1) and dropping truncation errors, we can obtain a full-

discretization system for the semi-discretization system (7) by the following approxima-
tion of dn+1

i :

dn+1
i ≈ 4

3
IH Un(πn+1,n

i
)

–
1
3

IH Un–1(πn+1,n–1
i

)
,

where IH Uk denotes the Hermite cubic interpolation with the approximate vector Uk . No-
tice that, since μ̃ > 0 and A is non-singular, the solution of the full-discretization system
can easily be obtained by using the LU factorization.

2.2 System of two-dimensional Burgers equations
In this subsection, we extend the BSLM to solve a system of two-dimensional Burgers
equations given by

⎧
⎨

⎩

ut + uux + vuy = ν(uxx + uyy),

vt + uvx + vvy = ν(vxx + vyy),
(8)
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with the initial and the boundary conditions

⎧
⎨

⎩

u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y), (x, y) ∈D = [xL, xR] × [yL, yR],

u(t, x, y) = g1(t, x, y), v(t, x, y) = g2(t, x, y), t ∈ [0, T], (x, y) ∈ ∂D,

where ν is a positive constant and u0, v0 and gi are given smooth functions in the phys-
ical domain D. For further discussion, together with (4) we additionally introduce the
discretization of the spatial domain in the y-direction as follows:

yj = yL + j�y, 0 ≤ i ≤ My, (9)

where �y := (yR – yL)/My is the spatial grid size in the y-direction. Also, let uk(xi,j) :=
u(tk , xi,j) with xi,j = [xi, yj]T and Uk

i,j be its approximate value. In addition, we introduce
some notations Uk := [Uk

0,0, Uk
1,0, . . . , Uk

Mx ,0, Uk
0,1, Uk

1,1 · · · , Uk
Mx ,My ]T and Ũk := [Uk

1,1, Uk
2,1,

. . . , Uk
Mx ,1, Uk

1,2, Uk
2,2, . . . , Uk

Mx ,My
]T for Mx := Mx – 1 and My := My – 1, and the superscript

T denotes the transpose.
From the Lagrangian view, problem (8) is equivalent as

D
Dt

u
(
t,π (x, tn+1; t)

)
= ν�u

(
t,π (x, tn+1; t)

)
, t ∈ [0, T], (10)

along the characteristic curve π (x, tn+1; t) := [π1(x, tn+1; t),π2(y, tn+1; t)]T satisfying the fol-
lowing IVP:

⎧
⎨

⎩

dπ (x,tn+1;t)
dt = u(t,π (x, tn+1; t)), t ≤ tn+1,

π (x, tn+1; tn+1) = x,
(11)

where u(t,π (x, tn+1; t)) = [u(t,π (x, tn+1; t)), v(t,π (x, tn+1; t))]T .
As described in Sect. 2.1, after evaluating (10) at time t = tn+1 and grid point x = xi,j,

the BDF2 and the finite difference formula (5) are applied to approximate the material
derivative and diffusion term, respectively. Then, by a similar process to the derivation of
equations (6) and (7), we obtain the full-discretization systems for (10) given by

AŨn+1 = dn+1 + μ1bn+1, AṼn+1 = d̂n+1 + μ2b̂n+1,

A = Iy ⊗ Ix – μ̃
(
Iy ⊗ W̃2

x
)

– μ̃
(
W̃2

y ⊗ Ix
)
,

(12)

where dn+1 := [dn+1
1,1 , dn+1

2,1 , . . . , dn+1
Mx ,1, dn+1

1,2 , dn+1
2,2 , . . . , dn+1

Mx–1,My
, dn+1

Mx ,My
]T and d̂n+1 := [d̂n+1

1,1 ,

d̂n+1
2,1 , . . . , d̂n+1

Mx ,1, d̂n+1
1,2 , d̂n+1

2,2 , . . . , d̂n+1
Mx–1,My

, d̂n+1
Mx ,My

]T are MxMy × 1 vectors whose entries are
given by

dn+1
i,j ≈ 4

3
IH Un(πn+1,n

i,j
)

–
1
3

IH Un–1(πn+1,n–1
i,j

)
,

d̂n+1
i,j ≈ 4

3
IH Vn(πn+1,n

i,j
)

–
1
3

IH Vn–1(πn+1,n–1
i,j

)
.

Here, μ̃ := 2νh
3 , and Ix and Iy are identity matrices of sizes Mx and My, respectively. Addi-

tionally, the matrix W̃2
y can be defined similarly from the definition of W̃2

x . The notation
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⊗ is for the tensor product, and bn+1 and b̂n+1 are vectors induced from the boundary
conditions, which are obtained by a similar process to that described in Sect. 2.1.

To solve the system (12) effectively, we employ the following eigenvalue decomposition:

W̃2
k = QkΛkQ–1

k (k = x, y), (13)

where Qk and Λk are the matrices of eigenpair for the matrix W̃2
k . Then, using the property

of the tensor product and (13), the coefficient matrixA defined by (12) can be decomposed
as

A = (Qy ⊗ Qx)Σ(Qy ⊗ Qx)–1,

where Σ := (Iy ⊗ Ix) – μ̃(Iy ⊗ Λx) – μ̃(Λy ⊗ Ix). Hence, the system (12) can be solved
effectively by three linear systems for u as follows:

d̆n+1 = (Qy ⊗ Qx)–1(dn+1 + μ1bn+1), Ûn+1 = Σ–1d̆n+1, Ũn+1 = (Qy ⊗ Qx)Ûn+1.

In a similar way, three linear systems can be obtained for v.

3 Modified error correction method
The goal of this section is to develop a modified ECM for the approximate values π

n+1,k
i

(k = n, n – 1) of the departure points, which maintains the advantage of the original ECM
introduced in [17, 18] with less computational costs. For the two-dimensional case, πn+1,k

i,j
(k = n, n – 1) can be obtained by extension of the following process. Let πi(t) := π (xi, tn+1; t)
be the solution of the nonlinear IVP with an initial value πi(tn+1) = xi given by

dπi(t)
dt

= u
(
t,πi(t)

)
, t ∈ [tn–1, tn+1), (14)

where u is the solution of the Burgers equation (1) for an arbitrary grid point xi.
We begin by introducing modified Euler polygons:

yi(t) := min
{
max

{
ŷi(t), xL

}
, xR

}
(Dirichlet boundary case),

yi(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

ŷi(t) ŷi(t) ∈ [xL, xR],

xR – (xL – ŷi(t)) ŷi(t) < xL,

xL + (ŷi(t) – xR) ŷi(t) > xR,

(periodic boundary case),
(15)

where ŷi(t) := xi + (t – tn+1)u(tn, xi). Note that the above modified Euler polygons are con-
structed so that the position of the particle remains in the physical domain. Hereafter, we
regard yk(t) as ŷk(t) for simplicity of the discussion.

Let πi(t) be the solution to the nonlinear IVP (14) at the fixed grid point xi, and assume
that it is sufficiently smooth with respect to both t and xi. Then the Taylor expansions of
πi(t) at tn+1 and u(tn+1, xi) at tn give

πi(t) = πi(tn+1) + (t – tn+1)u
(
tn+1,π (tn+1)

)
+ O

(
h2)

= xi + (t – tn+1)u(tn, xi) + O
(
h2). (16)
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Moreover, an error between of the πi(t) and yi(t) is defined

ψi(t) := πi(t) – yi(t), i = 1, . . . , Mx (17)

with asymptotic behavior of ψi(t) = O(h2), which is obtained by combining (16) and (17).
After differentiating (17), combining the result with (14) and the Euler polygons leads to
the following formula:

ψ ′
i (t) = π ′

i (t) – y′
i(t) = u

(
t,πi(t)

)
– u(tn, xi) = u(

(
t, yi(t) + ψi(t)

)
– u(tn, xi).

By taking a Taylor expansion πi(t) about yi(t), we can see the asymptotic linear IVP for
ψi(t) given by

ψ ′
i (t) = u

(
t, yi(t)

)
+ ux

(
t, yi(t)

)
ψi(t) – u(tn, xi) + O

(
ψ(t)2), t ≤ tn+1 , (18)

with the initial value ψi(tn+1) = 0. Then, instead of solving the nonlinear problem (14), the
proposed method solves the linear IVP (18).

To reduce the computational cost, the proposed method approximates the Jacobian
value ux(t, yi(t)) as a fixed one ux(tn, xi). By Taylor’s expansion the Jacobian ux(t, yi(t)) about
t = tn, (18) can be changed with the asymptotic behavior of ψi(t) as follows:

ψ ′
i (t) = ux(tn, xi)ψi(t) + u

(
t, yi(t)

)
– u(tn, xi) + O

(
h3), t ≤ tn+1. (19)

Note that the fixed value does not affect the scale of the second-order asymptotic error.
On the other hand, the conventional ECM once again performs the interpolation with
the derivatives of the original interpolation function for every spatial grid in each time
integration.

To solve the asymptotic IVP (19), after integrating both sides of (19) over [tn–1, tn+1],
we use the midpoint integration rule and ψi(tn) = 1

2 (ψi(tn+1) + ψi(tn–1)) + O(h2). Then we
obtain

(
1 + hux(tn, xi)

)
ψi(tn–1) = 2h

(
u
(
tn, yi(tn)

)
– u(tn, xi)

)
+ O

(
h3). (20)

Recall that we only know the approximations Uk
i (k ≤ n) at the grid points. Thus, to eval-

uate the solution at the non-grid point yi(tn), we apply the Hermite cubic interpolation.
Then, instead of solving (20), we solve the following equation:

ψn–1
i := 2h

Un
i – IH Un(yi(tn))

1 + hJi
, 0 ≤ i ≤ Mx,

to obtain an approximation π
n+1,n–1
i defined by

π
n+1,n–1
i := yi(tn–1) + ψn–1

i , (21)

where Ji := (W̃1
x Ũn)i for W̃1

x constructed by interior elements of W1
x .
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To find an approximate value π
n+1,n
i , after using the Taylor expansion of πi(t) about tn–1

together with the initial condition πi(tn+1) = xi, evaluating at time tn leads to

πi(tn) =
1
4
(
xi + 3πi(tn–1) + 2hu

(
tn–1,πi(tn–1)

))
+ O

(
h3). (22)

By using π
n+1,n–1
i , IH Un–1(πn+1,n–1

i ) and (22), we can define the approximation of πi(tn) as

π
n+1,n
i :=

1
4
(
xi + 3π

n+1,n–1
i + 2hIH Un–1(πn+1,n–1

i
))

.

Remark The method discussed above for finding π
n+1,k
i (k = n, n – 1) can be naturally ex-

tended to the case of system for the characteristic curve.

4 Numerical experiments
In this section, we carry out numerical simulations to illustrate the accuracy and the ef-
ficiency of the proposed method. To measure the computational error of the proposed
scheme, we use the maximum norm error err∞(t) and the relative L2 norm error errR2(t),
which are, respectively, defined by

err∞(tk) = max
i

∣
∣uk(xi) – Uk

i
∣
∣,

errR2(tk) =
(∑

i

∣
∣uk(xi) – Uk

i
∣
∣2

)1/2/(∑

i

∣
∣uk(xi)

∣
∣2

)1/2

,

where uk(xi) is the exact solution and Uk
i is its approximation at time t = tk and each grid

point xi. For the two-dimensional case, we similarly define both the maximum norm error
and the relative L2 norm error. All numerical simulations are executed with MATLAB
2013a (8.1.0.604) using Windows 10 OS.

Example 1 Consider the one-dimensional Burgers equation (1) on [0, 1] with the shock
initial condition [24] as follows:

u(0, x) =

⎧
⎨

⎩

9x, 0 ≤ x ≤ 1
10 ,

1 – x, 1
10 ≤ x ≤ 1,

and the homogeneous boundary condition or the periodic boundary condition. For the
discussion of the energy and the mass conservation properties, we measure the energy
and the mass by the energy function E(t) and the mass function M(t) defined as

d
dt

E(t) = –ν

∫ 1

0
u2

x(t, x) dx,
d
dt

M(t) = ν
(
ux(t, 1) – ux(t, 0)

)
,

E(t) =
1
2

∫ 1

0
u2(t, x) dx, M(t) =

∫ 1

0
u(t, x) dx.

(23)

Both E(t) and M(t) are approximated with the composed trapezoidal rule defined by

E(tk) ≈ �x
2

Mx∑

i=1

(
Uk

i
)2, M(tk) ≈ �x

Mx∑

i=1

(
Uk

i
)
.
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Figure 1 (a) Energy E(t) and (b) mass M(t) behaviors via the proposed method with different viscosity
coefficients for Example 1

Figure 2 Evolution profiles of the numerical solutions with (a) ν = 10–3 and (b) ν = 10–6 with fixed h = 0.001
and �x = 1

1000 for Example 1

We solve the problem using fixed time and grid sizes of h = 0.01 and �x = 1
400 , respec-

tively, by varying of the viscosity coefficients ν = 10–k (k = 1, 2, 3, 4) with homogeneous
boundary condition. Using the obtained numerical solutions, we calculate the mentioned
energy E(t) and mass M(t) at discrete time levels and display the results in Fig. 1. From
the formula of (23), E(t) and M(t) must tend to constants when the viscosity coefficient
ν theoretically goes to zero. As expected, the numerical results clearly support that the
proposed method has a good performance for both the energy and the mass conservation
properties when the viscosity coefficient goes to zero. We additionally observe the behav-
iors of the numerical solutions over time for relatively small viscosity coefficients ν = 10–k

(k = 3, 6) with homogeneous boundary condition and the results are plotted in Fig. 2. In
Fig. 2, the parameters used in (a)–(b) are h = 0.01, �x = 1

200 and (c)–(d) are h = 0.002,
�x = 1

1000 . It can be seen that the proposed method shows good performance even for the
advection dominated case ν = 10–6 without unnecessary oscillation.

Finally, we also observed the behavior of the numerical solutions for various viscosity
coefficients ν = 10–k (k = 0, 1, 2, 3) on the periodic boundary condition to observe how
they behave with mild to smaller viscosity coefficients. The wave propagation outline of
u(t, x) is illustrated in Fig. 3. It is clear from Fig. 3(a) and (b) that there is no sharp front
in the solutions for ν = 10–1 and ν = 10–2, which becomes sharper for ν = 10–3 and ν =
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Figure 3 Numerical solutions of Example 1 on the periodic boundary with (a) ν = 10–1, (b) ν = 10–2,
(c) ν = 10–3 and (d) ν = 10–4

10–4. In other words, as ν becomes smaller, the curves steepen and develop a shock-like
discontinuity. As seen in Fig. 3(c) and (d), the proposed method is able to capture the sharp
front very well under the periodic boundary conditions. Note that this test is valuable,
since the Burgers equation has been studied in a limited work over the periodic boundary
conditions compared to non-periodic boundary conditions.

Example 2 We consider the two-dimensional unsteady Burgers equation,

ut + uux + uuy = ν(uxx + uyy)

on (x, y) ∈ [0, 1]2 with the Dirichlet boundary condition whose analytic solution [4] is given
by

u(t, x, y) =
1

1 + exp( x+y–t
2ν

)
.

We first examine the temporal convergence rate for the proposed method for the two vis-
cosity coefficients ν = 0.1 and ν = 0.01. Results are measured by both the maximum norm
and the relative L2 norm errors with a fixed spatial grid size �x = �y = 1/2000 and varying
time step size h at two different times t = 0.1 and t = 1.0. The numerical results are listed
in Table 1, and they show that the proposed method has second-order temporal conver-
gence. Also, to assess the spatial convergence rate for the proposed method, err∞ and errR2

are calculated with a sufficiently small temporal step size h = 0.00002 by the variation of
spatial resolutions Mx = My from 20 to 640 at two different time points t = 0.1 and t = 1.0.
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Table 1 Temporal convergence rate for Example 2

h t = 0.1 t = 1.0

err∞(t) Rates errR2(t) Rates err∞(t) Rates errR2(t) Rates

ν = 0.1, �x =�y = 1
2000

1
50 3.23× 10–4 – 2.37× 10–4 – 5.56× 10–4 – 5.01× 10–4 –
1
100 9.00× 10–5 1.84 6.61× 10–5 1.84 1.44× 10–4 1.94 1.32× 10–4 1.92
1
200 2.38× 10–5 1.92 1.74× 10–5 1.92 3.68× 10–5 1.97 3.39× 10–5 1.96
1
400 6.28× 10–6 1.92 4.39× 10–6 1.99 9.29× 10–6 1.99 8.57× 10–6 1.98
1
800 1.12× 10–6 2.49 1.28× 10–6 1.78 2.21× 10–6 2.07 2.01× 10–6 2.09

ν = 0.01, �x =�y = 1
2000

1
50 5.91× 10–2 – 3.29× 10–2 – 3.37× 10–1 – 7.08× 10–2 –
1
100 1.17× 10–2 2.34 8.81× 10–2 1.90 2.12× 10–2 3.99 5.18× 10–3 3.77
1
200 3.16× 10–3 1.89 2.68× 10–3 1.72 3.81× 10–3 2.48 1.08× 10–3 2.26
1
400 8.54× 10–4 1.89 7.59× 10–4 1.82 9.46× 10–4 2.01 2.84× 10–4 1.93
1
800 2.12× 10–4 2.01 1.90× 10–4 2.00 2.34× 10–5 2.02 7.02× 10–5 2.01

Table 2 Spatial convergence rate for Example 2 with fixed h = 0.00002

Mx =My t = 0.1 t = 1.0

err∞(t) Rates errR2(t) Rates err∞(t) Rates errR2(t) Rates

ν = 0.1
20 7.45× 10–6 – 7.81× 10–6 – 2.11× 10–5 – 1.30× 10–5 –
40 1.36× 10–7 5.78 3.28× 10–7 4.58 1.31× 10–6 4.02 8.67× 10–7 3.90
80 1.33× 10–8 3.36 2.47× 10–8 3.73 8.16× 10–8 4.00 5.51× 10–8 3.98
160 9.59× 10–10 3.79 1.64× 10–9 3.91 5.24× 10–9 3.96 3.58× 10–9 3.94
320 9.00× 10–11 3.41 1.67× 10–10 3.30 5.05× 10–10 3.38 3.60× 10–10 3.31

ν = 0.01
40 4.04× 10–2 – 2.16× 10–2 – 2.63× 10–2 – 3.13× 10–3 –
80 5.90× 10–4 6.10 3.84× 10–4 5.81 8.02× 10–4 5.03 2.07× 10–4 3.92
160 5.06× 10–5 3.54 3.00× 10–5 3.68 5.51× 10–5 3.86 1.35× 10–5 3.94
320 3.18× 10–6 3.99 2.08× 10–6 3.85 3.39× 10–6 4.02 8.58× 10–7 3.98
640 1.98× 10–7 4.01 1.33× 10–7 3.96 2.28× 10–7 3.90 5.99× 10–8 3.84

Table 3 Comparison of numerical errors obtained from the proposed method and the CSCM for
Example 2

ν CSCM Proposed

h M = N errR2(0.05) CPU h Mx =My errR2(0.05) CPU

1.0 0.005 6 3.79× 10–9 0.0361 0.005 10 1.18× 10–9 0.0061
0.0005 11 3.02× 10–10 0.0370 0.0005 20 8.48× 10–11 0.0189

0.1 0.005 6 2.15× 10–4 0.0317 0.005 20 6.20× 10–6 0.0074
0.001 11 1.08× 10–6 0.0343 0.001 40 1.94× 10–7 0.0320

The results are displayed in Table 2. It is seen that the rate of spatial convergence is greater
than or equal to 3.

To explore the efficiency of the proposed method, the method is compared with the
Chebyshev spectral collocation method (CSCM) combined with the fourth-order Runge–
Kutta time integration scheme developed by [4]. For the CSCM, we use the numbers of
Chebyshev–Gauss–Lobatto points N and M shown in Table 3. We calculate errR2 at time
t = 0.05 and estimate the computational time cost (CPU) for each method. The numerical
results are displayed in Table 3. It can be seen that the proposed method is superior to the
CSCM in terms of CPU for the two cases ν = 1.0 and ν = 0.1. In particular, for ν = 0.1, the
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result shows that the proposed method is superior to the CSCM in terms of both CPU
and accuracy.

Example 3 Consider the system of the two-dimensional Burgers equations (8) on (x, y) ∈
[0, 1]2 with the Dirichlet boundary condition whose analytic solution [4] is given by

u(t, x, y) = v(t, x, y) =
3
4

–
1

4(1 + exp( 4y–4x–t
32ν

))
.

We compute the relative L2 norm error, errR2(t), at two times t = 0.5 and t = 2.0 with
the viscosity coefficient ν = 0.01 and fixed spatial grid size �x = �y = 1

160 . Additionally,
we investigate the temporal convergence rate by the variation of time step sizes from 1

80
to 1

2560 . The numerical results are listed in Table 4, and the second-order convergence is
numerically obtained for the two velocities u and v. To explore the efficiency of the present
method, we compare the proposed method with the CSCM. The relative L2 norm error
for u is calculated at time t = 0.01 with various viscosity coefficients ν = 1.0, 0.1, 0.01, and
0.005. The numerical results are displayed in Table 5. One can see that our method has a
good performance with a significantly reduced computational cost when compared to that
of the CSCM. Overall, it could be noted that, with an increased size of the system, there
is an increased efficiency in the proposed method when compared to that of the CSCM.
It must be noted that the result for v has a similar aspect to that of u.

To compare the proposed method and the original ECM in terms of computational
costs, we measured the relative L2 norm error and CPU with fixed time and grid sizes
h = 0.005 and �x = 1/500 at the different time levels t = 1.0, 2.0 and 3.0, and the results
are listed in Table 6. Table 6 shows that the proposed method requires less CPU without
any loss in accuracy when compared with the original ECM. Because similar results are
obtained for u from the symmetric property of u and v, the results of u are omitted.

Table 4 Temporal convergence rates for Example 3, with �x =�y = 1
160 and ν = 0.01

h t = 0.5 t = 2.0

u v u v

errR2(t) Rates errR2(t) Rates errR2(t) Rates errR2(t) Rates
1
80 2.50× 10–4 – 1.67× 10–4 – 4.28× 10–4 – 2.38× 10–4 –
1
160 1.75× 10–4 0.51 1.17× 10–4 0.51 2.38× 10–4 0.85 1.32× 10–4 0.85
1
320 9.89× 10–7 7.47 6.61× 10–7 7.47 8.14× 10–7 8.19 4.53× 10–7 8.19
1
640 4.28× 10–7 1.21 2.86× 10–7 1.21 3.52× 10–7 1.21 1.96× 10–7 1.21
1

1280 1.22× 10–7 1.81 8.14× 10–8 1.81 9.94× 10–8 1.82 5.53× 10–8 1.82
1

2560 2.77× 10–8 2.14 1.85× 10–8 2.14 2.22× 10–8 2.16 1.24× 10–8 2.16

Table 5 Comparison of numerical results for u obtained from the proposed method and the CSCM
for Example 3

ν CSCM Proposed

h M = N errR2(0.01) CPU h Mx =My errR2(0.01) CPU

1.0 0.0050 11 2.24× 10–6 0.0956 0.0050 20 3.13× 10–15 0.0063
0.1 0.0025 11 1.87× 10–7 0.1036 0.0025 20 1.29× 10–10 0.0072
0.01 0.0020 21 7.20× 10–7 0.1026 0.0020 60 7.31× 10–8 0.0205
0.005 0.0010 31 4.73× 10–6 0.1106 0.0010 120 1.14× 10–7 0.0924
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Table 6 Comparison of errors and CPUs of v via the proposed method and the original ECM for
Example 3

t ν Original ECM Proposed

errR2(t) CPU errR2(t) CPU

1.0 10–1 2.21× 10–6 37.0937 2.21× 10–6 33.9425
10–3 4.99× 10–4 37.1391 4.70× 10–4 34.2735

2.0 10–1 2.03× 10–6 74.9226 2.03× 10–6 66.7614
10–3 4.52× 10–4 74.1522 4.30× 10–4 66.5531

3.0 10–1 1.76× 10–6 111.3824 1.76× 10–6 100.0451
10–3 3.08× 10–4 110.8592 3.00× 10–4 99.9561

5 Conclusions
A modified error correction scheme has been developed for efficiently finding numerical
solutions in the BSLM framework. Instead of using the traditional way to find the depar-
ture points of the particles, we suggest a new technique by constructing new Euler polygon
in the error correction strategy, depending on the given boundary conditions. To reduce
the computational cost, the proposed method approximates the Jacobian value by a fixed
value while maintaining the scale of error, whereas the conventional ECM performs the
interpolation with derivatives newly updated in each time integration step. Through sev-
eral numerical results, the proposed method has a convergence rate of 2 in time. Also, it
is shown that the proposed method obtains outstanding numerical results compared with
the existing methods, and it well preserves the energy and mass.
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