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Abstract
We prove that approximations of derivations on random Banach ∗-algebras are
exactly derivations by using a fixed point method. Furthermore, we show that
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quadratic ∗-derivations. We, moreover, prove that approximations of derivations on
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1 Introduction
Ulam [1] presented an effective lecture at the University of Wisconsin in which he stated a
number of essential unsolved problems, in the fall of 1940. The next question concerning
the stability of homomorphisms was among those:

Assume that Ω1 is a group and suppose that Ω2 is a metric group with a metric �(·, ·).
Let ξ > 0, is there η > 0 such that if a function ϕ : Ω1 → Ω2 satisfies the inequality
�(ϕ(uv),ϕ(u)ϕ(v)) < η for all u, v ∈ Ω1 then there is a homomorphism Φ : Ω1 → Ω2 with
�(ϕ(u),Φ(u)) < ξ for all u ∈ Ω1?

When the answer is established, the functional equation for homomorphisms is stable.
The first mathematician who presented the result concerning the stability of functional

equations was Hyers [2]. He intelligently answered Ulam’s question when Ω1 and Ω2 are
Banach spaces. Recently, Rassias [3] and others have obtained important results on stabil-
ity and applied them to the investigations in the nonlinear sciences.

2 Preliminaries
Assume that �+ is the family of distribution functions, i.e., the family of all left-continuous
functions G : [–∞,∞] → [0, 1] such that G is increasing on [–∞,∞], G(0) = 0 and
G(+∞) = 1. D+ ⊆ �+ contains each function G ∈ �+ for which �–G(+∞) = 1 and �–g(x) is
the left limit of the map g at x, i.e., �–g(x) = limt→x– g(t). In �+, we have H ≤ F if and only
if H(s) ≤ F(s) for all s in R (partially ordered). Note that the function εu defined by

εu(s) =

⎧
⎨

⎩

0, if s ≤ u,

1, if s > u,
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is an element of �+ and ε0 is the maximal element in this space. For more details see
[4–6].

Definition 2.1 ([6]) Let I = [0, 1]. A continuous triangular norm (briefly, ct-norm) is a
function T from I to I with continuity property such that:

(a) T(θ ,ϑ) = T(ϑ , θ ) and T(θ , T(ϑ , ι)) = T(T(θ ,ϑ), ι) for all θ ,ϑ , ι ∈ I ;
(b) T(θ , 1) = θ for 0 ≤ θ ≤ 1;
(c) T(θ ,ϑ) ≤ T(ι,κ) whenever θ ≤ ι and ϑ ≤ κ for each θ ,ϑ , ι,κ ∈ I .

TP(θ ,ϑ) = θϑ , TM(θ ,ϑ) = min(θ ,ϑ) and TL(θ ,ϑ) = max(θ + ϑ – 1, 0) (the Lukasiewicz
t-norm) are some examples of t-norms. Also, we define

∏n
j=1 θj = Tn–1(θ1, . . . , θn).

Definition 2.2 ([6]) Suppose that T is a ct-norm, V is a vector space and let μ be a map
from V to D+. In this case, the ordered triple (V ,μ, T) with the properties

(RN1) μv(θ ) = ε0(θ ) for all θ > 0 if and only if v = 0;
(RN2) μαv(θ ) = μv( θ

|α| ) for all v ∈ V , α �= 0;
(RN3) μu+v(θ + ϑ) ≥ T(μu(θ ),μv(ϑ)) for all u, v ∈ V and all θ ,ϑ ≥ 0,

is said to be a random normed space (in short, RN-space).

Let (V ,‖ · ‖) be a linear normed space. Then

μv(ϑ) =
ϑ

ϑ + ‖v‖

for all ϑ > 0, defines a random norm, and the ordered triple (V ,μ, TM) is an RN-space.

Definition 2.3 Assume that the following algebraic structure on an RN-space (V ,μ, T)
holds:

(RN-4) μuv(θϑ) ≥ T ′(μu(θ ),μv(ϑ)) for each u, v ∈ V and all θ ,ϑ > 0, where T ′ is a
ct-norm.

Then (V ,μ, T , T ′) is called a random normed algebra.

Suppose that (V ,‖ · ‖) is a normed algebra. Then (V ,μ, TM, TP) is a random normed
algebra, where

μv(ϑ) =
ϑ

ϑ + ‖v‖

for all ϑ > 0 if and only if

‖uv‖ ≤ ‖v‖‖u‖ + θ‖u‖ + ϑ‖v‖ (v, u ∈ V ; θ ,ϑ > 0).

For more details, see [7–22].

Definition 2.4 A random Banach ∗-algebra B is a random complex Banach algebra
(B,μ, T , T ′), together with an involution on B which is a mapping g �→ g∗ from B into
B that satisfies

(i) g∗∗ = g for g ∈ B;
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(ii) (ag + bh)∗ = ag∗ + bh∗;
(iii) (gh)∗ = h∗g∗ for g, h ∈ B.
If, in addition, μg∗g(θϑ) = T ′(μg(θ ),μg(ϑ)) for g ∈ B and θ ,ϑ > 0, then B is called a ran-

dom C∗-algebra.

Assume that B is a random Banach ∗-algebra. A derivation on B is a mapping δ from B
to B such that:

δ(λg + h) = λδ(g) + δ(h), (2.1)

δ(gh) = δ(g)h + gδ(h) (2.2)

for all g, h ∈ B and all λ ∈C. A derivation δ is called a ∗-derivation on B if δ(g∗) = δ(g)∗ for
all g ∈ B (see [23]).

Recall that

ω(u + v) = ω(u) + ω(v), (2.3)

ω(u + v) + ω(u – v) = 2ω(u) + 2ω(v), (2.4)

respectively, are Cauchy additive and Cauchy quadratic functional equations.
Firstly, Baker, Lawrence and Zorzitto [24] defined the concept of superstability. Let

(B,μ, T , T ′) be an RN algebra. The random norm is multiplicative if μuv(θϑ) = T ′(μu(θ ),
μv(ϑ)) for all u, v ∈ B and all θ ,ϑ > 0.

Suppose that Γ �= ∅. A function � : Γ × Γ → [0,∞] is a generalized metric (GM) on Γ

if
(1) �(ρ,�) = 0 if and only if ρ = �;
(2) �(ρ,�) = �(�,ρ) for all ρ,� ∈ Γ ;
(3) �(ρ,�) ≤ �(ρ,σ ) + �(σ ,�) for all ρ,�,σ ∈ Γ .

Theorem 2.1 ([25, 26]) Suppose that (Γ ,�) is a complete GM space and assume that
the selfmapping Υ on Γ with Lipschitz constant 0 < L < 1 is strictly contractive. Then, for
� ∈ Γ , either

�
(
Υ n�,Υ n+1�

)
= ∞

for each 0 ≤ n ∈Z , or there exists n0 ∈ N such that
(1) �(Υ n�,Υ n+1�) < ∞, ∀n ≥ n0;
(2) the sequence {Υ n�} tends to σ ∗ in Γ ;
(3) Υ (σ ∗) = σ ∗;
(4) Υ (σ ∗) = σ ∗ and is unique in E = {σ ∈ Γ |�(Υ n0�,σ ) < ∞}
(5) (1 – L)�(σ ,σ ∗) ≤ �(σ ,Υ σ ) for all σ ∈ Γ .

3 Approximation of derivations on random Banach ∗-algebras
Assume that a random ∗-Banach algebra B has unit e. Our results improve and expand
the result presented by Jang [27].
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Theorem 3.1 Let ψ1 : B × B → D+ and ψ2 : B → D+ be distribution functions. Assume
that f : B → B is a mapping such that

μf (ξp+q)–ξ f (p)–f (q)(t) ≥ ψ1(p, q, t), (3.1)

μf (pq)–pf (q)–f (p)q(t) ≥ ψ1(p, q, t), (3.2)

μf (p∗)–f (p)∗ (t) ≥ ψ2(p, t), (3.3)

for all ξ ∈ T, p, q ∈ B and t > 0. If there exist n ∈ N and 0 < L < 1 such that ψ1(sp, sq, Lst) >
ψ1(p, q, t), ψ1(sp, q, Lst) > ψ1(p, q, t), ψ1(p, sq, Lst) > ψ1(p, q, t) and ψ2(sp, Lst) > ψ2(p, t) for
all p, q ∈ B and t > 0. Then f on B is a ∗-derivation.

Proof Putting p = q and ξ = 1 in (3.1), we get

μf (2p)–2f (p)(t) ≥ ψ1(p, p, t) (3.4)

for all p ∈ B and t > 0. By induction, we can prove that

μf (np)–nf (p)(t) ≥
n–1∏

j=1

ψ1(jp, p, tj) (3.5)

for all p, q ∈ B, t > 0 and n ≥ 2 where
∑n–1

j=1 tj = t.
Define

Ψ (p, t) =
s–1∏

j=1

ψ1(jp, p, tj)

for p ∈ B, t > 0 and s ≥ 2 where
∑s–1

j=1 tj = t. So

μf (sp)–sf (p)(t) ≥ Ψ (p, t). (3.6)

Put Γ = {g; g : B → B}. Define a function � : Γ × Γ → [0,∞] such that

�(ϑ ,υ) = inf
{
ν > 0 : μϑ(p)–υ(p)(νt) ≥ Ψ (p, t),∀p ∈ B, t > 0

}
,

where ϑ ,υ ∈ Γ . Miheţ and Radu [28] proved that (Γ ,�) is a complete GM space. Define
a mapping H : Γ → Γ by H(ϑ)(p) = s–1υ(sp). Put

�(ϑ ,υ) = ν,

where ϑ ,υ ∈ Γ . Then

μH(ϑ)(p)–H(υ)(p)(t) = μϑ(sp)–υ(sp)(st) ≥ Ψ

(

sp,
s
α

t
)

≥ Ψ

(

p,
t

Lα

)

.

So, for ϑ ,υ ∈ S, we have

�
(
H(ϑ), H(υ)

) ≤ L�(ϑ ,υ). (3.7)
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Then the mapping H on Γ with Lipschitz constant L is strictly contractive. From (3.6), we
have

μ(Hf )(p)–f (p)(t) = μf (sp)–f (p)(st) = μf (sp)–sf (p)(st) ≥ Ψ (p, st),

which implies that �(H(f ), f ) ≤ 1/|s|. Theorem 2.1 implies that, in the set

U =
{
ϑ ∈ Γ : �

(
ϑ , H(f )

)
< ∞}

,

h : B → B is a unique fixed point of H . Also for every p ∈A

h(p) = lim
m→∞ Hm(

f (p)
)

= lim
m→∞ s–mf

(
smp

)
. (3.8)

Using (3.6), we get

μh(ξp+q)–ξh(p)–h(q)(t) = lim
n→∞μf (sn(ξp+q))–ξ f (snp)–f (snq)

(
snt

)

≥ lim
n→∞ψ1

(
snp, snq, snt

)

≥ lim
n→∞ψ1

(

p, q,
t

Ln

)

= 1

for all p, q ∈ B, ξ ∈ T and t > 0. Let ξ = ξ1 + iξ2 ∈ C, ξ1, ξ2 ∈ R and let μ1 = ξ1 – [ξ1] and
μ2 = ξ2 – [ξ2] where [ξ ] denotes the integer part of ξ . So 0 ≤ μi < 1 (1 ≤ i ≤ 2). Now, we
represent μi as μi = ξi,1+ξi,2

2 such that ξi,j ∈ T (1 ≤ i, j ≤ 2). Since h(ξp + q) = λh(p) + h(q)
for ξ ∈ T , we conclude that

h(ξp) = h(ξ1p) + ih(ξ2p)

=
(
[ξ1]h(p) + δ(μ1p)

)
+ i

(
[ξ2]h(p) + h(μ2p)

)

=
(

[ξ1]h(p) +
1
2

h(ξ1,1p + ξ1,2p)
)

+ i
(

[ξ2]h(p) +
1
2

h(ξ2,1p + ξ2,2p)
)

=
(

[ξ1]h(p) +
1
2
ξ1,1h(p) +

1
2
ξ1,2h(p)

)

+ i
(

[ξ2]h(p) +
1
2
ξ2,1h(p) +

1
2
ξ2,2h(p)

)

= ξ1h(p) + iξ2h(p)

= h(p)

for all p ∈ B and ξ ∈C. So, on B, h is a C-linear mapping. For the involution of h, we have

μh(p∗)–h(p)∗ (t) = lim
n→∞μf (snp∗)–f (snp)∗

(
snt

)

≥ lim
n→∞ψ2

(
snp, snt

)

≥ lim
n→∞ψ2

(

p,
t

Ln

)

= 1.
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Now, we prove the derivation property of h. In (3.2), we replace p by snp, q by snq, divide
by s2n and get

μ f (snpsnq)
s2n –p f (snq)

sn – f (snp)
sn p(t) ≥ ψ1

(
snp, snq, s2nt

) ≥ ψ1

(

p, q,
t

L2n

)

. (3.9)

In (3.9), letting n → ∞, we get

h(pq) = ph(q) + h(p)q (3.10)

for all p, q ∈ B. So h is a ∗-derivation on B. Now, in (3.2), replacing p by snp and dividing
by sn, we get

μ f (snpq)
sn –pf (q)– f (snp)

sn q(t) ≥ ψ1
(
snp, q, snt

) ≥ ψ1

(

p, q,
t

Ln

)

for all p, q ∈ B, n ∈N and t > 0. Letting n → ∞, we get

h(pq) = pf (q) + h(p)q (3.11)

for all p, q ∈ B. Fix m ∈ N. From

pf
(
smq

)
= h

(
smpq

)
– h(p)smq

= smpf (q) (3.12)

for all p, q ∈ B, we have pf (q) = p f (smq)
sm for all p, q ∈ B and m ∈ N. Letting m → ∞, we

get pf (q) = ph(q). Putting p = e, we get h(q) = f (q) for all q ∈ B. Hence f is a ∗-derivation
on B. �

4 Approximation of quadratic ∗-derivations on random Banach ∗-algebras
Definition 4.1 Assume that a mapping δ : B → B satisfies

(1) δ(η + κ) + δ(η – κ) – 2δ(η) – 2δ(κ) = 0;
(2) δ is quadratic homogeneous, that is, δ(λη) = λ2δ(η);
(3) δ(ηκ) = δ(η)κ2 + η2δ(κ);
(4) δ(η∗) = δ(η)∗;

for all η,κ ∈ B and λ ∈C. Then it is called a ∗-quadratic derivation on B.

Theorem 4.2 Assume that ψ1 : B ×B → D+ and ψ2 : B → D+ are distribution functions.
Let f : B → B be a function such that

μf (p+q)+f (p–q)–2f (p)–2f (q)(t) ≥ ψ1(p, q, t), (4.1)

μf (pq)–p2f (q)–f (p)q2 (t) ≥ ψ1(p, q, t), (4.2)

μf (ξp)–λ2f (p)(t) ≥ ψ2(p, t), (4.3)

μf (p∗)–f (p)∗ (t) ≥ ψ2(p, t), (4.4)
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for all ξ ∈ C, p, q ∈ B and t > 0. If there exist s ∈ N and 0 < L < 1 such that ψ1(2sp, 2sq,
22sLt) > ψ1(p, q, t), ψ1(2sp, q, 22sLt) > ψ1(p, q, t), ψ1(p, 2sq, 22sLt) > ψ1(p, q, t) and ψ2(2sp,
22sLt) > ψ2(p, t) for all p, q ∈ B and t > 0. Then, on B, f is a ∗-quadratic derivation.

Proof Putting p = q and ξ = 1 in (4.1), we get

μf (2p)–4f (p)(t) ≥ ψ1(p, p, t)

for all p ∈ B and t > 0. Induction on n yields

μf (2np)–22nf (p)(t) ≥
n–1∏

i=0

ψ1

(

2ip, 2ip,
ti

22(n–i)

)

(4.5)

for all p, q ∈ B, n ≥ 2 and t > 0 where
∑n–1

i=0 ti = t. Define

Ψ (p, t) =
s–1∏

i=0

22(s–i)ψ1

(

2ip, 2ip,
ti

22(n–i)

)

. (4.6)

Then we have

μf (2sp)–22sf (p)(t) ≥ Ψ (p, t).

The set of all mappings ζ : B → B is denoted by Γ . Define a function � : Γ × Γ → [0,∞]
by

�(ζ ,η) = inf

{

ν > 0 : μζ (p)–η(p)(t) ≥ Ψ

(

p,
t
ν

)

,∀p ∈ B
}

.

Miheţ and Radu [28] proved that (Γ ,�) is a complete GM space. Now, define a mapping
H : Γ → Γ by H(ζ )(p) = 2–2sζ (2sp). Putting

�(ζ ,η) = ν (ζ ,η ∈ Γ ),

we obtain

μH(ζ )(p)–H(η)(p)(t) = μζ (2sp)–η(2sp)

(
t

22s

)

≥ Ψ

(

2sp,
t

ν22s

)

≥ Ψ

(

p,
t

Lα

)

.

Then, for ζ ,η ∈ S, we have

�
(
H(ζ ), H(η)

) ≤ L�(ζ ,η), (4.7)

which means that H on Γ , with Lipschitz constant L is a strictly contractive mapping.
Also, for p ∈ B, we have

μ(Hf )(p)–f (p)(t) = μ2–2sf (2sp)–f (p)(t) = μf (2s)22sf (p)
(
22st

) ≥ Ψ
(
p, 22st

)
,
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which implies that �(H(f ), f ) ≤ 1/22s. Using Theorem 2.1, we conclude that, in the set

U =
{
ζ ∈ Γ : �

(
ζ , H(f )

)
< ∞}

(4.8)

and for each p ∈ B, h : B → B is a unique fixed point of H and

h(p) = lim
m→∞ Hm(

f (p)
)

= lim 2–2smf
(
2smp

)
. (4.9)

By (4.9), we have

μh(p+q)+h(p–q)–2h(p)–2h(q)(t)

= lim
n→∞μf (2sn(p+q)+f (2sn(p–q))–2f (2snp)–2f (2snq)

(
22snt

)

≥ lim
n→∞ψ1

(
2nsp, 2nsq, 22nst

) ≥ lim
n→∞ψ1

(

p, q,
t

Ln

)

= 1

for all p, q ∈ B and t > 0. Then h is a quadratic mapping on B. Also, we have

μh(ξp)–λ2h(p)(t) = lim
n→∞μf (2ns(ξp)–λ2f (2nsp)

(
22nst

)

≥ lim
n→∞ψ2

(
2nsp, 22nst

)

≥ lim
n→∞ψ2

(

p,
t

Ln

)

= 1,

which implies that h is quadratic homogeneous.
Now, replacing p by 2nsp in (4.2) and dividing by 2–2sn, we get

μ f (2nspq)
22ns –p2f (q)– f (2nsp)

22ns q2 (t) ≥ ψ1
(
2nsp, q, 22nst

) ≥ ψ1

(

p, q,
t

Ln

)

(4.10)

for all p, q ∈ B, n ∈N and t > 0. Letting n → ∞, we get

h(pq) = p2f (q) + h(p)q2, (4.11)

for all p, q ∈ B. Let m ∈N. We have

p2f
(
2msq

)
= h

(
2mspq

)
– h

(
2msp

)
q2

= 22msp2f (q) + h
(
2msp

)
q2 – h

(
2msp

)
q2

= 22msp2f (q) (4.12)

for all p, q ∈ B, and so p2f (q) = p2 f (2msq)
22ms for all p, q ∈ B and m ∈ N. Letting m → ∞ yields

p2f (q) = p2h(q). Putting p = e, we get h(q) = f (q) for all q ∈ B. Hence, on B, f is a ∗-
quadratic derivation. �
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5 Derivations on random C∗-ternary algebras
A complex random Banach space (B,μ, T , T ′), which has a ternary product (f , g, h) �−→
[f , g, h] of B3 into B, is a random C∗-ternary algebra if (see [29]):

(1) [ξ f + v, g, h] = ξ [f , g, h] + [v, g, h] for all ξ ∈C;
(2) [f , ξg + v, h] = ξ [f , g, h] + [f , v, h] for all ξ ∈C;
(3) [f , g, ξh + v] = ξ [f , g, h] + [f , g, v] for all ξ ∈ C;
(4) [f , g, [h, k, j]] = [f , [k, h, g], j] = [[f , g, h], k, j];
(5) ‖[f , g, h]‖ ≤ ‖f ‖ · ‖g‖ · ‖h‖;
(6) ‖[f , f , f ]‖ = ‖f ‖3;

for f , g, h, v, k, j ∈ B.
If (B,μ, T , T ′) has the unit e satisfying f = [f , e, e] = [e, e, f ] for all f ∈ B, then the random

C∗-ternary algebra has unit e. If for f ∈ B, we have [e, f , e] = f ∗, then ∗ is an involution on
the C∗-ternary algebra. A C∗-ternary derivation is a mapping δ : B −→ B such that

δ
(
[f , g, h]

)
=

[
δ(f ), g, h

]
+

[
f , δ(g), h

]
+

[
f , g, δ(h)

]
,

δ(ξ f + g) = ξδ(f ) + δ(g)

for all f , g, h ∈ B and ξ ∈ C. Recall that δ([e, f , e]) = [e, δ(f ), e] implies that δ is an involution.

Theorem 5.1 Assume thatB is a random C∗-ternary algebra which has the unit e. Suppose
that ψ1 : B2 −→ [0,∞) and ψ2 : B3 −→ [0,∞) are functions. Let f : B −→ B be a mapping
such that

μf (ξp+q)–λf (p)–f (q)(t) ≥ ψ1(p, q, t), (5.1)

μf ([p,q,r])–[f (p),q,r]–[p,f (q),r][p,q,f (r)](t) ≥ ψ2(p, q, r, t), (5.2)

μf ([e,q,e])–[e,f (q),e](t) ≥ ψ2(e, q, e, t) (5.3)

for all λ ∈ C, p, q, r ∈ B and t > 0. Assume there exist s ∈ N and 0 < L < 1 such
that ψ1(sip, sjq, s(i+j)L(i+j)t) > ψ1(p, q, t), ψ2(sip, sjq, skr, s(i+j+k)L(i+j+k)t) > ψ2(p, q, r, t) for all
p, q, r ∈ B and i, j, k = 0, 1. Then on B, f is a ∗-derivation.

Proof Put

Ψ (p, t) =
s–1∏

j=1

ψ1(jp, p, tj)

for p ∈ B and t > 0 where
∑s–1

j=1 tj = t. Then we have

μf (sp)–sf (p)(t) ≥ Ψ (p, t). (5.4)

We use similar method presented in the proof of Theorem 3.1. Let Γ be the set of all
mappings r : B −→ B. Define a function � : Γ × Γ −→ [0,∞] by

�(ζ ,η) = inf
{
ν > 0 : μζ (z)–η(z)(νs) ≥ Ψ (z, s)

}
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for ζ ,η ∈ Γ , z ∈ B and t > 0. Miheţ and Radu [28] proved that (Γ ,�) is a complete GM
space. Define a mapping H : Γ −→ Γ by H(ζ )(z) = s–1ζ (sz). Now

�(ζ ,η) = ν(ζ ,η ∈ Γ )

implies that

μH(ζ )(z)–H(η)(z)(t) = μζ (sz)–η(sz)(νst) ≥ Ψ (sz, st) ≥ Ψ

(

z,
t

Lν

)

and for ζ ,η ∈ Γ

�
(
H(ζ ), H(η)

) ≤ L�(ζ ,η). (5.5)

Therefore H on Γ with Lipschitz constant L is a strictly contractive function. From (5.4),
we have

μ(Hf )(z) – f (z)(t) = μs–1f (sz)–f (z)(t) = μf (sz)–sf (z)(st) ≥ Ψ (z, st).

So �(H(f ), f ) ≤ 1/|s|. Using Theorem 2.1, we conclude that, in the set

U =
{
ζ ∈ Γ : �

(
ζ , H(f )

)
< ∞}

,

h : B −→ B is a unique fixed point of H .
Now, for every z ∈ B, we have

h(z) = lim
m→∞ Hm(

f (z)
)

= lim
m→∞ s–mf

(
smz

)
(5.6)

which implies that h is a C-linear mapping on B. Also, we can show that h has the C∗-
ternary derivation property,

μh([p,q,r])[h(p),q,r][p,h(q),r][p,q,h(r)](t)

= lim
n→∞μf (s3n[p,q,r])–s2n[f (snp),q,r]–s2n[p,f (snq),r]–s2n[p,q,f (snr)]

(
s3nt

)

≥ lim
n→∞ψ1

(
snp, snq, snr, s3nt

) ≥ lim
n→∞ψ1

(

p, q, r,
t

L3n

)

= 1.

So

h
(
[p, q, r]

)
=

[
h(p), q, r

]
+

[
p, h(q), r

]
+

[
p, q, h(r)

]
(5.7)

for all p, q, r ∈ B. Also,

μh([e,p,e])–[e,h(p),e](t) = lim
n→∞μf (s3n[e,p,e])–s2n[e,f (snp),e]

(
s3nt

)

≥ lim
n→∞ψ1

(
sne, snp, sne, s3nt

)

≥ lim
n→∞ L3nψ1

(

e, p, e,
t

L3n

)

= 1,

which implies that, on B, h is a ∗-derivation.
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Now, in (5.2), we replace q by snq, r by snr and divide by s2n. Letting n → ∞, we get

lim
n→∞μs–2n(f ([p,snq,snr])–[f (p),snq,snr]–sn[p,f (snq),r]–sn[p,q,f (snr)])(t)

= lim
n→∞μf (s2n[p,q,r])–s2n[f (p),q,r]–sn[p,f (snq),r]–sn[p,q,f (snr)]

(
s2nt

)

≥ lim
n→∞ψ1

(
p, snq, snr, s2n) ≥ lim

n→∞ψ1

(

p, q, r
t

L2n

)

= 1,

which implies that

h
(
[p, q, r]

)
=

[
f (p), q, r

]
+

[
p, h(q), r

]
+

[
p, q, h(r)

]
(5.8)

for all p, q, r ∈ B. Putting f (p) – h(p) instead of q and r in (5.7) and (5.8), we obtain
μh(p)–f (p)(t) = 1. Hence, on B, f is a ∗-derivation. �
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