(2018) 2018:418

RESEARCH

Approximation of derivations and the superstability in random Banach *-algebras

Reza Saadati^{1*} and Choonkil Park²

Correspondence: rsaadati@iust.ac.ir; rsaadati@eml.cc ¹Department of Mathematics, Iran University of Science and Technology, Tehran, Iran Full list of author information is

available at the end of the article

Abstract

We prove that approximations of derivations on random Banach *-algebras are exactly derivations by using a fixed point method. Furthermore, we show that approximations of quadratic *-derivations on random Banach *-algebras are exactly quadratic *-derivations. We, moreover, prove that approximations of derivations on random C*-ternary algebras are exactly derivations by using a fixed point method.

MSC: 46S50; 47H10; 26E60

Keywords: Derivation; Quadratic derivation; Superstability; Fixed point method; Random Banach *-algebra; Random C*-ternary algebra

1 Introduction

Ulam [1] presented an effective lecture at the University of Wisconsin in which he stated a number of essential unsolved problems, in the fall of 1940. The next question concerning the stability of homomorphisms was among those:

Assume that Ω_1 is a group and suppose that Ω_2 is a metric group with a metric $\Delta(\cdot, \cdot)$. Let $\xi > 0$, is there $\eta > 0$ such that if a function $\varphi : \Omega_1 \to \Omega_2$ satisfies the inequality $\Delta(\varphi(uv), \varphi(u)\varphi(v)) < \eta$ for all $u, v \in \Omega_1$ then there is a homomorphism $\Phi : \Omega_1 \to \Omega_2$ with $\Delta(\varphi(u), \Phi(u)) < \xi$ for all $u \in \Omega_1$?

When the answer is established, the functional equation for homomorphisms is stable.

The first mathematician who presented the result concerning the stability of functional equations was Hyers [2]. He intelligently answered Ulam's question when Ω_1 and Ω_2 are Banach spaces. Recently, Rassias [3] and others have obtained important results on stability and applied them to the investigations in the nonlinear sciences.

2 Preliminaries

Assume that Δ^+ is the family of distribution functions, i.e., the family of all left-continuous functions $G : [-\infty, \infty] \to [0, 1]$ such that G is increasing on $[-\infty, \infty]$, G(0) = 0 and $G(+\infty) = 1$. $D^+ \subseteq \Delta^+$ contains each function $G \in \Delta^+$ for which $\ell^-G(+\infty) = 1$ and $\ell^-g(x)$ is the left limit of the map g at x, i.e., $\ell^-g(x) = \lim_{t\to x^-} g(t)$. In Δ^+ , we have $H \leq F$ if and only if $H(s) \leq F(s)$ for all s in \mathbb{R} (partially ordered). Note that the function ε_{μ} defined by

$$\varepsilon_u(s) = \begin{cases} 0, & \text{if } s \le u, \\ 1, & \text{if } s > u, \end{cases}$$

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

is an element of Δ^+ and ε_0 is the maximal element in this space. For more details see [4–6].

Definition 2.1 ([6]) Let I = [0, 1]. A continuous triangular norm (briefly, *ct*-norm) is a function *T* from *I* to *I* with continuity property such that:

- (a) $T(\theta, \vartheta) = T(\vartheta, \theta)$ and $T(\theta, T(\vartheta, \iota)) = T(T(\theta, \vartheta), \iota)$ for all $\theta, \vartheta, \iota \in I$;
- (b) $T(\theta, 1) = \theta$ for $0 \le \theta \le 1$;
- (c) $T(\theta, \vartheta) \leq T(\iota, \kappa)$ whenever $\theta \leq \iota$ and $\vartheta \leq \kappa$ for each $\theta, \vartheta, \iota, \kappa \in I$.

 $T_P(\theta, \vartheta) = \theta \vartheta$, $T_M(\theta, \vartheta) = \min(\theta, \vartheta)$ and $T_L(\theta, \vartheta) = \max(\theta + \vartheta - 1, 0)$ (the Lukasiewicz *t*-norm) are some examples of *t*-norms. Also, we define $\prod_{i=1}^{n} \theta_i = T^{n-1}(\theta_1, \dots, \theta_n)$.

Definition 2.2 ([6]) Suppose that *T* is a *ct*-norm, *V* is a vector space and let μ be a map from *V* to *D*⁺. In this case, the ordered triple (*V*, μ , *T*) with the properties

(RN1) $\mu_{\nu}(\theta) = \varepsilon_0(\theta)$ for all $\theta > 0$ if and only if $\nu = 0$;

- (RN2) $\mu_{\alpha\nu}(\theta) = \mu_{\nu}(\frac{\theta}{|\alpha|})$ for all $\nu \in V$, $\alpha \neq 0$;
- (RN3) $\mu_{u+v}(\theta + \vartheta) \ge T(\mu_u(\theta), \mu_v(\vartheta))$ for all $u, v \in V$ and all $\theta, \vartheta \ge 0$,

is said to be a random normed space (in short, RN-space).

Let $(V, \|\cdot\|)$ be a linear normed space. Then

$$\mu_{\nu}(\vartheta) = \frac{\vartheta}{\vartheta + \|\nu\|}$$

for all $\vartheta > 0$, defines a random norm, and the ordered triple (V, μ, T_M) is an RN-space.

Definition 2.3 Assume that the following algebraic structure on an RN-space (V, μ, T) holds:

(RN-4) $\mu_{uv}(\theta \vartheta) \ge T'(\mu_u(\theta), \mu_v(\vartheta))$ for each $u, v \in V$ and all $\theta, \vartheta > 0$, where T' is a *ct*-norm.

Then (V, μ, T, T') is called a *random normed algebra*.

Suppose that $(V, \|\cdot\|)$ is a normed algebra. Then (V, μ, T_M, T_P) is a random normed algebra, where

$$\mu_{\nu}(\vartheta) = \frac{\vartheta}{\vartheta + \|\nu\|}$$

for all $\vartheta > 0$ if and only if

 $\|uv\| \le \|v\| \|u\| + \theta \|u\| + \vartheta \|v\| \quad (v, u \in V; \theta, \vartheta > 0).$

For more details, see [7-22].

Definition 2.4 A random Banach *-algebra \mathcal{B} is a random complex Banach algebra $(\mathcal{B}, \mu, T, T')$, together with an involution on \mathcal{B} which is a mapping $g \mapsto g^*$ from \mathcal{B} into \mathcal{B} that satisfies

(i)
$$g^{**} = g$$
 for $g \in \mathcal{B}$;

(ii) $(ag + bh)^* = \overline{a}g^* + \overline{b}h^*$; (iii) $(gh)^* = h^*g^*$ for $g, h \in \mathcal{B}$. If, in addition, $\mu_{g^*g}(\theta \vartheta) = T'(\mu_g(\theta), \mu_g(\vartheta))$ for $g \in \mathcal{B}$ and $\theta, \vartheta > 0$, then \mathcal{B} is called a random C^* -algebra.

Assume that \mathcal{B} is a random Banach *-algebra. A *derivation* on \mathcal{B} is a mapping δ from \mathcal{B} to \mathcal{B} such that:

$$\delta(\lambda g + h) = \lambda \delta(g) + \delta(h), \tag{2.1}$$

$$\delta(gh) = \delta(g)h + g\delta(h) \tag{2.2}$$

for all $g, h \in \mathcal{B}$ and all $\lambda \in \mathbb{C}$. A derivation δ is called a *-derivation on \mathcal{B} if $\delta(g^*) = \delta(g)^*$ for all $g \in \mathcal{B}$ (see [23]).

Recall that

$$\omega(u+v) = \omega(u) + \omega(v), \tag{2.3}$$

$$\omega(u+\nu) + \omega(u-\nu) = 2\omega(u) + 2\omega(\nu), \qquad (2.4)$$

respectively, are Cauchy additive and Cauchy quadratic functional equations.

Firstly, Baker, Lawrence and Zorzitto [24] defined the concept of superstability. Let $(\mathcal{B}, \mu, T, T')$ be an RN algebra. The random norm is multiplicative if $\mu_{uv}(\theta \vartheta) = T'(\mu_u(\theta), \mu_v(\vartheta))$ for all $u, v \in \mathcal{B}$ and all $\theta, \vartheta > 0$.

Suppose that $\Gamma \neq \emptyset$. A function $\Delta : \Gamma \times \Gamma \to [0, \infty]$ is a *generalized metric* (GM) on Γ if

- (1) $\Delta(\rho, \varrho) = 0$ if and only if $\rho = \varrho$;
- (2) $\Delta(\rho, \varrho) = \Delta(\varrho, \rho)$ for all $\rho, \varrho \in \Gamma$;
- (3) $\Delta(\rho, \varrho) \leq \Delta(\rho, \sigma) + \Delta(\sigma, \varrho)$ for all $\rho, \varrho, \sigma \in \Gamma$.

Theorem 2.1 ([25, 26]) Suppose that (Γ, Δ) is a complete GM space and assume that the selfmapping Υ on Γ with Lipschitz constant 0 < L < 1 is strictly contractive. Then, for $\varrho \in \Gamma$, either

$$\Delta\bigl(\Upsilon^n\varrho,\Upsilon^{n+1}\varrho\bigr)=\infty$$

for each $0 \le n \in \mathbb{Z}$, or there exists $n_0 \in \mathbb{N}$ such that

- (1) $\Delta(\Upsilon^n \varrho, \Upsilon^{n+1} \varrho) < \infty, \forall n \ge n_0;$
- (2) the sequence $\{\Upsilon^n \varrho\}$ tends to σ^* in Γ ;
- (3) $\Upsilon(\sigma^*) = \sigma^*$;
- (4) $\Upsilon(\sigma^*) = \sigma^*$ and is unique in $\mathbb{E} = \{\sigma \in \Gamma | \Delta(\Upsilon^{n_0}\varrho, \sigma) < \infty\}$
- (5) $(1-L)\Delta(\sigma,\sigma^*) \leq \Delta(\sigma,\Upsilon\sigma)$ for all $\sigma \in \Gamma$.

3 Approximation of derivations on random Banach *-algebras

Assume that a random *-Banach algebra \mathcal{B} has unit *e*. Our results improve and expand the result presented by Jang [27].

Theorem 3.1 Let $\psi_1 : \mathcal{B} \times \mathcal{B} \to D^+$ and $\psi_2 : \mathcal{B} \to D^+$ be distribution functions. Assume that $f : \mathcal{B} \to \mathcal{B}$ is a mapping such that

$$\mu_{f(\xi p+q)-\xi f(p)-f(q)}(t) \ge \psi_1(p,q,t), \tag{3.1}$$

$$\mu_{f(pq)-pf(q)-f(p)q}(t) \ge \psi_1(p,q,t), \tag{3.2}$$

$$\mu_{f(p^*)-f(p)^*}(t) \ge \psi_2(p,t),\tag{3.3}$$

for all $\xi \in \mathbb{T}$, $p, q \in \mathcal{B}$ and t > 0. If there exist $n \in \mathbb{N}$ and 0 < L < 1 such that $\psi_1(sp, sq, Lst) > \psi_1(p, q, t)$, $\psi_1(p, q, Lst) > \psi_1(p, q, t)$, $\psi_1(p, q, Lst) > \psi_1(p, q, t)$ and $\psi_2(sp, Lst) > \psi_2(p, t)$ for all $p, q \in \mathcal{B}$ and t > 0. Then f on \mathcal{B} is a *-derivation.

Proof Putting p = q and $\xi = 1$ in (3.1), we get

$$\mu_{f(2p)-2f(p)}(t) \ge \psi_1(p, p, t) \tag{3.4}$$

for all $p \in \mathcal{B}$ and t > 0. By induction, we can prove that

$$\mu_{f(np)-nf(p)}(t) \ge \prod_{j=1}^{n-1} \psi_1(jp, p, t_j)$$
(3.5)

for all $p, q \in \mathcal{B}$, t > 0 and $n \ge 2$ where $\sum_{j=1}^{n-1} t_j = t$.

Define

$$\Psi(p,t) = \prod_{j=1}^{s-1} \psi_1(jp,p,t_j)$$

for $p \in \mathcal{B}$, t > 0 and $s \ge 2$ where $\sum_{i=1}^{s-1} t_i = t$. So

$$\mu_{f(sp)-sf(p)}(t) \ge \Psi(p,t). \tag{3.6}$$

Put $\Gamma = \{g; g : \mathcal{B} \to \mathcal{B}\}$. Define a function $\Delta : \Gamma \times \Gamma \to [0, \infty]$ such that

$$\Delta(\vartheta, \upsilon) = \inf \{ \upsilon > 0 : \mu_{\vartheta(p) - \upsilon(p)}(\upsilon t) \ge \Psi(p, t), \forall p \in \mathcal{B}, t > 0 \},\$$

where $\vartheta, \upsilon \in \Gamma$. Miheț and Radu [28] proved that (Γ, Δ) is a complete GM space. Define a mapping $H: \Gamma \to \Gamma$ by $H(\vartheta)(p) = s^{-1} \upsilon(sp)$. Put

 $\Delta(\vartheta,\upsilon)=\nu,$

where ϑ , $\upsilon\in \varGamma$. Then

$$\mu_{H(\vartheta)(p)-H(\upsilon)(p)}(t) = \mu_{\vartheta(sp)-\upsilon(sp)}(st) \ge \Psi\left(sp, \frac{s}{\alpha}t\right) \ge \Psi\left(p, \frac{t}{L\alpha}\right).$$

So, for ϑ , $\upsilon \in S$, we have

$$\Delta(H(\vartheta), H(\upsilon)) \le L\Delta(\vartheta, \upsilon). \tag{3.7}$$

Then the mapping *H* on Γ with Lipschitz constant *L* is strictly contractive. From (3.6), we have

$$\mu_{(Hf)(p)-f(p)}(t) = \mu_{f(sp)-f(p)}(st) = \mu_{f(sp)-sf(p)}(st) \ge \Psi(p, st),$$

which implies that $\Delta(H(f), f) \leq 1/|s|$. Theorem 2.1 implies that, in the set

$$U = \big\{ \vartheta \in \Gamma : \Delta\big(\vartheta, H(f)\big) < \infty \big\},\$$

 $h: \mathcal{B} \to \mathcal{B}$ is a unique fixed point of *H*. Also for every $p \in \mathcal{A}$

$$h(p) = \lim_{m \to \infty} H^m(f(p)) = \lim_{m \to \infty} s^{-m} f(s^m p).$$
(3.8)

Using (3.6), we get

$$\mu_{h(\xi p+q)-\xi h(p)-h(q)}(t) = \lim_{n \to \infty} \mu_{f(s^{n}(\xi p+q))-\xi f(s^{n}p)-f(s^{n}q)}(s^{n}t)$$

$$\geq \lim_{n \to \infty} \psi_{1}(s^{n}p, s^{n}q, s^{n}t)$$

$$\geq \lim_{n \to \infty} \psi_{1}\left(p, q, \frac{t}{L^{n}}\right) = 1$$

for all $p, q \in \mathcal{B}$, $\xi \in T$ and t > 0. Let $\xi = \xi_1 + i\xi_2 \in \mathbb{C}$, $\xi_1, \xi_2 \in \mathbb{R}$ and let $\mu_1 = \xi_1 - [\xi_1]$ and $\mu_2 = \xi_2 - [\xi_2]$ where $[\xi]$ denotes the integer part of ξ . So $0 \le \mu_i < 1$ ($1 \le i \le 2$). Now, we represent μ_i as $\mu_i = \frac{\xi_{i,1} + \xi_{i,2}}{2}$ such that $\xi_{i,j} \in \mathbb{T}$ ($1 \le i, j \le 2$). Since $h(\xi p + q) = \lambda h(p) + h(q)$ for $\xi \in T$, we conclude that

$$\begin{split} h(\xi p) &= h(\xi_1 p) + ih(\xi_2 p) \\ &= \left([\xi_1]h(p) + \delta(\mu_1 p) \right) + i \left([\xi_2]h(p) + h(\mu_2 p) \right) \\ &= \left([\xi_1]h(p) + \frac{1}{2}h(\xi_{1,1}p + \xi_{1,2}p) \right) + i \left([\xi_2]h(p) + \frac{1}{2}h(\xi_{2,1}p + \xi_{2,2}p) \right) \\ &= \left([\xi_1]h(p) + \frac{1}{2}\xi_{1,1}h(p) + \frac{1}{2}\xi_{1,2}h(p) \right) + i \left([\xi_2]h(p) + \frac{1}{2}\xi_{2,1}h(p) + \frac{1}{2}\xi_{2,2}h(p) \right) \\ &= \xi_1 h(p) + i\xi_2 h(p) \\ &= h(p) \end{split}$$

for all $p \in \mathcal{B}$ and $\xi \in \mathbb{C}$. So, on \mathcal{B} , *h* is a \mathbb{C} -linear mapping. For the involution of *h*, we have

$$\mu_{h(p^*)-h(p)^*}(t) = \lim_{n \to \infty} \mu_{f(s^n p^*) - f(s^n p)^*}(s^n t)$$
$$\geq \lim_{n \to \infty} \psi_2(s^n p, s^n t)$$
$$\geq \lim_{n \to \infty} \psi_2\left(p, \frac{t}{L^n}\right)$$
$$= 1.$$

Now, we prove the derivation property of *h*. In (3.2), we replace *p* by $s^n p$, *q* by $s^n q$, divide by s^{2n} and get

$$\mu_{\underline{f(s^n p s^n q)}_{s^{2n}} - p \frac{f(s^n q)}{s^n} - \frac{f(s^n p)}{s^n} p}(t) \ge \psi_1(s^n p, s^n q, s^{2n} t) \ge \psi_1\left(p, q, \frac{t}{L^{2n}}\right).$$
(3.9)

In (3.9), letting $n \to \infty$, we get

$$h(pq) = ph(q) + h(p)q \tag{3.10}$$

for all $p, q \in \mathcal{B}$. So *h* is a *-derivation on \mathcal{B} . Now, in (3.2), replacing *p* by $s^n p$ and dividing by s^n , we get

$$\mu_{\frac{f(s^n pq)}{s^n} - pf(q) - \frac{f(s^n p)}{s^n}q}(t) \ge \psi_1(s^n p, q, s^n t) \ge \psi_1\left(p, q, \frac{t}{L^n}\right)$$

for all $p, q \in \mathcal{B}$, $n \in \mathbb{N}$ and t > 0. Letting $n \to \infty$, we get

$$h(pq) = pf(q) + h(p)q \tag{3.11}$$

for all $p, q \in \mathcal{B}$. Fix $m \in \mathbb{N}$. From

$$pf(s^{m}q) = h(s^{m}pq) - h(p)s^{m}q$$
$$= s^{m}pf(q)$$
(3.12)

for all $p,q \in \mathcal{B}$, we have $pf(q) = p\frac{f(s^m q)}{s^m}$ for all $p,q \in \mathcal{B}$ and $m \in \mathbb{N}$. Letting $m \to \infty$, we get pf(q) = ph(q). Putting p = e, we get h(q) = f(q) for all $q \in \mathcal{B}$. Hence f is a *-derivation on \mathcal{B} .

4 Approximation of quadratic *-derivations on random Banach *-algebras

Definition 4.1 Assume that a mapping $\delta : \mathcal{B} \to \mathcal{B}$ satisfies

- (1) $\delta(\eta + \kappa) + \delta(\eta \kappa) 2\delta(\eta) 2\delta(\kappa) = 0;$
- (2) δ is quadratic homogeneous, that is, $\delta(\lambda \eta) = \lambda^2 \delta(\eta)$;
- (3) $\delta(\eta\kappa) = \delta(\eta)\kappa^2 + \eta^2\delta(\kappa);$
- (4) $\delta(\eta^*) = \delta(\eta)^*;$

for all $\eta, \kappa \in \mathcal{B}$ and $\lambda \in \mathbb{C}$. Then it is called a *-quadratic derivation on \mathcal{B} .

Theorem 4.2 Assume that $\psi_1 : \mathcal{B} \times \mathcal{B} \to D^+$ and $\psi_2 : \mathcal{B} \to D^+$ are distribution functions. Let $f : \mathcal{B} \to \mathcal{B}$ be a function such that

$$\mu_{f(p+q)+f(p-q)-2f(p)-2f(q)}(t) \ge \psi_1(p,q,t),\tag{4.1}$$

 $\mu_{f(pq)-p^{2}f(q)-f(p)q^{2}}(t) \geq \psi_{1}(p,q,t),$ (4.2)

$$\mu_{f(\xi p) - \lambda^2 f(p)}(t) \ge \psi_2(p, t), \tag{4.3}$$

 $\mu_{f(p^*)-f(p)^*}(t) \ge \psi_2(p,t),\tag{4.4}$

for all $\xi \in \mathbb{C}$, $p,q \in \mathcal{B}$ and t > 0. If there exist $s \in \mathbb{N}$ and 0 < L < 1 such that $\psi_1(2^s p, 2^s q, 2^{2s}Lt) > \psi_1(p,q,t)$, $\psi_1(p,q,t) > \psi_1(p,q,t) > \psi_1(p,q,t) > \psi_1(p,q,t) > \psi_1(p,q,t)$ and $\psi_2(2^s p, 2^{2s}Lt) > \psi_2(p,t)$ for all $p,q \in \mathcal{B}$ and t > 0. Then, on \mathcal{B} , f is a *-quadratic derivation.

Proof Putting p = q and $\xi = 1$ in (4.1), we get

$$\mu_{f(2p)-4f(p)}(t) \ge \psi_1(p,p,t)$$

for all $p \in \mathcal{B}$ and t > 0. Induction on *n* yields

$$\mu_{f(2^{n}p)-2^{2n}f(p)}(t) \ge \prod_{i=0}^{n-1} \psi_1\left(2^{i}p, 2^{i}p, \frac{t_i}{2^{2(n-i)}}\right)$$
(4.5)

for all $p, q \in \mathcal{B}$, $n \ge 2$ and t > 0 where $\sum_{i=0}^{n-1} t_i = t$. Define

$$\Psi(p,t) = \prod_{i=0}^{s-1} 2^{2(s-i)} \psi_1\left(2^i p, 2^i p, \frac{t_i}{2^{2(n-i)}}\right).$$
(4.6)

Then we have

$$\mu_{f(2^{s}p)-2^{2s}f(p)}(t) \geq \Psi(p,t).$$

The set of all mappings $\zeta : \mathcal{B} \to \mathcal{B}$ is denoted by Γ . Define a function $\Delta : \Gamma \times \Gamma \to [0, \infty]$ by

$$\Delta(\zeta,\eta) = \inf \left\{ \nu > 0 : \mu_{\zeta(p)-\eta(p)}(t) \ge \Psi\left(p,\frac{t}{\nu}\right), \forall p \in \mathcal{B} \right\}.$$

Miheț and Radu [28] proved that (Γ, Δ) is a complete GM space. Now, define a mapping $H: \Gamma \to \Gamma$ by $H(\zeta)(p) = 2^{-2s} \zeta(2^s p)$. Putting

$$\Delta(\zeta,\eta)=\nu\quad(\zeta,\eta\in\Gamma),$$

we obtain

$$\mu_{H(\zeta)(p)-H(\eta)(p)}(t) = \mu_{\zeta(2^{s}p)-\eta(2^{s}p)}\left(\frac{t}{2^{2s}}\right) \geq \Psi\left(2^{s}p, \frac{t}{\nu 2^{2s}}\right) \geq \Psi\left(p, \frac{t}{L\alpha}\right).$$

Then, for ζ , $\eta \in S$, we have

$$\Delta(H(\zeta), H(\eta)) \le L\Delta(\zeta, \eta), \tag{4.7}$$

which means that *H* on Γ , with Lipschitz constant *L* is a strictly contractive mapping. Also, for $p \in \mathcal{B}$, we have

$$\mu_{(Hf)(p)-f(p)}(t) = \mu_{2^{-2s}f(2^{s}p)-f(p)}(t) = \mu_{f(2^{s})2^{2s}f(p)}(2^{2s}t) \ge \Psi(p, 2^{2s}t),$$

which implies that $\Delta(H(f), f) \leq 1/2^{2s}$. Using Theorem 2.1, we conclude that, in the set

$$U = \left\{ \zeta \in \Gamma : \Delta(\zeta, H(f)) < \infty \right\}$$
(4.8)

and for each $p \in \mathcal{B}$, $h : \mathcal{B} \to \mathcal{B}$ is a unique fixed point of H and

$$h(p) = \lim_{m \to \infty} H^m(f(p)) = \lim 2^{-2sm} f(2^{sm} p).$$
(4.9)

By (4.9), we have

 $\mu_{h(p+q)+h(p-q)-2h(p)-2h(q)}(t)$

$$= \lim_{n \to \infty} \mu_{f(2^{sn}(p+q)+f(2^{sn}(p-q))-2f(2^{sn}p)-2f(2^{sn}q)} (2^{2sn}t)$$

$$\geq \lim_{n \to \infty} \psi_1(2^{ns}p, 2^{ns}q, 2^{2ns}t) \geq \lim_{n \to \infty} \psi_1\left(p, q, \frac{t}{L^n}\right) = 1$$

for all $p, q \in \mathcal{B}$ and t > 0. Then *h* is a quadratic mapping on \mathcal{B} . Also, we have

$$\begin{split} \mu_{h(\xi p)-\lambda^2 h(p)}(t) &= \lim_{n \to \infty} \mu_{f(2^{ns}(\xi p)-\lambda^2 f(2^{ns}p)} \left(2^{2ns}t\right) \\ &\geq \lim_{n \to \infty} \psi_2 \left(2^{ns}p, 2^{2ns}t\right) \\ &\geq \lim_{n \to \infty} \psi_2 \left(p, \frac{t}{L^n}\right) \\ &= 1, \end{split}$$

which implies that h is quadratic homogeneous.

Now, replacing *p* by $2^{ns}p$ in (4.2) and dividing by 2^{-2sn} , we get

$$\mu_{\frac{f(2^{ns}pq)}{2^{2ns}}-p^2f(q)-\frac{f(2^{ns}p)}{2^{2ns}}q^2}(t) \ge \psi_1(2^{ns}p,q,2^{2ns}t) \ge \psi_1\left(p,q,\frac{t}{L^n}\right)$$
(4.10)

for all $p, q \in \mathcal{B}$, $n \in \mathbb{N}$ and t > 0. Letting $n \to \infty$, we get

$$h(pq) = p^2 f(q) + h(p)q^2, (4.11)$$

for all $p, q \in \mathcal{B}$. Let $m \in \mathbb{N}$. We have

$$p^{2}f(2^{ms}q) = h(2^{ms}pq) - h(2^{ms}p)q^{2}$$

= $2^{2ms}p^{2}f(q) + h(2^{ms}p)q^{2} - h(2^{ms}p)q^{2}$
= $2^{2ms}p^{2}f(q)$ (4.12)

for all $p, q \in \mathcal{B}$, and so $p^2 f(q) = p^2 \frac{f(2^{ms}q)}{2^{2ms}}$ for all $p, q \in \mathcal{B}$ and $m \in \mathbb{N}$. Letting $m \to \infty$ yields $p^2 f(q) = p^2 h(q)$. Putting p = e, we get h(q) = f(q) for all $q \in \mathcal{B}$. Hence, on \mathcal{B} , f is a *-quadratic derivation.

5 Derivations on random C*-ternary algebras

A complex random Banach space $(\mathcal{B}, \mu, T, T')$, which has a ternary product $(f, g, h) \mapsto [f, g, h]$ of \mathcal{B}^3 into \mathcal{B} , is a random C^* -ternary algebra if (see [29]):

- (1) $[\xi f + v, g, h] = \xi [f, g, h] + [v, g, h]$ for all $\xi \in \mathbb{C}$;
- (2) $[f, \xi g + v, h] = \xi [f, g, h] + [f, v, h]$ for all $\xi \in \mathbb{C}$;
- (3) $[f,g,\xi h + \nu] = \xi [f,g,h] + [f,g,\nu]$ for all $\xi \in \mathbb{C}$;
- (4) [f,g,[h,k,j]] = [f,[k,h,g],j] = [[f,g,h],k,j];
- (5) $||[f,g,h]|| \le ||f|| \cdot ||g|| \cdot ||h||;$
- (6) $||[f,f,f]|| = ||f||^3;$

for f, g, h, v, k, $j \in \mathcal{B}$.

If $(\mathcal{B}, \mu, T, T')$ has the unit e satisfying f = [f, e, e] = [e, e, f] for all $f \in \mathcal{B}$, then the random C^* -ternary algebra has unit e. If for $f \in \mathcal{B}$, we have $[e, f, e] = f^*$, then * is an involution on the C^* -ternary algebra. A C^* -ternary derivation is a mapping $\delta : \mathcal{B} \longrightarrow \mathcal{B}$ such that

$$\begin{split} &\delta\big([f,g,h]\big) = \big[\delta(f),g,h\big] + \big[f,\delta(g),h\big] + \big[f,g,\delta(h)\big],\\ &\delta(\xi f + g) = \xi\delta(f) + \delta(g) \end{split}$$

for all $f, g, h \in \mathcal{B}$ and $\xi \in \mathbb{C}$. Recall that $\delta([e, f, e]) = [e, \delta(f), e]$ implies that δ is an involution.

Theorem 5.1 Assume that \mathcal{B} is a random C^* -ternary algebra which has the unit e. Suppose that $\psi_1 : \mathcal{B}^2 \longrightarrow [0, \infty)$ and $\psi_2 : \mathcal{B}^3 \longrightarrow [0, \infty)$ are functions. Let $f : \mathcal{B} \longrightarrow \mathcal{B}$ be a mapping such that

$$\mu_{f(\xi p+q)-\lambda f(p)-f(q)}(t) \ge \psi_1(p,q,t),$$
(5.1)

 $\mu_{f([p,q,r])-[f(p),q,r]-[p,f(q),r][p,q,f(r)]}(t) \ge \psi_2(p,q,r,t),$ (5.2)

$$\mu_{f([e,q,e])-[e,f(q),e]}(t) \ge \psi_2(e,q,e,t)$$
(5.3)

for all $\lambda \in \mathbb{C}$, $p,q,r \in \mathcal{B}$ and t > 0. Assume there exist $s \in \mathbb{N}$ and 0 < L < 1 such that $\psi_1(s^i p, s^j q, s^{(i+j)}L^{(i+j)}t) > \psi_1(p,q,t)$, $\psi_2(s^i p, s^j q, s^k r, s^{(i+j+k)}L^{(i+j+k)}t) > \psi_2(p,q,r,t)$ for all $p,q,r \in \mathcal{B}$ and i,j,k = 0,1. Then on \mathcal{B} , f is a *-derivation.

Proof Put

$$\Psi(p,t) = \prod_{j=1}^{s-1} \psi_1(jp,p,t_j)$$

for $p \in \mathcal{B}$ and t > 0 where $\sum_{j=1}^{s-1} t_j = t$. Then we have

$$\mu_{f(sp)-sf(p)}(t) \ge \Psi(p,t). \tag{5.4}$$

We use similar method presented in the proof of Theorem 3.1. Let Γ be the set of all mappings $r : \mathcal{B} \longrightarrow \mathcal{B}$. Define a function $\Delta : \Gamma \times \Gamma \longrightarrow [0, \infty]$ by

$$\Delta(\zeta,\eta) = \inf \{ \nu > 0 : \mu_{\zeta(z) - \eta(z)}(\nu s) \ge \Psi(z,s) \}$$

for $\zeta, \eta \in \Gamma, z \in \mathcal{B}$ and t > 0. Miheț and Radu [28] proved that (Γ, Δ) is a complete GM space. Define a mapping $H : \Gamma \longrightarrow \Gamma$ by $H(\zeta)(z) = s^{-1}\zeta(sz)$. Now

$$\Delta(\zeta,\eta) = \nu(\zeta,\eta\in\Gamma)$$

implies that

$$\mu_{H(\zeta)(z)-H(\eta)(z)}(t) = \mu_{\zeta(sz)-\eta(sz)}(vst) \ge \Psi(sz,st) \ge \Psi\left(z,\frac{t}{Lv}\right)$$

and for ζ , $\eta\in \varGamma$

$$\Delta(H(\zeta), H(\eta)) \le L\Delta(\zeta, \eta).$$
(5.5)

Therefore *H* on Γ with Lipschitz constant *L* is a strictly contractive function. From (5.4), we have

$$\mu(Hf)(z) - f(z)(t) = \mu_{s^{-1}f(sz) - f(z)}(t) = \mu_{f(sz) - sf(z)}(st) \ge \Psi(z, st).$$

So $\Delta(H(f), f) \leq 1/|s|$. Using Theorem 2.1, we conclude that, in the set

 $U = \{ \zeta \in \Gamma : \Delta(\zeta, H(f)) < \infty \},\$

 $h: \mathcal{B} \longrightarrow \mathcal{B}$ is a unique fixed point of *H*.

Now, for every $z \in \mathcal{B}$, we have

$$h(z) = \lim_{m \to \infty} H^m(f(z)) = \lim_{m \to \infty} s^{-m} f(s^m z)$$
(5.6)

which implies that *h* is a \mathbb{C} -linear mapping on \mathcal{B} . Also, we can show that *h* has the *C*^{*}-ternary derivation property,

$$\begin{aligned} & \mu_{h([p,q,r])[h(p),q,r][p,h(q),r][p,q,h(r)]}(t) \\ &= \lim_{n \to \infty} \mu_{f(s^{3n}[p,q,r]) - s^{2n}[f(s^{n}p),q,r] - s^{2n}[p,f(s^{n}q),r] - s^{2n}[p,q,f(s^{n}r)]}(s^{3n}t) \\ &\geq \lim_{n \to \infty} \psi_1(s^{n}p,s^{n}q,s^{n}r,s^{3n}t) \geq \lim_{n \to \infty} \psi_1\left(p,q,r,\frac{t}{L^{3n}}\right) = 1. \end{aligned}$$

So

$$h([p,q,r]) = [h(p),q,r] + [p,h(q),r] + [p,q,h(r)]$$
(5.7)

for all $p, q, r \in \mathcal{B}$. Also,

$$\begin{split} \mu_{h([e,p,e])-[e,h(p),e]}(t) &= \lim_{n \to \infty} \mu_{f(s^{3n}[e,p,e])-s^{2n}[e,f(s^np),e]}(s^{3n}t) \\ &\geq \lim_{n \to \infty} \psi_1(s^n e, s^n p, s^n e, s^{3n}t) \\ &\geq \lim_{n \to \infty} L^{3n} \psi_1\left(e,p,e,\frac{t}{L^{3n}}\right) \\ &= 1, \end{split}$$

which implies that, on \mathcal{B} , *h* is a *-derivation.

Now, in (5.2), we replace *q* by $s^n q$, *r* by $s^n r$ and divide by s^{2n} . Letting $n \to \infty$, we get

$$\lim_{n \to \infty} \mu_{s^{-2n}(f([p,s^{n}q,s^{n}r])-[f(p),s^{n}q,s^{n}r]-s^{n}[p,f(s^{n}q),r]-s^{n}[p,q,f(s^{n}r)])}(t)$$

$$= \lim_{n \to \infty} \mu_{f(s^{2n}[p,q,r])-s^{2n}[f(p),q,r]-s^{n}[p,f(s^{n}q),r]-s^{n}[p,q,f(s^{n}r)]}(s^{2n}t)$$

$$\geq \lim_{n \to \infty} \psi_{1}(p,s^{n}q,s^{n}r,s^{2n}) \geq \lim_{n \to \infty} \psi_{1}\left(p,q,r\frac{t}{L^{2n}}\right) = 1,$$

which implies that

$$h\bigl([p,q,r]\bigr) = \bigl[f(p),q,r\bigr] + \bigl[p,h(q),r\bigr] + \bigl[p,q,h(r)\bigr] \tag{5.8}$$

for all $p,q,r \in \mathcal{B}$. Putting f(p) - h(p) instead of q and r in (5.7) and (5.8), we obtain $\mu_{h(p)-f(p)}(t) = 1$. Hence, on \mathcal{B}, f is a *-derivation.

Funding

No funding was received.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author details

¹Department of Mathematics, Iran University of Science and Technology, Tehran, Iran. ²Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 August 2018 Accepted: 9 November 2018 Published online: 15 November 2018

References

- 1. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience, New York (1960)
- 2. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
- 3. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
- 4. Agarwal, R.P., Saadati, R., Salamati, A.: Approximation of the multiplicatives on random multi-normed space. J. Inequal. Appl. 2017, 204 (2017)
- Baderi, Z., Saadati, R.: Generalized stability of Euler–Lagrange quadratic functional equation in random normed spaces under arbitrary t-norms. Thai J. Math. 14, 585–590 (2016)
- 6. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)
- Lee, S., Saadati, R.: On stability of functional inequalities at random lattice *φ*-normed spaces. J. Comput. Anal. Appl. 15, 1403–1412 (2013)
- Wang, Z., Saadati, R.: Approximation of additive functional equations in NA Lie C*-algebras. Demonstr. Math. 51, 37–44 (2018)
- 9. Mohammad, M.V., Vaezpour, S.M., Saadati, R.: On nonlinear stability of operation preserving non-Archeimedean ρ -functional equations in latticetic random Banach lattice spaces. J. Math. Anal. **8**, 113–123 (2017)
- 10. Park, C., Eshaghi Gordji, M., Saadati, R.: Random homomorphisms and random derivations in random normed algebras via fixed point method. J. Inequal. Appl. **2012**, 194 (2012)
- Bao, J., Liu, X., Wang, P.: Partially equi-integral φ₀-stability of nonlinear differential systems. J. Math. Comput. Sci. 16, 472–480 (2016)
- 12. Ardabili, J.S., Samian, Z.P.: An asymptotic stability criteria of delay differential equations on time scales. J. Math. Comput. Sci. 15, 137–145 (2015)
- Rostamy, D., Mottaghi, E.: Convergence analysis and approximation solution for the coupled fractional convection-diffusion equations. J. Math. Comput. Sci. 16, 193–204 (2016)
- Mohammad, M.V., Vaezpour, S.M., Saadati, R.: Nonlinear stability of *ρ*-functional equations in latticetic random Banach lattice spaces. Mathematics 6(2), Article ID 22 (2018). https://doi.org/10.3390/math6020022
- 15. Park, C., Anastassiou, G.A., Saadati, R., Yun, S.: Functional inequalities in fuzzy normed spaces. J. Comput. Anal. Appl. 22, 601–612 (2017)

- Ciepliński, K.: On a functional equation connected with bi-linear mappings and its Hyers–Ulam stability. J. Nonlinear Sci. Appl. 10, 5914–5921 (2017)
- Choi, G., Jung, S., Lee, Y.: Approximation properties of solutions of a mean value type functional inequalities. J. Nonlinear Sci. Appl. 10, 4507–4514 (2017)
- Kim, G.H., Lee, Y.W. Superstability of Pexiderized functional equations arising from distance measures. J. Nonlinear Sci. Appl. 9, 413–423 (2016)
- Alshybani, S., Vaezpour, S.M., Saadati, R.: Generalized Hyers–Ulam stability of mixed type additive-quadratic functional equation in random normed spaces. J. Math. Anal. 8(5), 12–26 (2017)
- Park, C., Shin, D., Saadati, R., Lee, J.: A fixed point approach to the fuzzy stability of an AQCQ-functional equation. Filomat 30, 1833–1851 (2016)
- 21. Naeem, R., Anwar, M.: Jensen type functionals and exponential convexity. J. Math. Comput. Sci. 17, 429–436 (2017)
- Park, C., Anastassiou, G.A., Saadati, R., Yun, S.: Functional inequalities in fuzzy normed spaces. J. Comput. Anal. Appl. 22, 601–612 (2017)
- 23. Bratteli, O., Kishimoto, A., Robinson, D.W.: Approximately inner derivations. Math. Scand. 103, 141–160 (2008)
- 24. Baker, J.A., Lawrence, J., Zorzitto, F.: The stability of the equation f(x + y) = f(x)f(y). Proc. Am. Math. Soc. **74**, 242–246 (1979)
- Cadariu, L., Radu, V.: Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math. 4(1), Article ID 4 (2003)
- Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)
- 27. Jang, S.Y.: Superstability of derivations on Banach *-algebras. Adv. Differ. Equ. 2017, 193 (2017)
- Mihet, D., Radu, V.: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343, 567–572 (2008)
- 29. Zettl, Z.: A characterization of ternary rings of operators. Adv. Math. 48, 117-143 (1983)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com